Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Predicting the data structure prior to extreme events from passive observables using echo state network

Banerjee, A., Mishra, A., Dana, S. K., Hens, C., Kapitaniak, T., Kurths, J., Marwan, N. (2022): Predicting the data structure prior to extreme events from passive observables using echo state network. - Frontiers in Applied Mathematics and Statistics, 8, 955044.
https://doi.org/10.3389/fams.2022.955044

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
banerjee_2022_fams-08-955044.pdf (Verlagsversion), 2MB
Name:
banerjee_2022_fams-08-955044.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Banerjee, Abhirup1, Autor              
Mishra, Arindam2, Autor
Dana, Syamal K.2, Autor
Hens, Chittaranjan2, Autor
Kapitaniak, Tomasz2, Autor
Kurths, Jürgen1, Autor              
Marwan, Norbert1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Extreme events are defined as events that largely deviate from the nominal state of the system as observed in a time series. Due to the rarity and uncertainty of their occurrence, predicting extreme events has been challenging. In real life, some variables (passive variables) often encode significant information about the occurrence of extreme events manifested in another variable (active variable). For example, observables such as temperature, pressure, etc., act as passive variables in case of extreme precipitation events. These passive variables do not show any large excursion from the nominal condition yet carry the fingerprint of the extreme events. In this study, we propose a reservoir computation-based framework that can predict the preceding structure or pattern in the time evolution of the active variable that leads to an extreme event using information from the passive variable. An appropriate threshold height of events is a prerequisite for detecting extreme events and improving the skill of their prediction. We demonstrate that the magnitude of extreme events and the appearance of a coherent pattern before the arrival of the extreme event in a time series affect the prediction skill. Quantitatively, we confirm this using a metric describing the mean phase difference between the input time signals, which decreases when the magnitude of the extreme event is relatively higher, thereby increasing the predictability skill.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2022-10-202022-10-20
 Publikationsstatus: Final veröffentlicht
 Seiten: 10
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.3389/fams.2022.955044
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Atmosphere
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
Model / method: Machine Learning
Working Group: Development of advanced time series analysis techniques
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Frontiers in Applied Mathematics and Statistics
Genre der Quelle: Zeitschrift, Scopus, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 8 Artikelnummer: 955044 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/frontiers-applied-mathematics_statistics
Publisher: Frontiers