English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Toward Generalized Milankovitch Theory (GMT)

Ganopolski, A. (2024): Toward Generalized Milankovitch Theory (GMT). - Climate of the Past, 20, 1, 151-185.
https://doi.org/10.5194/cp-20-151-2024

Item is

Files

show Files
hide Files
:
Ganopolski 2024cp.pdf (Publisher version), 15MB
Name:
Ganopolski 2024cp.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Ganopolski, Andrey1, Author              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: In recent decades, numerous paleoclimate records and results of model simulations provided strong support to the astronomical theory of Quaternary glacial cycles formulated in its modern form by Milutin Milankovitch. At the same time, new findings revealed that the classical Milankovitch theory is unable to explain a number of important facts, such as the change of the dominant periodicity of glacial cycles from 41 kyr to 100 kyr about one million years ago. This transition was also accompanied by an increase in the amplitude and asymmetry of the glacial cycles. Here, based on the results of a hierarchy of models and data analysis, a framework of the extended (generalized) version of the Milankovitch theory is presented. To illustrate the main elements of this theory, a simple conceptual model of glacial cycles was developed using the results of an Earth system model CLIMBER-2. This conceptual model explicitly assumes the multistability of the climate-cryosphere system and the instability of the “supercritical” ice sheets. Using this model, it is shown that Quaternary glacial cycles can be successfully reproduced as the strongly-nonlinear response of the Earth system to the orbital forcing, where 100 kyr cyclicity originates from the phase-locking of the precession and obliquity-forced glacial cycles to the corresponding eccentricity cycle. The eccentricity influences glacial cycles solely through its amplitude modulation of the precession component of orbital forcing, while the long time scale of the late Quaternary glacial cycles is determined by the time required for ice sheets to reach their critical size. The postulates used to construct this conceptual model were justified using analysis of relevant physical and biogeochemical processes and feedbacks. In particular, the role of climate-ice sheet-carbon cycle feedback in shaping and globalization of glacial cycles is discussed. The reasons for the instability of the large northern ice sheets and the mechanisms of the Earth system escape from the “glacial trap” via a set of strongly nonlinear processes are presented. It is also shown that the transition from the 41 kyr to the 100 kyr world about one million years ago can be explained by a gradual increase in the critical size of ice sheets, which in turn is related to the gradual removal of terrestrial sediments from the northern continents. The implications of this nonlinear paradigm for understanding Quaternary climate dynamics and the remaining knowledge gaps are finally discussed.

Details

show
hide
Language(s): eng - English
 Dates: 2023-11-012024-01-182024-01-18
 Publication Status: Finally published
 Pages: 35
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: PIKDOMAIN: RD1 - Earth System Analysis
Organisational keyword: RD1 - Earth System Analysis
Working Group: Long-Term Dynamics of the Earth System
MDB-ID: pending
OATYPE: Gold Open Access
DOI: 10.5194/cp-20-151-2024
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Climate of the Past
Source Genre: Journal, SCI, Scopus, p3, oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 20 (1) Sequence Number: - Start / End Page: 151 - 185 Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals78
Publisher: Copernicus