日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  DiverGet: a Search-Based Software Testing approach for Deep Neural Network Quantization assessment

Yahmed, A. H., Braiek, H. B., Khomh, F., Bouzidi, S., & Zaatour, R. (2022). DiverGet: a Search-Based Software Testing approach for Deep Neural Network Quantization assessment. Empirical Software Engineering, 27:. doi:10.1007/s10664-022-10202-w.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
s10664-022-10202-w.pdf (出版社版), 4MB
 
ファイルのパーマリンク:
-
ファイル名:
s10664-022-10202-w.pdf
説明:
-
閲覧制限:
非公開
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Yahmed, Ahmed Haj1, 著者
Braiek, Houssem Ben1, 著者
Khomh, Foutse1, 著者
Bouzidi, Sonia1, 著者
Zaatour, Rania2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Quantization is one of the most applied Deep Neural Network (DNN) compression strategies, when deploying a trained DNN model on an embedded system or a cell phone. This is owing to its simplicity and adaptability to a wide range of applications and circumstances, as opposed to specific Artificial Intelligence (AI) accelerators and compilers that are often designed only for certain specific hardware (e.g., Google Coral Edge TPU). With the growing demand for quantization, ensuring the reliability of this strategy is becoming a critical challenge. Traditional testing methods, which gather more and more genuine data for better assessment, are often not practical because of the large size of the input space and the high similarity between the original DNN and its quantized counterpart. As a result, advanced assessment strategies have become of paramount importance. In this paper, we present DiverGet, a search-based testing framework for quantization assessment. DiverGet defines a space of metamorphic relations that simulate naturally-occurring distortions on the inputs. Then, it optimally explores these relations to reveal the disagreements among DNNs of different arithmetic precision. We evaluate the performance of DiverGet on state-of-the-art DNNs applied to hyperspectral remote sensing images. We chose the remote sensing DNNs as they’re being increasingly deployed at the edge (e.g., high-lift drones) in critical domains like climate change research and astronomy. Our results show that DiverGet successfully challenges the robustness of established quantization techniques against naturally-occurring shifted data, and outperforms its most recent concurrent, DiffChaser, with a success rate that is (on average) four times higher.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2022-07-022022-10-062022-10-06
 出版の状態: Finally published
 ページ: 32
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1007/s10664-022-10202-w
Organisational keyword: RD3 - Transformation Pathways
PIKDOMAIN: RD3 - Transformation Pathways
MDB-ID: No data to archive
Model / method: Qualitative Methods
Research topic keyword: Complex Networks
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Empirical Software Engineering
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 27 通巻号: 193 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1573-7616
Publisher: Springer