English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Extreme Mei-yu in 2020: Characteristics, causes, predictability and perspectives

Liu, C., Hu, C., Yang, S., Lian, T., Zhang, C., Lin, L., Cai, F. (2023): Extreme Mei-yu in 2020: Characteristics, causes, predictability and perspectives. - Earth-Science Reviews, 246, 104597.
https://doi.org/10.1016/j.earscirev.2023.104597

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Liu, Caihong1, Author
Hu, Chundi1, Author
Yang, Song1, Author
Lian, Tao1, Author
Zhang, Chengyang1, Author
Lin, Lifei1, Author
Cai, Fenying2, Author              
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, Potsdam, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: The 2020 extreme rainfall was highly unusual with episodes of intensive rains and winds from the middle and lower reaches of the Yangtze River Valley to southern Japan. Given the severe implications and huge forecast spread among different models, the extreme Mei-yu has aroused widespread concern. This study is aimed at synthesizing the latest research on the characteristics and potential climate forcing factors of such extreme Mei-yu and discusses the challenges and outlooks for prediction and numerical modeling. The distinct characteristics of the Yangtze River Valley summer rainfalls in 2020 included record-breaking accumulated precipitation, longest duration, earliest onset, and highest intensity. We summarize the majority of the studies investigating the diverse coupled ocean-atmospheric processes at different timescales. The research consensus is that the anomalous anticyclone spanning the western North Pacific and the mid-high latitude trough-ridge patterns are the two critical circulation features carrying tropical and mid-high latitude signals, jointly affecting the extreme Mei-yu. Potential mechanisms based on the two essential atmospheric circulations during the Mei-yu period are then highlighted. In addition, different climate model simulations are also introduced to reach an inter-model agreement despite certain model biases on the response of atmospheric circulations to these potential forcings among the state-of-the-art atmospheric and coupled general circulation models. This study provides a synthesis to promote the understanding, prediction, and disaster prevention of extreme Mei-yu.

Details

show
hide
Language(s): eng - English
 Dates: 2023-10-252023-11-01
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.earscirev.2023.104597
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Monsoon
Research topic keyword: Extremes
Regional keyword: Asia
Model / method: Open Source Software
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Earth-Science Reviews
Source Genre: Journal, SCI, Scopus, p3
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 246 Sequence Number: 104597 Start / End Page: - Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals104
Publisher: Elsevier