Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Exploring Geometric Deep Learning for Precipitation Nowcasting

Zhao, S., Saha, S., Xiong, Z., Boers, N., Zhu, X. X. (2023): Exploring Geometric Deep Learning for Precipitation Nowcasting. - In: IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium: Proceedings, New York : Institute of Electrical and Electronics Engineers.
https://doi.org/10.1109/IGARSS52108.2023.10282387

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zhao, Shan 1, Autor
Saha, Sudipan 1, Autor
Xiong, Zhitong 1, Autor
Boers, Niklas2, Autor              
Zhu, Xia Xiang1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Precipitation nowcasting (up to a few hours) remains a challenge due to the highly complex local interactions that need to be captured accurately. Convolutional Neural Networks rely on convolutional kernels convolving with grid data and the extracted features are trapped by limited receptive field, typically expressed in excessively smooth output compared to ground truth. Thus they lack the capacity to model complex spatial relationships among the grids. Geometric deep learning aims to generalize neural network models to non-Euclidean domains. Such models are more flexible in defining nodes and edges and can effectively capture dynamic spatial relationship among geographical grids. Motivated by this, we explore a geometric deep learning-based temporal Graph Convolutional Network (GCN) for precipitation nowcasting. The adjacency matrix that simulates the interactions among grid cells is learned automatically by minimizing the L1 loss between prediction and ground truth pixel value during the training procedure. Then, the spatial relationship is refined by GCN layers while the temporal information is extracted by 1D convolution with various kernel lengths. The neighboring information is fed as auxiliary input layers to improve the final result. We test the model on sequences of radar reflectivity maps over the Trento/Italy area. The results show that GCNs improves the effectiveness of modeling the local details of the cloud profile as well as the prediction accuracy by achieving decreased error measures.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2023-10-202023-10-20
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: MDB-ID: No data to archive
DOI: 10.1109/IGARSS52108.2023.10282387
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Organisational keyword: FutureLab - Artificial Intelligence in the Anthropocene
Model / method: Machine Learning
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium: Proceedings
Genre der Quelle: Buch
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York : Institute of Electrical and Electronics Engineers
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: ISBN: 9798350331745