hide
Free keywords:
-
Abstract:
Most large scale studies assessing climate change impacts on crops are performed with simulations of
single crops and with annual reinitialization of the initial soil conditions. This is in contrast to the reality
that crops are grown in rotations, often with sizable proportion of the preceding crop residue to be left
in the fields and varying soil initial conditions from year to year. In this study, the sensitivity of climate
change impacts on crop yield and soil organic carbon to assumptions about annual model reinitialization,
specification of crop rotations and the amount of residue retained in fields was assessed for seven main
crops across Europe. Simulations were conducted for a scenario period 2040-2065 relative to a baseline
from 1980-2005 using the SIMPLACE1modelling framework. Results indicated across Europe positive
climate change impacts on yield for C3 crops and negative impacts for maize. The consideration of
simulating rotations did not have a benefit on yield variability but on relative yield change in response to
climate change which slightly increased for C3 crops and decreased for C4 crops when rotation was
considered. Soil organic carbon decreased under climate change in both simulations assuming a
continuous monocrop and plausible rotations by between 3% and 10% depending on the residue
management strategy.