Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Tracing the Snowball bifurcation of aquaplanets through time reveals a fundamental shift in critical-state dynamics

Feulner, G., Bukenberger, M., Petri, S. (2023): Tracing the Snowball bifurcation of aquaplanets through time reveals a fundamental shift in critical-state dynamics. - Earth System Dynamics, 14, 3, 533-547.
https://doi.org/10.5194/esd-14-533-2023

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
28363oa.pdf (Verlagsversion), 4MB
Name:
28363oa.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Feulner, Georg1, Autor              
Bukenberger, Mona1, Autor              
Petri, Stefan1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The instability with respect to global glaciation is a fundamental property of the climate system caused by the positive ice-albedo feedback. The atmospheric concentration of carbon dioxide (CO2) at which this Snowball bifurcation occurs changes through Earth's history, most notably because of the slowly increasing solar luminosity. Quantifying this critical CO2 concentration is not only interesting from a climate dynamics perspective but also constitutes an important prerequisite for understanding past Snowball Earth episodes, as well as the conditions for habitability on Earth and other planets. Earlier studies are limited to investigations with very simple climate models for Earth's entire history or studies of individual time slices carried out with a variety of more complex models and for different boundary conditions, making comparisons and the identification of secular changes difficult. Here, we use a coupled climate model of intermediate complexity to trace the Snowball bifurcation of an aquaplanet through Earth's history in one consistent model framework. We find that the critical CO2 concentration decreased more or less logarithmically with increasing solar luminosity until about 1 billion years ago but dropped faster in more recent times. Furthermore, there was a fundamental shift in the dynamics of the critical state about 1.2 billion years ago (unrelated to the downturn in critical CO2 values), driven by the interplay of wind-driven sea-ice dynamics and the surface energy balance: for critical states at low solar luminosities, the ice line lies in the Ferrel cell, stabilised by the poleward winds despite moderate meridional temperature gradients under strong greenhouse warming. For critical states at high solar luminosities, on the other hand, the ice line rests at the Hadley cell boundary, stabilised against the equatorward winds by steep meridional temperature gradients resulting from the increased solar energy input at lower latitudes and stronger Ekman transport in the ocean.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2023-04-052023-05-032023-05-03
 Publikationsstatus: Final veröffentlicht
 Seiten: 15
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: PIKDOMAIN: RD1 - Earth System Analysis
Organisational keyword: RD1 - Earth System Analysis
MDB-ID: yes - 3423
DOI: 10.5194/esd-14-533-2023
Research topic keyword: Paleoclimate
Regional keyword: Global
Model / method: CLIMBER
Working Group: Earth System Modes of Operation
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Earth System Dynamics
Genre der Quelle: Zeitschrift, SCI, Scopus, p3, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 14 (3) Artikelnummer: - Start- / Endseite: 533 - 547 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1402282
Publisher: Copernicus