日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Machine learning map of climate policy literature reveals disparities between scientific attention, policy density, and emissions

Callaghan, M., Banisch, L., Döbbeling-Hildebrandt, N., Edmondson, D., Flachsland, C., Lamb, W. F., Levi, S., Müller-Hansen, F., Posada, E., Vasudevan, S., & Minx, J. C. (2025). Machine learning map of climate policy literature reveals disparities between scientific attention, policy density, and emissions. npj Climate Action, 4:. doi:10.1038/s44168-024-00196-0.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
s44168-024-00196-0.pdf (全文テキスト(全般)), 2MB
ファイル名:
s44168-024-00196-0.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Callaghan, Max1, 著者              
Banisch, Lucy2, 著者
Döbbeling-Hildebrandt, Niklas1, 著者              
Edmondson, Duncan2, 著者
Flachsland, Christian2, 著者
Lamb, William F.1, 著者              
Levi, Sebastian2, 著者
Müller-Hansen, Finn1, 著者              
Posada, Eduardo2, 著者
Vasudevan, Shraddha2, 著者
Minx, Jan C.1, 著者              
所属:
1Potsdam Institute for Climate Impact Research, Potsdam, ou_persistent13              
2External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: Current climate mitigation policies are not sufficient to meet the Paris temperature target, and ramping up efforts will require rapid learning from the scientific literature on climate policies. This literature is vast and widely dispersed, as well as hard to define and categorise, hampering systematic efforts to learn from it. We use a machine learning pipeline using transformer-based language models to systematically map the relevant scientific literature on climate policies at scale and in real-time. Our “living systematic map” of climate policy research features a set of 84,990 papers, and classifies each of them by policy instrument type, sector, and geography. We explore how the distribution of these papers varies across countries, and compare this to the distribution of emissions and enacted climate policies. Results suggests a potential stark under-representation of industry sector policies, as well as diverging attention between science and policy with respect to economic and regulatory instruments.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2025-02-112025-02-11
 出版の状態: Finally published
 ページ: 14
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1038/s44168-024-00196-0
PIKDOMAIN: RD5 - Climate Economics and Policy - MCC Berlin
Organisational keyword: RD5 - Climate Economics and Policy - MCC Berlin
Working Group: Evidence for Climate Solutions
Research topic keyword: Climate Policy
Model / method: Machine Learning
Regional keyword: Global
MDB-ID: pending
OATYPE: Gold Open Access
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示: 非表示:
Project name : Ariadne
Grant ID : 03SFK5J0
Funding program : -
Funding organization : Bundesministerium für Bildung und Forschung (BMBF)

出版物 1

表示:
非表示:
出版物名: npj Climate Action
種別: 学術雑誌, other, oa
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 4 通巻号: 7 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/2731-9814
Publisher: Nature