English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Sequence-to-sequence prediction of spatiotemporal systems

Shen, G., Kurths, J., Yuan, Y. (2020): Sequence-to-sequence prediction of spatiotemporal systems. - Chaos, 30, 2, 023102.
https://doi.org/10.1063/1.5133405

Item is

Files

show Files
hide Files
:
Shen_2020_1.5133405.pdf (Publisher version), 3MB
 
File Permalink:
-
Name:
Shen_2020_1.5133405.pdf
Description:
-
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Shen, Guorui1, Author
Kurths, Jürgen2, Author              
Yuan, Ye1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Content

show

Details

show
hide
Language(s):
 Dates: 2020
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1063/1.5133405
PIKDOMAIN: RD4 - Complexity Science
MDB-ID: No data to archive
Working Group: Network- and machine-learning-based prediction of extreme events
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Chaos
Source Genre: Journal, SCI, Scopus, p3
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 30 (2) Sequence Number: 023102 Start / End Page: - Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808
Publisher: American Institute of Physics (AIP)