Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Limbic and cerebellar effects in Alzheimer-Perusini’s disease: A physics-inspired approach

Mannone, M., Marwan, N., Fazio, P., Ribino, P. (2024 online): Limbic and cerebellar effects in Alzheimer-Perusini’s disease: A physics-inspired approach. - Biomedical Signal Processing and Control, 103, 107355.
https://doi.org/10.1016/j.bspc.2024.107355

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Mannone_2024_1-s2.0-S1746809424014137-main.pdf (Verlagsversion), 11MB
Name:
Mannone_2024_1-s2.0-S1746809424014137-main.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://adni.loni.usc.edu/ (Ergänzendes Material)
Beschreibung:
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

Urheber

einblenden:
ausblenden:
 Urheber:
Mannone, Maria1, Autor
Marwan, Norbert2, Autor              
Fazio, Peppino1, Autor
Ribino, Patrizia1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Alzheimer-Perusini’s disease (AD) is a severe neurodegenerative pathology mostly characterized by memory loss, with aging as a significant risk factor. While normal aging involves non-pathological changes in the brain, pathological aging involves the formation of neuronal plaques, leading to neuronal death and the macroscopic shrinkage of major brain regions. Prodromic dopaminergic alterations also affect the limbic system. We adopt a physics-inspired mathematical operator, the Krankheit-Operator, denoted as , to model brain network impairment caused by a neurological disorder. By acting on a pathological brain, plays a role in modulating disease progression. The evaluation of the -operator is conducted across different stages, from cognitive normal (CN) to Mild Cognitive Impairment (MCI) and AD. Furthermore, by adopting a machine learning-based approach, we also explore the potential use of the -operator as a diagnostic tool for predicting AD progression by starting from rs-fMRI at the initial visit. Our findings are consistent with the literature on the effects of AD on the limbic system, subcortical areas, cerebellum, and temporal lobe.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-12-30
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.bspc.2024.107355
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Development of advanced time series analysis techniques
MDB-ID: No MDB - stored outside PIK (see locators/paper)
Research topic keyword: Nonlinear Dynamics
Research topic keyword: Complex Networks
Research topic keyword: Health
Model / method: Quantitative Methods
OATYPE: Hybrid Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Biomedical Signal Processing and Control
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 103 Artikelnummer: 107355 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1746-8108
Publisher: Elsevier