Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Synchronization of Layer-Counted Paleoclimatic Proxy Archives Using a Bayesian Regression Modeling Framework

Myrvoll-Nilsen, E., Riechers, K., Boers, N. (2025 online): Synchronization of Layer-Counted Paleoclimatic Proxy Archives Using a Bayesian Regression Modeling Framework. - Bayesian Analysis.
https://doi.org/10.1214/25-BA1509

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Myrvoll-Nielsen_25-BA1509.pdf (Verlagsversion), 2MB
Name:
Myrvoll-Nielsen_25-BA1509.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
Myrvoll-Nielsen_supplement_ba1509supp.pdf (Ergänzendes Material), 865KB
Name:
Myrvoll-Nielsen_supplement_ba1509supp.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Myrvoll-Nilsen, Eirik1, Autor
Riechers, Keno2, Autor              
Boers, Niklas2, Autor              
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Layer-counted proxy records from paleoclimatic archives are subject to considerable dating uncertainties. These uncertainties originate from irregularities in the archive’s deposition process that result, in turn, in errors during the layer counting process. Dating uncertainties can be quantified by assuming a probabilistic model for the relationship between the depth of a sample in the proxy archive and the age of that sample. However, systematic biases in counting or depositional processes can cause the counted chronology to deviate substantially from the true age and possibly corrupt the age model. By synchronizing a given chronology with other, independently dated archives, one can constrain the dating uncertainties and correct potential biases. This can be done by matching the chronology to tie-points obtained by identifying characteristic events which were recorded simultaneously by different archives or with independent methods. However, updating the counted age–depth relationship under the consideration of tie-points is not straightforward and no generally accepted method is presently available for layer-counted archives. A key requirement for such a method is that it should include an appropriate uncertainty-sensitive interpolation between tie-points. Using a Gaussian model to represent a potential bias, we show how tie-points and their uncertainties can be incorporated into a previously suggested Bayesian modeling framework to reflect the general uncertainties of a counted chronology. Both the uncertainty inherent to the tie-points and the age-correlation between the data from different depths in the archive are consistently represented in this approach. We demonstrate the methodology in two applications: first, using synthetic data, and second, applying the methodology to data from the NGRIP ice core, an iconic paleoclimate proxy archive.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2025-02-20
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1214/25-BA1509
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Artificial Intelligence
Research topic keyword: Paleoclimate
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : ClimTip
Grant ID : 01137601
Förderprogramm : Horizon Europe (HE)
Förderorganisation : European Commission (EC)
Projektname : Marie Sklodowska-Curie grant agreement
Grant ID : 956170
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Bayesian Analysis
Genre der Quelle: Zeitschrift, SCI, Scopus, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1931-6690
Publisher: International Society for Bayesian Analysis