日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  SAMSGL: Series-aligned multi-scale graph learning for spatiotemporal forecasting

Zou, X., Xiong, L., Tang, Y., & Kurths, J. (2024). SAMSGL: Series-aligned multi-scale graph learning for spatiotemporal forecasting. Chaos, 34(6):. doi:10.1063/5.0211403.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
Zou_063140_1_5.0211403.pdf (出版社版), 7MB
 
ファイルのパーマリンク:
-
ファイル名:
Zou_063140_1_5.0211403.pdf
説明:
-
閲覧制限:
非公開 (公開猶予期限 2025-07-01)
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Zou, Xiaobei1, 著者
Xiong, Luolin1, 著者
Tang, Yang1, 著者
Kurths, Jürgen2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Spatiotemporal forecasting in various domains, like traffic prediction and weather forecasting, is a challenging endeavor, primarily due to the difficulties in modeling propagation dynamics and capturing high-dimensional interactions among nodes. Despite the significant strides made by graph-based networks in spatiotemporal forecasting, there remain two pivotal factors closely related to forecasting performance that need further consideration: time delays in propagation dynamics and multi-scale high-dimensional interactions. In this work, we present a Series-Aligned Multi-Scale Graph Learning (SAMSGL) framework, aiming to enhance forecasting performance. In order to handle time delays in spatial interactions, we propose a series-aligned graph convolution layer to facilitate the aggregation of non-delayed graph signals, thereby mitigating the influence of time delays for the improvement in accuracy. To understand global and local spatiotemporal interactions, we develop a spatiotemporal architecture via multi-scale graph learning, which encompasses two essential components: multi-scale graph structure learning and graph-fully connected (Graph-FC) blocks. The multi-scale graph structure learning includes a global graph structure to learn both delayed and non-delayed node embeddings, as well as a local one to learn node variations influenced by neighboring factors. The Graph-FC blocks synergistically fuse spatial and temporal information to boost prediction accuracy. To evaluate the performance of SAMSGL, we conduct experiments on meteorological and traffic forecasting datasets, which demonstrate its effectiveness and superiority.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2024-06-182024-06-18
 出版の状態: Finally published
 ページ: 14
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): Organisational keyword: RD4 - Complexity Science
PIKDOMAIN: RD4 - Complexity Science
MDB-ID: No data to archive
DOI: 10.1063/5.0211403
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Chaos
種別: 学術雑誌, SCI, Scopus, p3
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 34 (6) 通巻号: 063140 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808
Publisher: American Institute of Physics (AIP)