English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Potential and Actual impacts of deforestation and afforestation on land surface temperature

Li, Y., Zhao, M., Mildrexler, D. J., Motesharrei, S., Mu, Q., Kalnay, E., Zhao, F., Li, S., Wang, K. (2016): Potential and Actual impacts of deforestation and afforestation on land surface temperature. - Journal of Geophysical Research: Atmospheres, 121, 24, 14372-14386.
https://doi.org/10.1002/2016JD024969

Item is

Files

show Files
hide Files
:
7430oa.pdf (Publisher version), 2MB
Name:
7430oa.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Li, Y.1, Author
Zhao, M.1, Author
Mildrexler, D. J.1, Author
Motesharrei, S.1, Author
Mu, Q.1, Author
Kalnay, E.1, Author
Zhao, Fang2, Author              
Li, S.1, Author
Wang, K.1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: Forests are undergoing significant changes throughout the globe. These changes can modify water, energy, and carbon balance of the land surface, which can ultimately affect climate. We utilize satellite data to quantify the potential and actual impacts of forest change on land surface temperature (LST) from 2003 to 2013. The potential effect of forest change on temperature is calculated by the LST difference between forest and nearby nonforest land, whereas the actual impact on temperature is quantified by the LST trend difference between deforested (afforested) and nearby unchanged forest (nonforest land) over several years. The good agreement found between potential and actual impacts both at annual and seasonal levels indicates that forest change can have detectable impacts on surface temperature trends. That impact, however, is different for maximum and minimum temperatures. Overall, deforestation caused a significant warming up to 0.28 K/decade on average temperature trends in tropical regions, a cooling up to −0.55 K/decade in boreal regions, a weak impact in the northern temperate regions, and strong warming (up to 0.32 K/decade) in the southern temperate regions. Afforestation induced an opposite impact on temperature trends. The magnitude of the estimated temperature impacts depends on both the threshold and the data set (Moderate Resolution Imaging Spectroradiometer and Landsat) by which forest cover change is defined. Such a latitudinal pattern in temperature impact is mainly caused by the competing effects of albedo and evapotranspiration on temperature. The methodology developed here can be used to evaluate the temperature change induced by forest cover change around the globe.

Details

show
hide
Language(s):
 Dates: 2016
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/2016JD024969
PIKDOMAIN: Climate Impacts & Vulnerabilities - Research Domain II
eDoc: 7430
Research topic keyword: Land use
Regional keyword: Global
Organisational keyword: RD2 - Climate Resilience
Working Group: Urban Transformations
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research: Atmospheres
Source Genre: Journal, SCI, Scopus, p3
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 121 (24) Sequence Number: - Start / End Page: 14372 - 14386 Identifier: ISSN: 2169-897X
Publisher: Wiley
Publisher: American Geophysical Union (AGU)
Other: 2169-8996
CoNE: https://publications.pik-potsdam.de/cone/journals/resource/jgr_atmospheres