English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Choosing multiple linear regressions for weather-based crop yield prediction with ABSOLUT v1.2 applied to the districts of Germany

Conradt, T. (2022): Choosing multiple linear regressions for weather-based crop yield prediction with ABSOLUT v1.2 applied to the districts of Germany. - International Journal of Biometeorology, 66, 11, 2287-2300.
https://doi.org/10.1007/s00484-022-02356-5

Item is

Files

show Files
hide Files
:
27363oa.pdf (Publisher version), 6MB
Name:
27363oa.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
absolut_directions_for_use_v1.2.pdf (Supplementary material), 117KB
Name:
absolut_directions_for_use_v1.2.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
https://doi.org/10.5281/zenodo.5625774 (Supplementary material)
Description:
These are data for running the ABSOLUT R programs published separately on Zenodo: 10.5281/zenodo.4468608
Locator:
https://doi.org/10.5281/zenodo.5789350 (Supplementary material)
Description:
These are the five R programs of the ABSOLUT crop yield model, version 1.2.

Creators

show
hide
 Creators:
Conradt, Tobias1, Author              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: ABSOLUT v1.2 is an adaptive algorithm that uses correlations between time-aggregated weather variables and crop yields for yield prediction. In contrast to conventional regression-based yield prediction methods, a very broad range of possible input features and their combinations are exhaustively tested for maximum explanatory power. Weather variables such as temperature, precipitation, and sunshine duration are aggregated over different seasonal time periods preceding the harvest to 45 potential input features per original variable. In a first step, this large set of features is reduced to those aggregates very probably holding explanatory power for observed yields. The second, computationally demanding step evaluates predictions for all districts with all of their possible combinations. Step three selects those combinations of weather features that showed the highest predictive power across districts. Finally, the district-specific best performing regressions among these are used for actual prediction, and the results are spatially aggregated. To evaluate the new approach, ABSOLUT v1.2 is applied to predict the yields of silage maize, winter wheat, and other major crops in Germany based on two decades of data from about 300 districts. It turned out to be absolutely crucial to not only make out-of-sample predictions (solely based on data excluding the target year to predict) but to also consequently separate training and testing years in the process of feature selection. Otherwise, the prediction accuracy would be over-estimated by far. The question arises whether performances claimed for other statistical modelling examples are often upward-biased through input variable selection disregarding the out-of-sample principle.

Details

show
hide
Language(s): eng - English
 Dates: 2022-08-222022-09-032022-11
 Publication Status: Finally published
 Pages: 14
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: MDB-ID: yes - 3455
PIKDOMAIN: RD2 - Climate Resilience
Organisational keyword: RD2 - Climate Resilience
Working Group: Hydroclimatic Risks
Research topic keyword: Climate impacts
Research topic keyword: Food & Agriculture
Research topic keyword: Weather
Regional keyword: Germany
Model / method: Machine Learning
Model / method: Open Source Software
Model / method: Quantitative Methods
Model / method: Research Software Engineering (RSE)
DOI: 10.1007/s00484-022-02356-5
OATYPE: Hybrid - DEAL Springer Nature
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: International Journal of Biometeorology
Source Genre: Journal, SCI, Scopus, p3
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 66 (11) Sequence Number: - Start / End Page: 2287 - 2300 Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/190926
Publisher: Springer