Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Fast, scale-adaptive and uncertainty-aware downscaling of Earth system model fields with generative machine learning

Hess, P., Aich, M., Pan, B., Boers, N. (2025 online): Fast, scale-adaptive and uncertainty-aware downscaling of Earth system model fields with generative machine learning. - Nature Machine Intelligence.
https://doi.org/10.1038/s42256-025-00980-5

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Hess_2025_s42256-025-00980-5.pdf (Verlagsversion), 4MB
Name:
Hess_2025_s42256-025-00980-5.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://zenodo.org/records/4683086 (Ergänzendes Material)
Beschreibung:
-
externe Referenz:
https://github.com/p-hss/consistency-climate-downscaling (Ergänzendes Material)
Beschreibung:
-
externe Referenz:
https://codeocean.com/capsule/9094997/tree/v1 (Ergänzendes Material)
Beschreibung:
-

Urheber

einblenden:
ausblenden:
 Urheber:
Hess, Philipp1, Autor              
Aich, Michael1, Autor              
Pan, Baoxiang2, Autor
Boers, Niklas1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Accurate and high-resolution Earth system model (ESM) simulations are essential to assess the ecological and socioeconomic impacts of anthropogenic climate change, but are computationally too expensive to be run at sufficiently high spatial resolution. Recent machine learning approaches have shown promising results in downscaling ESM simulations, outperforming state-of-the-art statistical approaches. However, existing methods require computationally costly retraining for each ESM and extrapolate poorly to climates unseen during training. We address these shortcomings by learning a consistency model that efficiently and accurately downscales arbitrary ESM simulations without retraining in a zero-shot manner. Our approach yields probabilistic downscaled fields at a resolution only limited by the observational reference data. We show that the consistency model outperforms state-of-the-art diffusion models at a fraction of the computational cost and maintains high controllability on the downscaling task. Further, our method generalizes to climate states unseen during training without explicitly formulated physical constraints.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-12-202025-03-13
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s42256-025-00980-5
MDB-ID: No MDB - stored outside PIK (see locators/paper)
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Artificial Intelligence
Model / method: Machine Learning
Research topic keyword: Extremes
OATYPE: Hybrid Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Machine Intelligence
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/nature-machine-intelligence
Publisher: Nature