Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Hidden and self-excited firing activities of an improved Rulkov neuron, and its application in information patterns

Njitacke, Z. T., Takembo, C. N., Sani, G., Marwan, N., Yamapi, R., Awrejcewicz, J. (2024): Hidden and self-excited firing activities of an improved Rulkov neuron, and its application in information patterns. - Nonlinear Dynamics, 112, 13503-13517.
https://doi.org/10.1007/s11071-024-09766-7

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Njitacke_2024_s11071-024-09766-7.pdf (Verlagsversion), 4MB
 
Datei-Permalink:
-
Name:
Njitacke_2024_s11071-024-09766-7.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
Njitacke_2024_s11071-024-09766-7.pdf (Postprint), 3MB
 
Datei-Permalink:
-
Name:
Njitacke_2024_s11071-024-09766-7.pdf
Beschreibung:
-
Sichtbarkeit:
Privat (Embargo bis 2025-06-01)
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Njitacke, Zeric Tabekoueng1, Autor
Takembo, Clovis Ntahkie1, Autor
Sani, Godwin1, Autor
Marwan, Norbert2, Autor              
Yamapi, R.1, Autor
Awrejcewicz, Jan1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Information patterns in a neuron model describe the possible modes in which information is processed and transmitted within neurons and neural networks. An improved Rulkov neuron with the aim of revealing its unexplored dynamics is introduced and investigated, with possible application to information coding carried out in this work. After introducing the neuron model, its stability around the single equilibrium point is examined, and it is discovered that the system is able to exhibit both stable and unstable dynamics. Using two-parameter charts, the system’s global stability dynamics are obtained, and windows of the hidden and self-excited dynamics involving both chaotic and periodic states are clearly separated. For the validation of the result of the mathematical model, an electronic circuit was developed in Pspice simulation environment, and both results were in good accord. Finally, a network of 500 improved Rulkov neurons under the chain configuration is used to explore the phenomenon of the information patterns. From that investigation, it was found that the improved Rulkov neural lattice under modulational instability presents repetitive, regular stripes of bright and dark bands that are almost periodic and localized in space and time related to synchronization. These results could provide guidance in discerning information processing patterns in the nervous system.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-05-292024-08-01
 Publikationsstatus: Final veröffentlicht
 Seiten: 15
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1007/s11071-024-09766-7
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Development of advanced time series analysis techniques
Research topic keyword: Nonlinear Dynamics
Research topic keyword: Extremes
Model / method: Nonlinear Data Analysis
Model / method: Quantitative Methods
MDB-ID: No data to archive
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nonlinear Dynamics
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 112 Artikelnummer: - Start- / Endseite: 13503 - 13517 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/nonlinear-dynamics
Publisher: Springer