日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Heritable Deleting Strategies for Birth and Death Evolving Networks From a Queueing System Perspective

Feng, M., Li, Y., Chen, F., & Kurths, J. (2022). Heritable Deleting Strategies for Birth and Death Evolving Networks From a Queueing System Perspective. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(10), 6662-6673. doi:10.1109/TSMC.2022.3149596.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Feng, Minyu 1, 著者
Li, Yuhan 1, 著者
Chen, Feng 1, 著者
Kurths, Jürgen2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Evolving networks have always been studied a lot featuring the dynamic properties of real-life networks. Studying the mechanism of the growth and death of a network is of great significance to network modeling. Identical to many models focused on the growing process, in this article, we study the decreasing process thoroughly. A novel evolving network model considering the growing and decreasing process is established based on the queueing system. Focused on the degreasing process, we originally investigate two strategies of vertex deleting that are the brutal strategy and the heritable strategy which characterizes the heritable behavior of ``dying'' vertices in real networks. On the basis of our model, stochastic properties of the proposed network are analyzed, e.g., the distribution and the expectation of the stationary scale of the network are theoretically obtained. In addition to that, degree distributions with different strategies are demonstrated in simulations, which manifests the power-low distribution. The reliability of the network is also studied by different attacks, sharing the same characteristic with the scale-free network.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2022-02-142022-10
 出版の状態: Finally published
 ページ: 12
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1109/TSMC.2022.3149596
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Model / method: Game Theory
Working Group: Network- and machine-learning-based prediction of extreme events
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: IEEE Transactions on Systems, Man, and Cybernetics: Systems
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 52 (10) 通巻号: - 開始・終了ページ: 6662 - 6673 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/IEEE-transactions-systems-man-cybernetics
Publisher: Institute of Electrical and Electronics Engineers (IEEE)