English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Global drivers of minimum mortality temperatures in cities

Krummenauer, L., Prahl, B. F., Costa, L., Holsten, A., Walther, C., Kropp, J. P. (2019): Global drivers of minimum mortality temperatures in cities. - Science of the Total Environment, 695, 133560.
https://doi.org/10.1016/j.scitotenv.2019.07.366

Item is

Files

show Files
hide Files
:
8550.pdf (Publisher version), 1024KB
 
File Permalink:
-
Name:
8550.pdf
Description:
-
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
8550_appendix.pdf (Supplementary material), 364KB
 
File Permalink:
-
Name:
8550_appendix.pdf
Description:
-
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Krummenauer, Linda1, Author              
Prahl, Boris F.1, Author              
Costa, Luís1, Author              
Holsten, Anne1, Author              
Walther, Carsten1, Author              
Kropp, Jürgen P.1, Author              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: Human mortality shows a pronounced temperature dependence. The minimum mortality temperature (MMT) as a characteristic point of the temperature-mortality relationship is influenced by many factors. As MMT estimates are based on case studies, they are sporadic, limited to data-rich regions, and their drivers have not yet been clearly identified across case studies. This impedes the elaboration of spatially comprehensive impact studies on heat-related mortality and hampers the temporal transfer required to assess climate change impacts. Using 400 MMTs from cities, we systematically establish a generalised model that is able to estimate MMTs (in daily apparent temperature) for cities, based on a set of climatic, topographic and socio-economic drivers. A sigmoid model prevailed against alternative model setups due to having the lowest Akaike Information Criterion (AICc) and the smallest RMSE. We find the long-term climate, the elevation, and the socio-economy to be relevant drivers of our MMT sample within the non-linear parametric regression model. A first model application estimated MMTs for 599 European cities (>100 000 inhabitants) and reveals a pronounced decrease in MMTs (27.8–16 °C) from southern to northern cities. Disruptions of this pattern across regions of similar mean temperatures can be explained by socio-economic standards as noted for central eastern Europe. Our alternative method allows to approximate MMTs independently from the availability of daily mortality records. For the first time, a quantification of climatic and non-climatic MMT drivers has been achieved, which allows to consider changes in socio-economic conditions and climate. This work contributes to the comparability among MMTs beyond location-specific and regional limits and, hence, towards a spatially comprehensive impact assessment for heat-related mortality.

Details

show
hide
Language(s):
 Dates: 2019
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.scitotenv.2019.07.366
PIKDOMAIN: RD2 - Climate Resilience
eDoc: 8550
Research topic keyword: Health
Research topic keyword: Climate impacts
Research topic keyword: Cities
Research topic keyword: Adaptation
Research topic keyword: Inequality and Equity
Model / method: Nonlinear Data Analysis
Regional keyword: Global
Regional keyword: Europe
Organisational keyword: RD2 - Climate Resilience
Working Group: Urban Transformations
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Science of the Total Environment
Source Genre: Journal, SCI, Scopus, p3
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 695 Sequence Number: 133560 Start / End Page: - Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals444
Publisher: Elsevier