English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Global scenarios of irrigation water abstractions for bioenergy production: a systematic review

Stenzel, F., Gerten, D., Hanasaki, N. (2021): Global scenarios of irrigation water abstractions for bioenergy production: a systematic review. - Hydrology and Earth System Sciences, 25, 4, 1711-1726.
https://doi.org/10.5194/hess-25-1711-2021

Item is

Files

show Files
hide Files
:
25342oa.pdf (Publisher version), 2MB
Name:
25342oa.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Stenzel, Fabian1, Author              
Gerten, Dieter1, Author              
Hanasaki, Naota2, Author
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Many scenarios of future climate evolution and its anthropogenic drivers include considerable amounts of bioenergy as a fuel source, as a negative emission technology, and for providing electricity. The associated freshwater abstractions for irrigation of dedicated biomass plantations might be substantial and therefore potentially increase water limitation and stress in affected regions; however, assumptions and quantities of water use provided in the literature vary strongly. This paper reviews existing global assessments of freshwater abstractions for bioenergy production and puts these estimates into the context of scenarios of other water-use sectors. We scanned the available literature and (out of 430 initial hits) found 16 publications (some of which include several bioenergy-water-use scenarios) with reported values on global irrigation water abstractions for biomass plantations, suggesting water withdrawals in the range of 128.4 to 9000 km3 yr−1, which would come on top of (or compete with) agricultural, industrial, and domestic water withdrawals. To provide an understanding of the origins of this large range, we present the diverse underlying assumptions, discuss major study differences, and calculate an inverse water-use efficiency (iwue), which facilitates comparison of the required freshwater amounts per produced biomass harvest. We conclude that due to the potentially high water demands and the tradeoffs that might go along with them, bioenergy should be an integral part of global assessments of freshwater demand and use. For interpreting and comparing reported estimates of possible future bioenergy water abstractions, full disclosure of parameters and assumptions is crucial. A minimum set should include the complete water balances of bioenergy production systems (including partitioning of blue and green water), bioenergy crop species and associated water-use efficiencies, rainfed and irrigated bioenergy plantation locations (including total area and meteorological conditions), and total biomass harvest amounts. In the future, a model intercomparison project with standardized parameters and scenarios would be helpful.

Details

show
hide
Language(s): eng - English
 Dates: 2021-02-082021-04-062021-04-06
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.5194/hess-25-1711-2021
MDB-ID: yes - 3165
PIKDOMAIN: RD1 - Earth System Analysis
Organisational keyword: RD1 - Earth System Analysis
Working Group: Terrestrial Safe Operating Space
Research topic keyword: 1.5/2°C limit
Research topic keyword: CO2 Removal
Research topic keyword: Climate impacts
Research topic keyword: Ecosystems
Research topic keyword: Freshwater
Regional keyword: Global
Model / method: Open Source Software
OATYPE: Gold Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Hydrology and Earth System Sciences
Source Genre: Journal, SCI, Scopus, p3, oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 25 (4) Sequence Number: - Start / End Page: 1711 - 1726 Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals208
Publisher: Copernicus