日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Data-Driven Discovery of Stochastic Differential Equations

Wang, Y., Fang, H., Jin, J., Ma, G., He, X., Dai, X., Yue, Z., Cheng, C., Zhang, H.-T., Pu, D., Wu, D., Yuan, Y., Gonçalves, J., Kurths, J., & Ding, H. (2022). Data-Driven Discovery of Stochastic Differential Equations. Engineering, 17, 244-252. doi:10.1016/j.eng.2022.02.007.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
wang_2022_10.1016-j.eng.2022.02.007.pdf (出版社版), 3MB
ファイル名:
wang_2022_10.1016-j.eng.2022.02.007.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Wang, Yasen1, 著者
Fang, Huazhen1, 著者
Jin, Junyang1, 著者
Ma, Guijun1, 著者
He, Xin1, 著者
Dai, Xing1, 著者
Yue, Zuogong1, 著者
Cheng, Cheng1, 著者
Zhang, Hai-Tao1, 著者
Pu, Donglin1, 著者
Wu, Dongrui1, 著者
Yuan, Ye1, 著者
Gonçalves, Jorge1, 著者
Kurths, Jürgen2, 著者              
Ding, Han1, 著者
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Stochastic differential equations (SDEs) are mathematical models that are widely used to describe complex processes or phenomena perturbed by random noise from different sources. The identification of SDEs governing a system is often a challenge because of the inherent strong stochasticity of data and the complexity of the system’s dynamics. The practical utility of existing parametric approaches for identifying SDEs is usually limited by insufficient data resources. This study presents a novel framework for identifying SDEs by leveraging the sparse Bayesian learning (SBL) technique to search for a parsimonious, yet physically necessary representation from the space of candidate basis functions. More importantly, we use the analytical tractability of SBL to develop an efficient way to formulate the linear regression problem for the discovery of SDEs that requires considerably less time-series data. The effectiveness of the proposed framework is demonstrated using real data on stock and oil prices, bearing variation, and wind speed, as well as simulated data on well-known stochastic dynamical systems, including the generalized Wiener process and Langevin equation. This framework aims to assist specialists in extracting stochastic mathematical models from random phenomena in the natural sciences, economics, and engineering fields for analysis, prediction, and decision making.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2022-03-312022-10
 出版の状態: Finally published
 ページ: 9
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1016/j.eng.2022.02.007
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
Model / method: Machine Learning
Model / method: Nonlinear Data Analysis
Working Group: Network- and machine-learning-based prediction of extreme events
OATYPE: Gold Open Access
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Engineering
種別: 学術雑誌, SCI, Scopus, oa
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 17 通巻号: - 開始・終了ページ: 244 - 252 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/2095-8099
Publisher: Elsevier