Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  H-infinity state estimation of stochastic memristor-based neural networks with time-varying delays

Bao, H., Cao, J., Kurths, J., Alsaedi, A., Ahmad, B. (2018): H-infinity state estimation of stochastic memristor-based neural networks with time-varying delays. - Neutral Networks, 99, 79-91.
https://doi.org/10.1016/j.neunet.2017.12.014

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bao, H.1, Autor
Cao, J.1, Autor
Kurths, Jürgen2, Autor              
Alsaedi, A.1, Autor
Ahmad, B.1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: This paper addresses the problem of state estimation for a class of stochastic memristor-based neural networks with time-varying delays. Under the framework of Filippov solution, the stochastic memristor-based neural networks are transformed into systems with interval parameters. The present paper is the first to investigate the state estimation problem for continuous-time Itô-type stochastic memristor-based neural networks. By means of Lyapunov functionals and some stochastic technique, sufficient conditions are derived to ensure that the estimation error system is asymptotically stable in the mean square with a prescribed performance. An explicit expression of the state estimator gain is given in terms of linear matrix inequalities (LMIs). Compared with other results, our results reduce control gain and control cost effectively. Finally, numerical simulations are provided to demonstrate the efficiency of the theoretical results.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2018
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.neunet.2017.12.014
PIKDOMAIN: Transdisciplinary Concepts & Methods - Research Domain IV
eDoc: 8072
Research topic keyword: Complex Networks
Research topic keyword: Extremes
Research topic keyword: Nonlinear Dynamics
Organisational keyword: RD4 - Complexity Science
Working Group: Network- and machine-learning-based prediction of extreme events
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Neutral Networks
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 99 Artikelnummer: - Start- / Endseite: 79 - 91 Identifikator: Publisher: Elsevier