日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Remote Sensing Based Yield Estimation of Rice (Oryza Sativa L.) Using Gradient Boosted Regression in India

Arumugam, P., Chemura, A., Schauberger, B., & Gornott, C. (2021). Remote Sensing Based Yield Estimation of Rice (Oryza Sativa L.) Using Gradient Boosted Regression in India. Remote Sensing, 13(12):. doi:10.3390/rs13122379.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
25734oa.pdf (出版社版), 5MB
ファイル名:
25734oa.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Arumugam, Ponraj1, 著者              
Chemura, Abel1, 著者              
Schauberger, Bernhard1, 著者              
Gornott, Christoph1, 著者              
所属:
1Potsdam Institute for Climate Impact Research, Potsdam, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Accurate and spatially explicit yield information is required to ensure farmers’ income and food security at local and national levels. Current approaches based on crop cutting experiments are expensive and usually too late for timely income stabilization measures like crop insurances. We, therefore, utilized a Gradient Boosted Regression (GBR), a machine learning technique, to estimate rice yields at ~500 m spatial resolution for rice-producing areas in India with potential application for near real-time estimates. We used resampled intermediate resolution (~5 km) images of the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and observed yields at the district level in India for calibrating GBR models. These GBRs were then used to downscale district yields to 500 m resolution. Downscaled yields were re-aggregated for validation against out-of-sample district yields not used for model training and an additional independent data set of block-level (below district-level) yields. Our downscaled and re-aggregated yields agree well with reported district-level observations from 2003 to 2015 (r = 0.85 & MAE = 0.15 t/ha). The model performance improved further when estimating separate models for different rice cropping densities (up to r = 0.93). An additional out-of-sample validation for the years 2016 and 2017, proved successful with r = 0.84 and r = 0.77, respectively. Simulated yield accuracy was higher in water-limited, rainfed agricultural systems. We conclude that this downscaling approach of rice yield estimation using GBR is feasible across India and may complement current approaches for timely rice yield estimation required by insurance companies and government agencies. View Full-Text

資料詳細

表示:
非表示:
言語:
 日付: 2021-06-142021-06-182021-06-18
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.3390/rs13122379
PIKDOMAIN: RD2 - Climate Resilience
Organisational keyword: RD2 - Climate Resilience
Working Group: Adaptation in Agricultural Systems
MDB-ID: yes- 3196
Research topic keyword: Food & Agriculture
Regional keyword: Asia
Model / method: Machine Learning
Model / method: Open Source Software
OATYPE: Gold Open Access
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Remote Sensing
種別: 学術雑誌, SCI, Scopus, p3, OA
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 13 (12) 通巻号: 2379 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals426
Publisher: MDPI