English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The contribution of bioenergy to the decarbonization of transport: a multi-model assessment

Leblanc, F., Bibas, R., Mima, S., Muratori, M., Sakamoto, S., Sano, F., Bauer, N., Daioglou, V., Fujimori, S., Gidden, M. J., Kato, E., Rose, S. K., Tsutsui, J., van Vuuren, D. P., Weyant, J., Wise, M. (2022): The contribution of bioenergy to the decarbonization of transport: a multi-model assessment. - Climatic Change, 170, 3-4, 21.
https://doi.org/10.1007/s10584-021-03245-3

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Leblanc, Florian1, Author
Bibas, Ruben1, Author
Mima, Silvana1, Author
Muratori, Matteo1, Author
Sakamoto, Shogo1, Author
Sano, Fuminori1, Author
Bauer, Nicolas2, Author              
Daioglou, Vassilis1, Author
Fujimori, Shinichiro1, Author
Gidden, Matthew J.1, Author
Kato, Estsushi1, Author
Rose, Steven K.1, Author
Tsutsui, Junichi1, Author
van Vuuren, Detlef P.1, Author
Weyant, John1, Author
Wise, Marshall1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: The expected growth in the demand for passenger and freight services exacerbates the challenges of reducing transport GHG emissions, especially as commercial low-carbon alternatives to petroleum fuels are limited for shipping, air and long-distance road travel. Biofuels can offer a pathway to significantly reduce emissions from these sectors, as they can easily substitute for conventional liquid fuels in internal combustion engines. In this paper, we assess the potential of bioenergy to reduce transport GHG emissions through an analysis leveraging various integrated assessment models and scenarios, as part of the 33rd Energy Modeling Forum study (EMF-33). We find that bioenergy can contribute a significant, albeit not dominant, proportion of energy supply to the future transport sector: in scenarios aiming to keep the temperature increase below 2 °C by the end of the twenty-first century, models project that in 2100 bioenergy can provide on average 42 EJ/yr (ranging from 5 to 85 EJ/yr) for transport (compared to 3.7 EJ in 2018), mainly through lignocellulosic fuels. This makes up 9–62% of final transport energy use. Only a small amount of bioenergy is projected to be used in transport through electricity and hydrogen pathways, with a larger role for biofuels in road passenger transport than in freight. The association of carbon capture and storage (CCS) with bioenergy technologies (BECCS) is a key determinant in the role of biofuels in transport, because of the competition for biomass feedstock to provide other final energy carriers along with carbon removal. Among models that consider CCS in the biofuel conversion process the average market share of biofuels is 21% in 2100 (ranging from 2 to 44%), compared to 10% (0–30%) for models that do not. Cumulative direct emissions from the transport sector account for half of the emission budget (from 306 to 776 out of 1,000 GtCO2). However, the carbon intensity of transport decreases as much as other energy sectors in 2100 when accounting for process emissions, including carbon removal from BECCS. Lignocellulosic fuels become more attractive for transport decarbonization if BECCS is not feasible for any energy sectors. Since global transport service demand increases and biomass supply is limited, its allocation to and within the transport sector is uncertain and sensitive to assumptions about political as well as technological and socioeconomic factors.

Details

show
hide
Language(s): eng - English
 Dates: 2021-07-212021-10-142022-02-022022-02-02
 Publication Status: Finally published
 Pages: 21
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/s10584-021-03245-3
Organisational keyword: RD3 - Transformation Pathways
PIKDOMAIN: RD3 - Transformation Pathways
MDB-ID: No data to archive
Model / method: Model Intercomparison
Research topic keyword: Energy
Research topic keyword: Mitigation
Research topic keyword: 1.5/2°C limit
Regional keyword: Global
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Climatic Change
Source Genre: Journal, SCI, Scopus, p3
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 170 (3-4) Sequence Number: 21 Start / End Page: - Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals80
Publisher: Springer