日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Fuzzy large margin distribution machine for classification

Dong, D., Feng, M., Kurths, J., & Zhang, L. (2024). Fuzzy large margin distribution machine for classification. International Journal of Machine Learning and Cybernetics, 15, 1891-1905. doi:10.1007/s13042-023-02004-3.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
dong_s13042-023-02004-3.pdf (出版社版), 3MB
 
ファイルのパーマリンク:
-
ファイル名:
dong_s13042-023-02004-3.pdf
説明:
-
閲覧制限:
非公開
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Dong, Denghao1, 著者
Feng, Minyu1, 著者
Kurths, Jürgen2, 著者              
Zhang, Libo1, 著者
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: As a variant of Support Vector Machine (SVM), Large Margin Distribution Machine (LDM) has been validated to outperform SVM both theoretically and experimentally. Due to the inevitable noise in real applications, the credibility of different samples is not necessarily the same, which is neglected by most existing LDM models. To tackle the above problem, this paper first introduces fuzzy set theory into LDM, and proposes a Fuzzy Large Margin Distribution Machine (FLDM) with better robustness and performance. Considering the noise and uncertainty in datasets, sample points farther from the center of homogenous class are less reliable. Therefore, a fuzzy membership function based on the distance to the class center is utilized to characterize the confidence of each sample, i.e., the degree to which the sample belongs to a certain category. Furthermore, different strategies are developed to obtain class centers for linearly separable and linearly inseparable problems. Experiments conducted on both artificial and UCI datasets verified the superiority of FLDM from different perspectives.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2023-11-042024-05-01
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1007/s13042-023-02004-3
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
Model / method: Machine Learning
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: International Journal of Machine Learning and Cybernetics
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 15 通巻号: - 開始・終了ページ: 1891 - 1905 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1868-808X
Publisher: Springer