Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Modelling long-term industry energy demand and CO2 emissions in the system context using REMIND (version 3.1.0)

Pehl, M., Schreyer, F., Luderer, G. (2024): Modelling long-term industry energy demand and CO2 emissions in the system context using REMIND (version 3.1.0). - Geoscientific Model Development, 17, 5, 2015-2038.
https://doi.org/10.5194/gmd-17-2015-2024

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
gmd-17-2015-2024.pdf (Verlagsversion), 5MB
Name:
gmd-17-2015-2024.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.5281/zenodo.10495588 (Ergänzendes Material)
Beschreibung:
The mrremind packages contains data preprocessing for the REMIND model.
externe Referenz:
https://doi.org/10.5281/zenodo.8144227 (Ergänzendes Material)
Beschreibung:
Software

Urheber

einblenden:
ausblenden:
 Urheber:
Pehl, Michaja1, Autor              
Schreyer, Felix1, Autor              
Luderer, Gunnar1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: This paper presents an extension of industry modelling within the REMIND integrated assessment model to industry subsectors and a projection of future industry subsector activity and energy demand for different baseline scenarios for use with the REMIND model. The industry sector is the largest greenhouse-gas-emitting energy demand sector and is considered a mitigation bottleneck. At the same time, industry subsectors are heterogeneous and face distinct emission mitigation challenges. By extending the multi-region, general equilibrium integrated assessment model REMIND to an explicit representation of four industry subsectors (cement, chemicals, steel, and other industry production), along with subsector-specific carbon capture and sequestration (CCS), we are able to investigate industry emission mitigation strategies in the context of the entire energy–economy–climate system, covering mitigation options ranging from reduced demand for industrial goods, fuel switching, and electrification to endogenous energy efficiency increases and carbon capture. We also present the derivation of both activity and final energy demand trajectories for the industry subsectors for use with the REMIND model in baseline scenarios, based on short-term continuation of historic trends and long-term global convergence. The system allows for selective variation of specific subsector activity and final energy demand across scenarios and regions to create consistent scenarios for a wide range of socioeconomic drivers and scenario story lines, like the Shared Socioeconomic Pathways (SSPs).

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2023-07-142024-01-122024-03-072024-03-07
 Publikationsstatus: Final veröffentlicht
 Seiten: 24
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.5194/gmd-17-2015-2024
MDB-ID: No MDB - stored outside PIK (see DOI)
Organisational keyword: RD3 - Transformation Pathways
PIKDOMAIN: RD3 - Transformation Pathways
Working Group: Energy Systems
Model / method: REMIND
Regional keyword: Global
Research topic keyword: Energy
Research topic keyword: Decarbonization
Research topic keyword: Economics
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : ARIADNE
Grant ID : 03SFK5A
Förderprogramm : -
Förderorganisation : Bundesministerium für Bildung und Forschung (BMBF)
Projektname : ECEMF
Grant ID : 101022622
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Geoscientific Model Development
Genre der Quelle: Zeitschrift, SCI, Scopus, p3, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 17 (5) Artikelnummer: - Start- / Endseite: 2015 - 2038 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals185
Publisher: Copernicus