Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  SAMSGL: Series-aligned multi-scale graph learning for spatiotemporal forecasting

Zou, X., Xiong, L., Tang, Y., Kurths, J. (2024): SAMSGL: Series-aligned multi-scale graph learning for spatiotemporal forecasting. - Chaos, 34, 6, 063140.
https://doi.org/10.1063/5.0211403

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Zou_063140_1_5.0211403.pdf (Verlagsversion), 7MB
 
Datei-Permalink:
-
Name:
Zou_063140_1_5.0211403.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zou, Xiaobei1, Autor
Xiong, Luolin1, Autor
Tang, Yang1, Autor
Kurths, Jürgen2, Autor              
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Spatiotemporal forecasting in various domains, like traffic prediction and weather forecasting, is a challenging endeavor, primarily due to the difficulties in modeling propagation dynamics and capturing high-dimensional interactions among nodes. Despite the significant strides made by graph-based networks in spatiotemporal forecasting, there remain two pivotal factors closely related to forecasting performance that need further consideration: time delays in propagation dynamics and multi-scale high-dimensional interactions. In this work, we present a Series-Aligned Multi-Scale Graph Learning (SAMSGL) framework, aiming to enhance forecasting performance. In order to handle time delays in spatial interactions, we propose a series-aligned graph convolution layer to facilitate the aggregation of non-delayed graph signals, thereby mitigating the influence of time delays for the improvement in accuracy. To understand global and local spatiotemporal interactions, we develop a spatiotemporal architecture via multi-scale graph learning, which encompasses two essential components: multi-scale graph structure learning and graph-fully connected (Graph-FC) blocks. The multi-scale graph structure learning includes a global graph structure to learn both delayed and non-delayed node embeddings, as well as a local one to learn node variations influenced by neighboring factors. The Graph-FC blocks synergistically fuse spatial and temporal information to boost prediction accuracy. To evaluate the performance of SAMSGL, we conduct experiments on meteorological and traffic forecasting datasets, which demonstrate its effectiveness and superiority.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-06-182024-06-18
 Publikationsstatus: Final veröffentlicht
 Seiten: 14
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: Organisational keyword: RD4 - Complexity Science
PIKDOMAIN: RD4 - Complexity Science
MDB-ID: No data to archive
DOI: 10.1063/5.0211403
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chaos
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 34 (6) Artikelnummer: 063140 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808
Publisher: American Institute of Physics (AIP)