Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Modeling brain network flexibility in networks of coupled oscillators: a feasibility study

Chinichian, N., Lindner, M., Yanchuk, S., Schwalger, T., Schöll, E., Berner, R. (2024): Modeling brain network flexibility in networks of coupled oscillators: a feasibility study. - Scientific Reports, 14, 5713.
https://doi.org/10.1038/s41598-024-55753-8

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
chinichian_2024_s41598-024-55753-8-1.pdf (Verlagsversion), 4MB
Name:
chinichian_2024_s41598-024-55753-8-1.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Chinichian, Narges1, Autor
Lindner, Michael2, Autor              
Yanchuk, Serhiy2, Autor              
Schwalger, Tilo1, Autor
Schöll, Eckehard2, Autor              
Berner, Rico1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Modeling the functionality of the human brain is a major goal in neuroscience for which many powerful methodologies have been developed over the last decade. The impact of working memory and the associated brain regions on the brain dynamics is of particular interest due to their connection with many functions and malfunctions in the brain. In this context, the concept of brain flexibility has been developed for the characterization of brain functionality. We discuss emergence of brain flexibility that is commonly measured by the identification of changes in the cluster structure of co-active brain regions. We provide evidence that brain flexibility can be modeled by a system of coupled FitzHugh-Nagumo oscillators where the network structure is obtained from human brain Diffusion Tensor Imaging (DTI). Additionally, we propose a straightforward and computationally efficient alternative macroscopic measure, which is derived from the Pearson distance of functional brain matrices. This metric exhibits similarities to the established patterns of brain template flexibility that have been observed in prior investigations. Furthermore, we explore the significance of the brain’s network structure and the strength of connections between network nodes or brain regions associated with working memory in the observation of patterns in networks flexibility. This work enriches our understanding of the interplay between the structure and function of dynamic brain networks and proposes a modeling strategy to study brain flexibility.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-03-082024-03-08
 Publikationsstatus: Final veröffentlicht
 Seiten: 14
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41598-024-55753-8
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Nonlinear Dynamics
MDB-ID: pending
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Scientific Reports
Genre der Quelle: Zeitschrift, SCI, Scopus, p3, OA
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 14 Artikelnummer: 5713 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals2_395
Publisher: Nature