Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Recurrence microstates for machine learning classification

Spezzatto, G. S., Flauzino, J. V. V., Corso, G., Boaretto, B. R. R., Macau, E. E. N., Prado, T. L., Lopes, S. R. (2024): Recurrence microstates for machine learning classification. - Chaos, 34, 7, 073140.
https://doi.org/10.1063/5.0203801

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
spezzatto_2024_073140_1_5.0203801.pdf (Verlagsversion), 3MB
 
Datei-Permalink:
-
Name:
spezzatto_2024_073140_1_5.0203801.pdf
Beschreibung:
-
Sichtbarkeit:
Privat (Embargo bis 2025-07-20)
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://github.com/AlgosL/maxEntropy/blob/main/Entropy.jl (Ergänzendes Material)
Beschreibung:
-

Urheber

einblenden:
ausblenden:
 Urheber:
Spezzatto, G. S.1, Autor
Flauzino, J. V. V.1, Autor
Corso, G.1, Autor
Boaretto, B. R. R.1, Autor
Macau, E. E. N.1, Autor
Prado, T. L.1, Autor
Lopes, Sergio Roberto2, Autor              
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Recurrence microstates are obtained from the cross recurrence of two sequences of values embedded in a time series, being the generalization of the concept of recurrence of a given state in phase space. The probability of occurrence of each microstate constitutes a recurrence quantifier. The set of probabilities of all microstates are capable of detecting even small changes in the data pattern. This creates an ideal tool for generating features in machine learning algorithms. Thanks to the sensitivity of the set of probabilities of occurrence of microstates, it can be used to feed a deep neural network, namely, a microstate multi-layer perceptron (MMLP) to classify parameters of chaotic systems. Additionally, we show that with more microstates, the accuracy of the MMLP increases, showing that the increasing size and number of microstates insert new and independent information into the analysis. We also explore potential applications of the proposed method when adapted to different contexts.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-07-192024-07-19
 Publikationsstatus: Final veröffentlicht
 Seiten: 10
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/5.0203801
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Model / method: Machine Learning
MDB-ID: No MDB - stored outside PIK (see locators/paper)
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chaos
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 34 (7) Artikelnummer: 073140 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808