Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Reconstructing multi-mode networks from multivariate time series

Urheber*innen

Gao,  Z.-K.
External Organizations;

Yang,  Y.-X.
External Organizations;

Dang,  W.-D.
External Organizations;

Cai,  Q.
External Organizations;

Wang,  Z.
External Organizations;

/persons/resource/Marwan

Marwan,  Norbert       
Potsdam Institute for Climate Impact Research;

Boccaletti,  S.
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gao, Z.-K., Yang, Y.-X., Dang, W.-D., Cai, Q., Wang, Z., Marwan, N., Boccaletti, S., Kurths, J. (2017): Reconstructing multi-mode networks from multivariate time series. - EPL (Europhysics Letters), 119, 5, 50008.
https://doi.org/10.1209/0295-5075/119/50008


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_22364
Zusammenfassung


Unveiling the dynamics hidden in multivariate time series is a task of the utmost importance in a broad variety of areas in physics. We here propose a method that leads to the construction of a novel functional network, a multi-mode weighted graph combined with an empirical mode decomposition, and to the realization of multi-information fusion of multivariate time series. The method is illustrated in a couple of successful applications (a multi-phase flow and an epileptic electro-encephalogram), which demonstrate its powerfulness in revealing the dynamical behaviors underlying the transitions of different flow patterns, and enabling to differentiate brain states of seizure and non-seizure.