Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Network Sparsification via Degree- and Subgraph-based Edge Sampling

Urheber*innen
/persons/resource/zhen.su

Su,  Zhen
Potsdam Institute for Climate Impact Research;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Meyerhenke,  Henning
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Su, Z., Kurths, J., Meyerhenke, H. (2023): Network Sparsification via Degree- and Subgraph-based Edge Sampling. - In: An, J., Charalampo, C., Magdy, W. (Eds.), Proceedings of the 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2022, Piscataway, NJ : Institute of Electrical and Electronics Engineers, 9-16.
https://doi.org/10.1109/ASONAM55673.2022.10068651


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_28712
Zusammenfassung
Network (or graph) sparsification compresses a graph by removing inessential edges. By reducing the data volume, it accelerates or even facilitates many downstream analyses. Still, the accuracy of many sparsification methods, with filtering-based edge sampling being the most typical one, heavily relies on an appropriate definition of edge importance. Instead, we propose a different perspective with a generalized local-property-based sampling method, which preserves (scaled) local node characteristics. Apart from degrees, these local node characteristics we use are the expected (scaled) number of wedges and triangles a node belongs to. Through such a preservation, main complex structural properties are preserved implicitly. We adapt a game-theoretic framework from uncertain graph sampling by including a threshold for faster convergence (at least 4 times faster empirically) to approximate solutions. Extensive experimental studies on functional climate networks show the effectiveness of this method in preserving macroscopic to meso-scopic and microscopic network structural properties.