Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Chimera state in neural network with the Proportional–Integral–Derivative coupling

Urheber*innen

Abdoulaye,  Adamdine M.
External Organizations;

Meli,  Venceslas Nguefoue
External Organizations;

Kongni,  Steve J.
External Organizations;

Njougouo,  Thierry
External Organizations;

/persons/resource/patrick.louodop

Louodop,  Patrick
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Abdoulaye, A. M., Meli, V. N., Kongni, S. J., Njougouo, T., Louodop, P. (2025): Chimera state in neural network with the Proportional–Integral–Derivative coupling. - Chaos, Solitons and Fractals, 191, 115847.
https://doi.org/10.1016/j.chaos.2024.115847


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_31324
Zusammenfassung
This study delves into the emergence of collective behaviors within a network comprising interacting cells. Each cell integrates a fixed number of neurons governed by an activation gradient based on Hopfield’s model. The intra-cell interactions among neurons are local and directed, while inter-cell connections are facilitated through a PID (Proportional–Integral–Derivative) coupling mechanism. This coupling introduces an adaptable environmental variable, influencing the network dynamics significantly. Numerical simulations employing three neurons per cell across a network of fifty cells reveal diverse dynamics, including incoherence, coherence, synchronization, chimera states, and traveling wave. These phenomena are quantitatively assessed using statistical measures such as the order parameter, strength of incoherence, and discontinuity measure. Variations of the resistive, inductive, or capacitive couplings of the inter-cell environment are explored and their effects are analyzed. Furthermore, the study identifies multistability in network dynamics, characterized by the coexistence of multiple stable states for the same set of parameters but with different initial conditions. A linear augmentation strategy is employed for its control.