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[1] Dynamic global vegetation models (DGVMs) have been shown to broadly reproduce
seasonal and interannual patterns of carbon exchange, as well as realistic vegetation
dynamics. To assess the uncertainties in these results associated with model
parameterization, the Lund-Potsdam-Jena-DGVM (LPJ-DGVM) is analyzed in terms of
model robustness and key sensitive parameters. Present-day global land-atmosphere
carbon fluxes are relatively well constrained, despite considerable uncertainty in global
net primary production mainly propagating from uncertainty in parameters controlling
assimilation rate, plant respiration and plant water balance. In response to climate
change, water-use efficiency driven increases in net carbon assimilation by plants,
transient changes in vegetation composition and global warming effects on soil organic
matter dynamics are robust model results. As a consequence, long-term trends in
land-atmosphere fluxes are consistently modeled despite an uncertainty range of
�3.35 ± 1.45 PgC yr�1 at the end of the twenty-first century for the specific
scenario used.

Citation: Zaehle, S., S. Sitch, B. Smith, and F. Hatterman (2005), Effects of parameter uncertainties on the modeling of terrestrial

biosphere dynamics, Global Biogeochem. Cycles, 19, GB3020, doi:10.1029/2004GB002395.

1. Introduction

[2] The terrestrial biosphere plays an important role in
regulating the increase of atmospheric CO2 [Prentice et al.,
2000]. Process-based models of terrestrial biogeochemical
cycles (TBMs) have been successfully used to explain a
large proportion of the interannual variation in the CO2

signal [Kindermann et al., 1996; Dargaville et al., 2002].
TBMs, and dynamic global vegetation models (DGVMs),
which further couple terrestrial biogeochemistry to vegeta-
tion dynamics, are important tools to investigate the net
effect of the complex feedback loops in the global carbon
cycle in response to changing environmental forcings such
as climate change [Intergovernmental Panel on Climate
Change (IPCC), 2001]. Inter-model comparison studies
[Melillo et al., 1995; Heimann et al., 1998; Cramer et al.,
1999; Kicklighter et al., 1999; Cramer et al., 2001] and

recent applications of TBMs in coupled earth-system
models [Dufresne et al., 2002; Jones et al., 2003] have
shown that large uncertainty in the response of the global
carbon cycle to future climate warming arises as a result
of the typical behavior of the particular model used to
simulate vegetation changes. Since future projections of
atmospheric CO2 content depend on plausible estimation
of the processes governing global carbon exchange, an
assessment of the uncertainty associated with these terres-
trial ecosystem models is essential to identify key model
strengths and deficiencies.
[3] Uncertainty in model simulations can arise from

both uncertainty as to the correct (mathematical) descrip-
tion of mechanisms driving ecosystem processes, and from
uncertainty in the parameter set to scale mathematical
formulations of these processes. Process-based uncertainty
can, to some extent, be addressed by inter-model compar-
ison or studies testing different process formulations in
one modeling framework [e.g., Joos et al., 2001; Knorr
and Heimann, 2001; Smith et al., 2001]. Parameter-based
uncertainty can result from (1) uncertainty in the measure-
ments used to parameterize a model, (2) the method used
to scale, for example, point measurements to the larger
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scale on which a model operates, as well as (3) the
parameterization of semi-empirical process descriptions,
for which parameter values are not readily measurable.
Only a few studies have so far analyzed the effects of
propagating parameter uncertainty in global vegetation
models. Most of these studies have used a local design,
i.e., changed one parameter at a time within a given range
around the standard value [e.g., Knorr, 2000; Knorr and
Heimann, 2001; Maayar et al., 2002], or used minimum
and maximum values from the literature [Hallgren and
Pitman, 2000]. Although these approaches are able to
identify main effects of parameters [Kleijnen, 1998], they
neglect possible interactions between different parameters,
which are important in complex ecosystem models [Saltelli
et al., 2000]. Factorial designs [e.g., White et al., 2000a]
that allow the assessment of such interactive effects
require many model runs and are therefore prohibitive
for complex models with a large number of parameters
and a high computational demand [Campolongo et al.,
2000]. Recently, adjoint methods have been used to infer
optimal parameter combinations in terrestrial biosphere
models from observations, as well as to gain insight into
parameter sensitivities and the uncertainty in output var-
iables [Wang et al., 2001; Randerson et al., 2002; Rayner
et al., 2005].
[4] We adopt a Monte Carlo-type stratified sampling

approach (Latin hypercube sampling, LHS [McKay et al.,
1979]) as an efficient method to identify functionally
important parameters and simultaneously estimate the
uncertainty range of the modeled results. Like other
probability-based methods, LHS allows interactions be-
tween different parameter combinations to be studied, and
can identify the contributions of parameters alone and in
combination to the uncertainty of the modeled results. LHS
has previously been used to construct a reduced form of a
land surface model for sensitivity tests [Beringer et al.,
2002], and has been shown to provide reliable estimates of
the distribution function of model output variables [Helton
and Davis, 2000].
[5] Dynamic global vegetation models are fairly general,

globally parameterized models, describing vegetation in
terms of plant functional types (PFTs), and its response to
variation in climate, atmospheric CO2 and soil properties
[Steffen et al., 1996; Cramer et al., 2001]. They incorporate
mechanistic formulations of physiological, biophysical and
biogeochemical ecosystem processes (e.g., canopy biophys-
ics, vegetation physiology, phenology, and ecosystem car-
bon (C) and water (H2O) cycling) coupled to a description
of the major processes governing changes of vegetation
structure and composition [Cramer et al., 2001]. Although
DGVMs differ in the detail with which particular processes
or scales are represented, they tend to follow a similar
structure and share a largely common base of process
descriptions and parameters, for example, with respect to
canopy energy balance, photosynthesis, water balance,
respiratory processes, carbon allocation and turnover within
the plant, litter and soil organic matter (SOM) decomposi-
tion, and plant mortality and establishment [Woodward et
al., 1995; Foley et al., 1996; Friend et al., 1997; Daly et al.,
2000; Sitch et al., 2003].

[6] In this study, we use the Lund-Potsdam-Jena model
(LPJ-DGVM [Smith et al., 2001; Sitch et al., 2003]), which
is typical of DGVMs as a family of models, both with
respect to its representation of structural ecosystem compo-
nents (plants and soil) and ecosystem processes. LPJ-
DGVM has been used recently to study the sensitivity of
equilibrium C storage to climate and atmospheric CO2

[Gerber et al., 2004] and to assess the uncertainty in
simulations of the future terrestrial C balance with respect
to both different formulations of ecosystem processes in a
DGVM inter-comparison study [Cramer et al., 2001], and
different climate change projections from several global
circulation models driven with the same radiative forcing
[Schaphoff et al., 2005].
[7] The aim of this paper is to systematically analyze the

sensitivity of LPJ-DGVM, as a representative DGVM, to its
parameterization, and to evaluate the resulting uncertainty
in model outcomes both for current and potential future
climatic conditions. We examine the relative importance of
different parameters for determining specific model results,
and analyze the effects of parameter-based uncertainty on
modeling terrestrial biosphere dynamics. We also explore
possibilities to constrain model uncertainty using indepen-
dent observations. To facilitate comparison to previously
published studies using LPJ-DGVM, we repeat the simula-
tion experiment of the IGBP DGVM Inter-comparison
Study [Cramer et al., 2001] using climate data from
HadCM2-SUL [Mitchell et al., 1995; Johns et al., 1997]
forced by the IS92a emissions scenario [IPCC, 1992]. We
assume that many of our conclusions in terms of the
importance of certain groups of parameters, or their func-
tional equivalents in alternative process formulations, would
be similar for DGVMs and similar ecosystem models other
than LPJ-DGVM.

2. Methods

2.1. LPJ-DGVM

[8] This study uses the LPJ-DGVM version as described
in [Smith et al., 2001; Sitch et al., 2003], with modifications
by Gerten et al. [2004], and the dark respiration formulation
as per Haxeltine and Prentice [1996a]. In order to ensure
comparability with previous studies using LPJ-DGVM,
including Cramer et al. [2001], stochastic disaggregation
of monthly precipitation to daily values, as implemented by
Gerten et al. [2004], was not applied in the present study.
Instead, precipitation data were, like the other climate
variables, interpolated linearly to daily values. Monthly
net ecosystem C exchange (NEE), which represents the C
balance at a point scale, is the difference between hetero-
trophic respiration (Rh) and net primary production (NPP)
for each grid cell, i.e.,

NEE ¼ Rh � NPP; ð1Þ

where negative fluxes denote a net C flux from the
atmosphere to the terrestrial biosphere. Annual land-atmo-
sphere flux (also called net biome production, NBP, sensu
[Prentice et al., 2001]), which represents the landscape scale
C balance, is calculated as the sum of the monthly NEEs
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over the year plus annual C lost from biomass burning for
each grid cell, i.e.,

NBP ¼ NEE þ B; ð2Þ

where B is biomass burning and negative values indicate
storage of C in the terrestrial biosphere, whereas positive
values denote release to the atmosphere.

2.2. Parameter Values and Sampling Procedure

[9] Estimates of the ranges of 36 model parameters were,
where possible, obtained from an extensive search of the
ecological literature to provide a comprehensive overview
of the parameter uncertainty (Table 1). For all parameters
except leaf longevity the probability distribution function
(PDF) was assumed to be uniform. For leaf longevity a
triangular distribution was chosen on the basis of data
presented by Reich et al. [1992]. Following Sitch et al.
[2003], root turnover time was assumed to be inversely
related to leaf longevity. The choice of the parameter-PDF
does not influence the ranking of individual parameters in
terms of their importance, but could affect the PDF of the
modeled output variables. In the case of parameters for
which values differ between the different PFTs (i.e., for

aleaf, gmin, lossint, rmaint, rfire, and me; see Table 1), propor-
tional differences between the different PFT-specific values
were conserved when the overall level was adjusted. Latin
hypercube sampling [McKay et al., 1979] (see the text file
in the auxiliary material1) was employed to generate a
stratified sample of random sets of parameter values. Unless
otherwise stated, parameters were assumed not to be corre-
lated. For 36 (14) parameters under consideration, a sample
size of 1000 (400) sets was sufficient to generate, for each
model output variable, a reliable estimate of the mean,
standard deviation, 90% confidence interval, and ranking
of the parameter importance (results not shown).

2.3. Data Sets

[10] Fields of mean temperature, precipitation and cloud-
iness (1901–2000) were taken from the CRU2000 monthly
climate data set on a 0.5� � 0.5� global grid, provided by
the Climate Research Unit (CRU), University of East
Anglia [Mitchell et al., 2004]. Data on the annual CO2

content of the atmosphere were obtained from C. D.
Keeling and T. P. Whorf, http://cdiac.esd.ornl.gov/trends/

Table 1. Key LPJ-DGVM Parametersa

Parameter Description

aa
b photosynthesis scaling parameter (leaf to canopy)

aC3
b intrinsic quantum efficiency of CO2 uptake in C3 plants

aC3
b leaf respiration as a fraction of Rubisco capacity in C3 plants

aC4 intrinsic quantum efficiency of CO2 uptake in C4 plants
aC4 leaf respiration as a fraction of Rubisco capacity in C4 plants
aleaf leaf longevity
am empirical evapotranspiration parameter
CAmax maximum woody PFT crown area
denswood specific wood density
ea respiration temperature response function shape parameter
Emax maximum daily transpiration rate
estmax

b maximum sapling establishment rate
fair

b fraction of the decomposed litter emitted as CO2 to the atmosphere
finter

b fraction of soil-bound decomposed litter entering the intermediate soil pool
fsapwood

b sapwood turnover rate
fuelmin minimum fuel load for fire spread
gm

b maximum canopy conductance analogue
gmin minimum canopy conductance
kallom1 crown area = kallom1 � heightkrp

kallom2 height = kallom2 � diameterkallom3

kallom3 height = kallom2 � diameterkallom3

kbeer
b light extinction coefficient

kla:sa
b leaf to sapwood area ratio

kmort1
b asymptotic maximum mortality rate

kmort2 growth efficiency mortality scalar
krp crown area = kallom1 � heightkrp

lmax,C3 optimal ci/ca for C3 plants
lmax,C4 optimal ci/ca for C4 plants
lossint interception loss parameter
me litter moisture of extinction
rmaint tissue respiration rate at 10�C
rgrowth

b growth respiration per unit NPP
rfire fire resistance
tlitter

b litter turnover time at 10�C
q* photosynthesis co-limitation shape parameter
z1 fraction of fine roots in upper soil layer

aDetailed information about the parameter range used, and the literature source of this range are given as supplementary
material.

bThese parameters belong to the reduced set of 14 parameters (see section 2.4).

1Auxiliary material is available at ftp://ftp.agu.org/apend/gb/
2004GB002395.
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co2/sio-mlo.htm, 2003, last update: June 2004). Time
series of monthly temperature, precipitation and PAR were
obtained for six sites of the EUROFLUX network, i.e.,
those for which more than 3 years’ measurements were
available [Valentini et al., 2000]. Soil texture data were
based on the FAO soil data set [Zobler, 1986; Food and
Agriculture Organizaton, 1991; Haxeltine and Prentice,
1996a]. The response of the terrestrial biosphere to climate
change was simulated using monthly climate data (1861–
2100) on a 3.75� � 2.5� grid, derived from HadCM2-SUL
[Mitchell et al., 1995; Johns et al., 1997] forced by CO2

concentrations corresponding to the IPCC IS92a scenario
[IPCC, 1992], as used by Cramer et al. [2001].
[11] An assessment of the uncertainty in model results

requires some understanding of the typical variation of the
considered variables in reality. Spatially referenced data
useable for the evaluation of global vegetation models are
still very sparse [Cramer et al., 1999; Scurlock et al., 1999].
We evaluated model performance against NPP data from the
Ecosystem Model Data Inter-comparison project (EMDI)
for 81 sites from the class A data set (R. J. Olson et al.,
http://www.daac.ornl.gov, 2001, last update: June 2004) that
include measurements for all major biomes. Seasonality of
net C fluxes was compared to (1) point-scale measurements
of NEE obtained with eddy-covariance techniques at six
sites of the EUROFLUX network [Valentini et al., 2000],
and (2) the seasonal cycle of CO2 observed at 27 monitor-
ing stations from a program of the National Oceanographic
and Atmospheric Administration [GLOBALVIEW-CO2,
1999].

2.4. Modeling Protocol

[12] For each LHS set the model was run for a ‘‘spin-up’’
period of 900 years, to achieve equilibrium in terms of pre-
industrial stable vegetation structure and C pools. During
the spin-up phase, 30 years of varying climate from the
beginning of the respective climate data set were repeated
continuously with pre-industrial atmospheric CO2 content.
The model was thereafter driven with the transient clima-
tology and observed atmospheric CO2 content. Table 2
summarizes the experimental setup of this study.
[13] Running LPJ-DGVM several hundred times for the

entire globe at 0.5� resolution is computationally not feasi-
ble. In order to assess the parameter-based uncertainty on

the global scale, we attempted to identify the most important
parameters contributing to overall model uncertainty, and
performed a global-scale uncertainty analysis with this
reduced set. Parameter importance for all 36 parameters
was determined at a set of locations spanning all major
biomes, and corresponding to EMDI class A sites. 30-year
average values (1961–1990) of each model output variable
were used to analyze the parameter importance (section 3.1).
Fourteen parameters could be identified as having the great-
est influence on the ecosystem carbon cycling (section 3.2;
absolute ranked partial correlation coefficient, RPCC > 0.25;
see auxiliary material for definition), as well as being of
substantial importance in modeling vegetation dynamics and
terrestrial water balance. We chose jRPCCj = 0.25 as a lower
threshold for parameter importance because visual inspec-
tion of correlation plots between parameter and model
output did not show any notable trend for RPCCs below
this value. By using this reduced set of 14 parameters, we
could reduce the numbers of required runs to a practically
attainable level of 400, while still accounting for most of
the model uncertainty.
[14] CRU2000 monthly climate data were used to esti-

mate 30-year average NPP (1961–1990) for 81 EMDI cells
(section 3.3.1). Site-specific regressions between measured
meteorology and the nearest grid cell from the CRU
climatology for each of the six EUROFLUX sites were
used for the spin-up and in the transient run-up to the period
for which site-specific meteorological data were available;
site-specific data were used where possible (section 3.3.2).
For consistency in the comparison to eddy covariance
measurements, fire disturbance was not included in the
simulations performed for this comparison. Site history
may influence the magnitude and sign of the annual C
exchange [Thornton et al., 2002], but, consistent with
recent findings from flux measurements [Kolari et al.,
2004], we did not find any notable effect on the modeled
seasonal cycle (Stephen Sitch, unpublished results, 2003).
Global fields of averaged and detrended monthly NBP for
the period 1983–1992 were obtained using CRU2000
monthly climatology aggregated to 3.0� � 3.0� resolution
(section 3.3.2). This was the highest resolution possible
given the computational constraints associated with per-
forming 400 global simulations. These data were passed
into a reduced-form version of the atmospheric transport

Table 2. Overview of the Experimental Setup Used in This Study, as Described in Section 2.4

Section
Number of
Parameters

Number of
LHS Samples Spatial Resolution Output Variable Comments

3.1 36 1000 81 grid cells (R)PCC for several model output
variables

3.2 14 400a,b,c global 3.25� � 2.5� grid
HadCM2-SUL

A, NPP, vegetation C

3.3.1 14 400c 81 EMDI class A sites NPP
3.3.2 14 400c 6 EUROFLUX sites NEE simulation without fire
3.3.2 14 400c global 3.0� � 3.0 � grid

CRU2000
seasonal cycle of atmospheric
[CO2]

atmospheric transport
with TM2

3.3.3
3.3.4

14 400c global 3.25� � 2.5� grid
HadCM2-SUL

NBP, ecosystem C pools,
vegetation structure

aThese are 400 LHS samples for 14 completely uncorrelated parameters.
bThese are 400 LHS samples as above, but with correlation between aC3 and aa (R

2: 80), as well as aC3 and kbeer (R
2: 70).

cThese are 400 LHS samples as in the second footnote, used for the calculation of RPCCs; however, for all figures, and output variable ranges, only
those of the 400 runs were used that conformed to the benchmarks in section 3.2.
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model TM2 [Heimann et al., 1998; Kaminski et al.,
1999a, 1999b]. Modeled seasonal cycles were compared
against the global network of atmospheric CO2 monitoring
sites, following the approach of Heimann et al. [1998].
Global C cycle simulations for 1861–2100 were per-
formed with the HadCM2-SUL climate data at 3.75� �
2.5� resolution [Cramer et al., 2001, sections 3.3.3 and
3.3.4]. No notable differences in terms of global net
assimilation rate, A (gross primary production, GPP, minus
leaf respiration, Rl), NPP and ecosystem C pools were
observed between simulations using climatologies at 0.5�
and 3.0� or climate model resolution under the standard
parameterization. Also the seasonal cycle of CO2 at all
27 stations was very similar between simulations using
climatologies at 0.5� and 3.0� resolution.

2.5. Parameter Constraints and Global Benchmarking

[15] The parameters scaling various ecosystem processes
are likely to be interdependent to a greater or lesser extent,
for example because of the existence of syndromes of
structural and functional characteristics, such as plant life
history strategies. In our analyses, we varied parameters
within their literature range without assuming any interde-
pendence. This might cause overestimation of uncertainty,
and thereby unjustifiably reduce confidence in model results
[Helton and Davis, 2000]. Inverse methods have been
recommended as an approach to constrain model uncertain-
ty and to infer parameter correlations [Kaminski et al., 2002;
Rayner et al., 2005]. However, such methods are beyond the
scope of this paper.
[16] To limit the overestimation of uncertainty due to

parameter interdependence, a simpler approach, taking
advantage of existing knowledge of the terrestrial biosphere,
is to evaluate model performance against generally agreed
benchmarks of the contemporary carbon cycle. If the model
in its standard parameterization produces output that con-
forms to the benchmarks, the failure to meet the benchmarks
in a particular run may be the consequence of unrealistic or
implausible combinations of particular parameters, even if
each individual parameter range may be justified on the
basis of literature values. Correlations between these param-

eters can then be prescribed to avoid these combinations,
while still sampling parameter values uniformly across each
parameter range [Iman and Conover, 1982].
[17] In our study, we identified one such set of parameters

(section 3.2). Expert judgment would have allowed further
exclusion of parameter combinations that produce unrealis-
tic results for particular geographical regions or biomes. In
the interest of objectivity, however, we employed the same
parameter space globally. In sections 3.3 and 3.4, to
evaluate the uncertainty of other model outcomes, in par-
ticular under climate change scenarios, we choose to con-
sider only those runs, which satisfy generally agreed global
benchmarks of both global production and vegetation C.
Net assimilation rate A in the range of 90–160 PgC yr�1,
NPP in the range of 45–85 PgC yr�1 and vegetation C in
the range of 500–1200 PgC were taken as parameter
constraints. The benchmarks were based on top-down
studies of the global C cycle [Knorr and Heimann, 1995;
Ciais et al., 1997] and estimates of various process-based
models of potential natural vegetation [Houghton and Skole,
1990; Post et al., 1997; Cramer et al., 1999; Gerber et al.,
2004]. A similar approach has been applied in a comparable
study on climate model uncertainty [Knutti et al., 2002].

3. Results

3.1. Parameter Importance

[18] The most important parameters controlling NPP are
the intrinsic quantum efficiency for C3 plants aC3 (RPCC =
0.85), which influences the amount of energy available for
GPP, and the parameter aa (RPCC = 0.70), which primarily
accounts for photosynthetically active radiation (PAR)
absorbed by non-photosynthetic structures (e.g., branches)
and thus lost to canopy photosynthesis (Table 3). Of
secondary importance are the shape parameter q (RPCC =
0.47), controlling the degree of co-limitation by light and
Rubisco activity in the Farquhar photosynthesis scheme
[Haxeltine and Prentice, 1996b], and the canopy light
extinction coefficient, kbeer (RPCC = �0.27), which deter-
mines the shape of the relationship between canopy leaf
area index (LAI) and the fraction of incoming PAR absorbed

Table 3. The Twelve Most Important Parameters in Controlling C Fluxes and Poolsa

Rank

NPP Rh VegC Litter C Intermediate Soil C Slow Soil C

Parameter RPCC Parameter RPCC Parameter RPCC Parameter RPCC Parameter RPCC Parameter RPCC

1 aC3 0.846 aC3 0.801 aC3 0.607 aC3 0.791 fair �0.837 finter �0.873
2 aa 0.704 aa 0.662 fsapwood 0.536 tlitter 0.742 aC3 0.783 fair �0.720
3 q 0.474 gm 0.467 kmort1 �0.459 aa 0.593 aa 0.619 aC3 0.657
4 gm 0.463 q 0.429 kla:sa �0.398 q 0.405 q 0.392 aa 0.473
5 rgrowth �0.297 kbeer �0.303 gm 0.379 gm 0.397 gm 0.298 q 0.289
6 kbeer �0.270 rgrowth �0.255 aa 0.370 fsapwood 0.321 kbeer �0.244 gm 0.270
7 aC3 �0.268 aC3 �0.242 estmax �0.318 rgrowth �0.252 rgrowth �0.205 kbeer �0.188
8 fsapwood 0.230 aleaf 0.201 q 0.257 aC3 �0.224 aC3 �0.200 aC3 �0.153
9 aleaf �0.217 fsapwood �0.192 kmort2 0.186 aleaf �0.193 aleaf �0.177 rgrowth �0.149
10 rmaint �0.134 am 0.112 kallom2 0.171 Emax 0.149 finter 0.160 lmax,C3 0.133
11 lmax,C3 0.132 rmaint �0.110 z1 �0.149 kbeer �0.146 lmax,C3 0.159 Emax 0.123
12 Emax �0.128 lmax,C3 �0.109 aC3 �0.143 rmaint �0.121 Emax 0.140 aleaf �0.106

aFurther results are given in the auxiliary material. Given here are net primary production (NPP), heterotrophic respiration (Rh) as well as vegetation,
litter and soil C pools (soil C partitioned into pools with intermediate and slow turnover times). The ranking was performed according to the average
RPCC across all 81 grid cells. Regionally, the importance ranking may vary, as discussed in the text. Parameters specific to C4 plants have similar
importance than the respective parameters for C3 plants locally; however, they are or minor importance globally because of the limited geographical
distribution of C4 plants.
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by the canopy. Parameters governing autotrophic respiration
(Ra) have also notable, though less pronounced, effects on
annual NPP, with higher respiration rates reducing NPP
(RPCC = �0.29, �0.27, �0.13, for rgrowth, ac3, rmaint,
respectively).
[19] Although these parameters have a similar effect on A

and NPP worldwide, differences in parameter importance
can be observed in water-limited regions as characterized by
a low ratio of actual to potential evapotranspiration. In such
regions, parameters controlling plant water balance, i.e., gm
(RPCC = 0.46), Emax (RPCC = 0.13) and am (RPCC =
�0.11) are relatively important (Figure 1). Emax controls the
water extraction supply, whereas gm and am describe the
coupling of the atmospheric water demand to the leaves.
Assuming constant non-water stressed stomatal conduc-
tance, higher am increases the demand, whereas higher
values of the canopy conductance analogue gm reduces it.
Together these parameters scale stomatal regulation and C
uptake. Since stomata couple the C and H2O cycles, the
same parameters also control actual evapotranspiration and
freshwater recharge (see auxiliary material, Table S2). Other
parameters influential in regulating the water balance are
those determining photosynthetic activity, LAI, and the
stomatal conductance associated with a certain assimilation
rate, which in turn depends on the choice of the optimal ratio
of intercellular to ambient CO2 partial pressure, lmax,C3.
[20] NPP determines the amount of C available for tissue

production and thereby controls C storage in vegetation
(Table 3). The rate of conversion of sapwood to heartwood,
fsapwood (RPCC = 0.54), and the leaf-to-sapwood-area ratio,
kla:sa (RPCC = �0.40), control C residence times in
trees, and therefore the size of the vegetation C pool. Larger
fsapwood values result in trees with proportionally less
sapwood, smaller associated losses to Ra, and proportionally
more heartwood, and thus generally larger C stocks and a
higher C accumulation rate after disturbance. Larger values
for kla:sa decrease the amount of C required for leaves and
their associated transport tissue (‘‘pipe-model’’), and there-
by enhance LAI (RPCC = 0.60), light interception and NPP.
At the same time, increased C storage in leaves in connec-
tion with larger kla:sa values lead to reduced C accumulation
as wood. Vegetation dynamics processes are the third major
control on vegetation C. Higher disturbance rates (higher
maximum mortality kmort1; RPCC = �0.46) and higher
establishment rates estmax (RPCC = �0.32) lead to younger
average vegetation, with less C stored.

[21] Soil C stocks are controlled by finter and fslow
(RPCC = �0.81, �0.80), which together determine the
mean residual time of C as SOM. Parameters governing
litter fall are almost as important (aC3 RPCC = 0.75, aa

RPCC = 0.58). Notably, uncertainty in tlitter has very little
influence on overall SOM stock, as litter C very quickly
comes to equilibrium with annual litter fall, and the size of
the litter pool, though controlled by tlitter, is small com-
pared to overall soil C stocks.
[22] Fire frequency is influenced by parameters regulating

fuel load (vegetation and litter C), and fire susceptibility, for
example the moisture threshold for fire extinction (me:
RPCC = 0.48). Dryness of the litter layer, a third important
factor, depends on parameters governing the root water
uptake (z1: RPCC = 0.43; Emax: RPCC = 0.35), and plant
water use (gm: RPCC = �0.34), as in the model soil
moisture in the top layer is taken as a surrogate for litter
moisture. The C flux from biomass burning depends very
strongly on the vegetation C pool ( fsapwood: RPCC = 0.41;
kmort1: PRCC = �0.38).
[23] Since LPJ-DGVM is spun up to equilibrium in terms

of its pre-industrial C pools, the annual C release from Rh

and biomass burning must balance annual C inputs from
NPP, averaged over the final few years of the spin-up. The
size of the different C pools, their average turnover time and
their C inputs are then in balance. Despite large uncertainty
in vegetation and soil C pools, Rh is thus strongly controlled
by parameters regulating NPP. With increased productivity
an ecosystem exhibits a larger seasonal amplitude of NEE,
as a consequence of greater C uptake in summer, and greater
C release in winter associated with larger ecosystem
C stocks, in effect amplifying the differential responses of
NPP and Rh to seasonal variations in climate. Most of the
remaining uncertainty in the seasonal cycle of NEE is
associated with the sensitivity of photosynthesis to water
stress (see auxiliary Figure S2). A set of model parameters
that describes high non-water-stressed stomatal conductance
(a result of high potential daily GPP), with a well-coupled
canopy-atmosphere system (high am and low gm), and low
water uptake rates (low Emax), increases the sensitivity of
actual stomatal conductance, and thus actual GPP, to plant
water stress. Particularly in water-limited environments
and/or dry conditions, this higher sensitivity increases the
effect of summer drought on stomatal conductance, and
thus reduces NPP. Rh is less sensitive to seasonal varia-
tions in soil moisture, owing to its direct dependence on

Figure 1. Parameter importance, measured as RPCC, of (a) aC3 and (b) gm for NPP from global
simulations, using 14 parameters and 400 LHS samples.
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the size of the litter and soil C pools, which varies
comparatively little between seasons. Thereby uncertainty
in NPP is the main source of uncertainty in magnitude and
interannual variations of modeled NEE.
[24] Most of the variation in vegetation composition,

expressed as foliar projective cover (FPC) of individual
PFTs, can be explained by (1) factors that control the
competitive balance between dominant and subdominant
PFTs for a given climate and pedographic setting; and
(2) factors influencing the competitive strength of a specific
plant functional trait. Generally, parameters determining
ecosystem level productivity and key vegetation dynamic
parameters appear to have the greatest influence on the
vegetation structure. Water balance and stand structure
related parameters are of lesser importance, except under
arid conditions in which savanna type ecosystems prevail.
This is a result of changes in the delicate balance between
water demand and supply. In general, forest ecosystems are
favored by higher maximum soil water extraction rates,
Emax, and higher gm, since a less coupled canopy-atmosphere
system mitigates the effect of high atmospheric water
demand on plant transpiration.
[25] Parameter combinations describing stable vegetation

dynamics (lower maximum mortality, stronger effect of
growth efficiency on mortality, and higher re-establishment
rate) tend to increase the FPC of the dominating PFT. A
faster rate of canopy closure, resulting from higher kallom1,
kallom3, and a lower self-thinning coefficient krp also favor
the dominant PFT, with the strongest effect on the herba-
ceous understorey. The predominant influence on the FPC
of herbaceous PFTs is exerted by the canopy light extinction
coefficient, kbeer, with reduced PAR within the canopy
increasing the available radiation at the forest floor and
tipping the competitive balance toward the herbaceous

PFTs. The response of FPC to kbeer is highly non-linear
(PRCC = �0.81; PCC = �0.41), as the canopy light
extinction, and thus PAR utilization, follow the Lambert-
Beer law.

3.2. Constraints to the Parameter Space

[26] Of the 36 parameters in Table 1, 14 parameters can be
identified as having a dominant influence on the terrestrial
carbon cycling (jRPCCj > 0.25; marked in Table 1 with an
asterisk). Global simulations using the reduced set of param-
eters result in an uncertainty range in global NPP, for one
model, of 29.8 to 133.3 PgC yr�1, spanning the complete
range of NPP estimates reported from an earlier model inter-
comparison (44.4–66.3 PgC yr�1 [Cramer et al., 1999], and
exceeding the variable constraints set in section 2.5. Uncer-
tainty in global A and NPP mainly results from uncertainty
in aC3, aa, and kbeer, and in particular from the conse-
quences of extreme combinations of these parameters for
light-use efficiency (see auxiliary Figure S1). By prescrib-
ing correlations between these parameters, while still
sampling parameter values uniformly across the total
parameter range, as described in section 2.5, implausible
combinations are avoided, and uncertainty in modeled
NPP is substantially reduced (43.1–103.3 PgC yr�1).
Similar reductions are achieved for A (without parameter
correlation: 51.5–224.1, with parameter correlation: 71.9–
172.6 PgC yr�1).
[27] The set of parameter combinations is further reduced

by excluding runs in subsequent analyses that do not
conform to global benchmarks on the contemporary carbon
cycle (see section 2.5). 73% of the 400 simulations satisfy
the global constraints for A or NPP, whereas only 41%
fulfill the constraint on vegetation C. Only 28% out of the
400 runs satisfy the benchmarks for both global production

Figure 2. (a) Average annual NPP (kgC m�2 yr�1) for various biomes for 1961–1990, and its
parameter-based uncertainty range. Correlation of annual NPP between (b) LPJ-DGVM (standard
parameterization, LPJ-S) and EMDI NPP-data (EMDI), for sites at which the modeled and observed
vegetation type are in agreement; and (c) between LPJ-DGVM under standard parameterization (LPJ-S)
and the median of the uncertainty experiment (LPJ-U). Nomenclature of the plant functional types
(PFTs): TrBE, tropical broadleaved evergreen; TrBR, tropical broadleaved rain green; TeNE, temperate
needle-leaved evergreen; TeBS, temperate broadleaved summer green; BNE, boreal needle-leaved
evergreen; BNS, boreal needle-leaved summer green; BBS, boreal broadleaved summer green; TeH,
temperate herbaceous; TrH, tropical herbaceous.
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and vegetation C. Most of the runs excluded have extreme
parameter combinations of either aC3 versus gm or fsapwood
and kmort1 versus kla:sa. The first case is associated with
low quantum efficiency combined with high water stress,
leading to low C uptake. The second is tied to unrealistic
vegetation dynamics in regions with stable growing con-
ditions for forests (e.g., Amazonia and tropical Africa) for
very low kla:sa in combination with low kmort1 and high
fsapwood.

3.3. Parameter-Based Uncertainty in Modeling the
Present-Day Carbon Cycle

3.3.1. Local Scale Annual Net Primary Production
[28] NPP estimates of LPJ-DGVM are in rather modest

agreement with the NPP data from the EMDI data set
(Figure 2b). However, the fit is comparable to the fit
observed with other terrestrial ecosystem models (EMDI,
unpublished data, 2003, http://gaim.unh.edu/Structure/Inter-
comparison/EMDI/). In principle, parameter-based uncer-
tainty suffices to explain the difference observed between
modeled and measured NPP for most sites (Figure 2a). The
results of running LPJ-DGVM with its standard parameter-
ization agree very well with the median of the uncertainty
experiment (Figure 2c). Sources of disagreement between

model and data, apart from parameter-based model uncer-
tainty, include the intrinsic difference between site measure-
ments and values applicable at larger (e.g., regional, biome,
global) scales, taking account of variation in climate, pedog-
raphy, topography, land management etc. at intermediate
scales. In addition, uncertainty arises from the measure-
ments themselves, in particular from the assumptions made
to estimate below-ground C allocation [Clark et al., 2001].
Previously, the utility of field measurements to evaluate
the performance of TBMs has been questioned on the
basis of the observation that, as in this study, the NPP data
set did not show any particular sensitivity to annual
precipitation [Knorr and Heimann, 2001]. The explanation
for this may lie in differences in the period of NPP
sampling and climate measurements.
3.3.2. Seasonal Cycle of Net Ecosystem Exchange
[29] Simulated NEE of the median of the sensitivity

experiment and the standard parameterization agree reason-
ably well with the seasonal phasing and amplitude observed
at the six eddy covariance sites considered (Figure 3).
Generally, the seasonal cycle is well captured by all simu-
lations of the uncertainty experiment, compared to the
standard run. The uncertainty range of NEE is considerably
smaller than the uncertainty range of modeled NPP. For

Figure 3. Simulated and observed net ecosystem exchange (NEE, kgC m�2 month�1) for 1996–2000 at
six eddy-covariance sites of the EUROFLUX network. Data are taken from Valentini et al. [2000].
Statistics are available in auxiliary Table 4. See color version of this figure at back of this issue.
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Sorø and Sarrebourg the simulations agree well on the
seasonality; however, peak C uptake in summer is consis-
tently underestimated by the simulations. Simulated net C
uptake is consistently too low in Tharandt, whereas the
seasonality matches the measurements reasonably well.
[30] The root mean square error (RMSE, see auxiliary

material) between the flux measurements and simulations
is most influenced by aC3, aa and rgrowth for Loobos,
Sarrebourg, Sorø and Bayreuth, since these govern the
amplitude of the seasonal cycle. However, the effect is the
opposite for Sarrebourg/Sorø, where LPJ-DGVM under-
estimates the seasonal cycle, compared with Bayreuth/
Loobos, where peak C uptake is well matched. Variation
of gm can, as noted earlier, lead to considerable uncertainty
in monthly NEE. The effect of parameters on the modeled
error varies between the measurements sites, both in terms
of their average importance and ranking, as well as the
seasonal cycle of parameter importance.
[31] LPJ-DGVM is capable of simulating the dominant

features of the seasonal cycle of CO2 as measured at the
global network of atmospheric CO2 monitoring stations. The
normalized mean square deviation (NMSD, see supplement)
between model and measurements considering all 27 stations
is only slightly larger than the deviation observed with six
TBMs, including a previous model, BIOME-2, related to
LPJ-DGVM [Heimann et al., 1998]. The range of NMSD
obtained from the uncertainty experiment is of similar
magnitude when pooled into three latitudinal categories
(Table 4). The strong influence of the terrestrial biosphere
on the seasonal cycle at northern high-latitude stations is
reflected in a relative high uncertainty in the modeled
seasonal cycle of CO2. The consistent too early draw down
and recovery of CO2 for these stations, which was already
apparent in a predecessor model to LPJ-DGVM, BIOME-2
[Heimann et al., 1998], cannot be related to uncertainty in the
parameters examined, and thus appears to be a robust model
feature. Likely causes are the effect of snow cover on soil
thermodynamics and hence rates of Rh [McGuire et al.,
2000], and the delayed onset of the growing season
associated with snow cover and frozen soils.
[32] Parameters governing plant C uptake generally play

an important role (aC3: RPCC = �0.50; aa: RPCC =
�0.36) in determining NMSD. In particular, higher values

for aC3 and aa increase the agreement between model and
observations at the northernmost stations, mainly because
of increased summer draw down of CO2 concentrations by
ecosystems. Of the parameters controlling vegetation and
SOM dynamics, only tlitter appears to be important globally
(RPCC = �0.43), with increasing litter residence time
amplifying the seasonal cycle at all stations. A marked
reduction in global average NMSD is apparent for low
values of gm (RPCC = 0.77). However, this reduction is
mainly associated with tropical and southern stations, which
have a low amplitude and little modeled uncertainty in the
seasonal cycle of CO2, so that the reduced absolute model
error is rather small. Notably, no significant relationship
exists between the overall model performance with respect
to the CO2 network and predicted biosphere properties such
as global A and NPP.
3.3.3. Contemporary Terrestrial Biosphere Dynamics
[33] Variation of present-day vegetation composition due

to parameter-based uncertainty is typically within ±12.5%
of the median FPC (90% confidence interval) for tropical
and temperate tree PFTs, with a larger range for boreal
(±15%) and particularly herbaceous PFTs (±21.5%). Global
vegetation maps of the distribution of evergreen, deciduous,
and mixed forests, grasslands and deserts show good
agreement (average k = 0.74 [Prentice et al., 1992]) with
the median vegetation composition. Global A and NPP
under the standard parameterization and the respective
median estimates from the uncertainty experiment are
within 10% of the most plausible estimates of global A
and NPP from observations (Table 5). Estimates of C lost
from biomass burning are of a similar magnitude to the 4.3
PgC yr�1 (±50%) estimated from observations by Andreae
and Merlet [2001]. Mean annual land-atmosphere fluxes for
the 1980s and 1990s are estimated at �1.48 (�0.37 to
�2.43) and �1.71 (�0.37 to �3.25) PgC yr�1, respectively.
[34] Figure 4 shows the spread in land-atmosphere flux

estimates with and without the constraints discussed in
section 2.5. Median estimates of annual NBP are within
±0.1 PgC yr�1 for the period in 1981–2000; the
unconstrained median is in the direction of a stronger C
uptake. The larger spread without the constraints results
mainly from parameter combinations affecting present-day
A and NPP, whereas vegetation C contributes only little

Table 4. Normalized Mean Standard Deviation (NMSD) Between Measured and Modeled Mean Seasonal Cycle

of CO2 at 27 Stations From the GLOBALVIEW Network, Pooled Into Northern Stations (12), Tropical Stations (9)

and Southern Stations (6), and Parameter Importance Determining NMSD, Measured as Average RPCC Over All

Stations Within a Specific Groupa

All Stations Northern Stations (>25�N) Tropical Stations (25�N–30�S) Southern Stations (>30�S)

NMSD
Median 13.1 17.6 10.0 7.6
Min 1.5 5.0 1.2 1.1
Max 38.8 35.9 40.6 39.7

RPCC
gm 0.78 �0.02 0.78 0.89
aC3 �0.50 �0.63 �0.63 0.53
tlitter �0.44 �0.34 �0.42 �0.34
aa �0.36 �0.48 �0.55 0.35
Q �0.30 �0.50 �0.36 0.45
rgrowth 0.23 0.44 0.31 �0.37

aSee also the auxiliary material.
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to the uncertainty in present-day NBP, except for some
outliers. The response of A and NPP to observed climate
and CO2 changes relative to present-day A and NPP is
comparable between all runs. This means that, in absolute
terms, the response is amplified by larger values of A and
NPP. As a consequence, 68% and 54% of the variance in
the increase in magnitude of NBP are explained by
present-day A and NPP, respectively, using linear regres-
sion without the constraints. Uncertainty in global A
accounts for only 22% of the uncertainty in the contem-
porary C uptake for the constrained case.

3.4. Model Projections to 2100

[35] The increases in A and NPP under the climate
change scenario from HadCM2-SUL, forced with the
IS92a emissions scenario, are a robust model feature,
and are driven by the continuous increase in atmospheric
CO2 as well as CO2 induced increases in water-use
efficiency. Despite the uncertainty in A, NPP, vegetation
distribution and modeled water stress (allowed for by
varying the parameter gm over a wide range), projected
changes in water-use efficiency are robust model results
in the sense that alternative parameter values do not
change the direction of this important process response
(see auxiliary Figure S5). As a result of the rise in A,
global land-atmosphere fluxes increase in magnitude by
the 2050s to �4.85 (�3.34 to �6.58) PgC yr�1, but
then decrease to �3.36 (�1.84 to �4.80) PgC yr�1 by
the end of the twenty-first century (Figure 5a). This decline
is a consequence of the leveling off of C uptake in vegetation
and the decline in soil C uptake with land-atmosphere fluxes
of around�2.51 (�1.63 to�3.38) PgC yr�1 (Figure 5b) and
�0.75 (�0.01 to �1.88) PgC yr�1 (Figure 5c), respectively,
toward the end of the twenty-first century. These trends are
relatively robust on a long timescale (50 years; average R2

with linear regression: 0.98), and in reasonable agreement
with previously published LPJ-DGVM results [Cramer et
al., 2001]. Most of the deviation among the suite of runs
in this study occurs in the last 2 decades of the twenty-first
century, when some simulations show a stagnation of the
biospheric C uptake, whereas others exhibit a strong
decrease, mainly as result of C losses from soil. Decadal
and inter-annual variations are less well constrained (av-
erage R2 = 0.88/0.86 for decadal and inter-annual vari-
ability, respectively), but still reasonably similar to the
median of the uncertainty experiment.

[36] Parameters governing present-day plant C uptake
(aC3, aa, q) exert some influence on the rate of increase
in A and NPP, but have only little impact on the rate of
vegetation C build-up, which are much more strongly
controlled by vegetation dynamics (kmort1 and kest, 0.67%
explained variance; stepwise ANalysis Of VAriance
(ANOVA)). Global SOM C uptake at the end of the
twenty-first century, by contrast, is influenced to a similar
extent by parameters controlling present-day NPP (aC3, aa,
q rgrowth) and parameters governing vegetation and SOM
dynamics (finter, tlitter, kest, 0.45% and 0.40% explained
variance respectively, stepwise ANOVA).
[37] Projected NBP at the end of the twenty-first century

shows distinct regional patterns, however, the changes
compared to present-day NBP are not as robust as modeled
changes in A and NPP. The latitudinal breakdown of the
development of the land-atmosphere flux over the twenty-
first century shows that the rise in atmospheric CO2

increases C storage in both the tropics and the northern
extra tropics up to 2050 (see auxiliary Figure S4). There-
after climate change substantially weakens the capacity of
ecosystems to sequester C in the tropics and southern
midlatitudes by the end of the twenty-first century, in

Table 5. Standard Results, Median and 90% Confidence Range of the Uncertainty Experiment for Present-Day

Global C Fluxes (PgC yr�1), Terrestrial C Storage (PgC) and H2O Fluxes (1012 m3 yr�1)

1980s 1990s

Standard Median (90% Confidence) Standard Median (90% Confidence)

A 111.6 109.0 (89.9–143.7) 114.8 112.5 (92.8–148.8)
NPP 61.9 60.8 (48.9–78.1) 63.3 62.7 (50.5–80.1)
Rh 55.1 54.3 (42.8–70.6) 56.7 56.0 (44.9–72.5)
Biomass burning 5.5 5.1 (3.0–7.5) 5.4 5.1 (3.0–7.4)
Land-atmosphere flux �1.5 �1.5 (�0.4–�2.4) �1.7 �1.7 (�0.4–�3.2)
Vegetation C 995 902 (556–1151) 1004 912 (566–1157)
SOM 1441 2323 (877–5181) 1450 2329 (884–5191)
Annual AET 37.9 34.1 (26.2–45.0) 37.4 33.8 (26.0–44.7)
Annual runoff 36.0 45.0 (34.7–55.1) 35.6 44.6 (34.2–54.5)

Figure 4. Global land-atmosphere flux (PgC yr�1) in the
1980s and 1990s, resulting from observed climate and
atmospheric CO2 changes. ‘‘UC’’ denotes the full un-
certainty range, whereas ‘‘C’’ refers to the uncertainty range
for those model realizations that conform to contemporary
observations of A, NPP and vegetation C.
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agreement with the results of Cramer et al. [2001]. This
effect can be attributed to a strong decline in precipitation
over the tropics, a particular feature of the climate scenario
used in this study. In the northern extra tropics, where the
strongest climate change is simulated under this scenario, C
sequestration is still substantial by the end of the twenty-first
century, but there is considerable uncertainty associated
equally with soil and vegetation processes.
[38] Despite the large range of uncertainty in modeled

water-stress (a result of varying gm over a wide range) the
expansion of savanna into arid grasslands of the tropics is
common to all simulations (Figure 6a). All simulations
show an expansion of high latitude forests, as well as an
increased deciduousness of temperate and southern boreal
forests (Figures 6b and 6c). Most of the vegetation C uptake
is located in this area, and its uncertainty controlled by the
parameter fsapwood, which governs the rate of vegetation C
accumulation in newly establishing PFTs. A concurrent
decline in precipitation and increase in deciduousness in

parts of Southern Africa and America leads to a reduction in
NBP.

4. Discussion

[39] Of the 36 parameters included in the survey only few
have an overriding influence on the modeled terrestrial

Figure 5. Global land-atmosphere flux (10-year running
average, PgC yr�1) under the IS92a HadCM2-SUL climate
change scenario: (a) land-atmosphere flux, (b) C exchange
of the vegetation, and (c) C exchange of SOM pools. See
color version of this figure at back of this issue.

Figure 6. Change in foliage projective coverage between
2000 and 2100 for (a) tropical rain green, (b) temperate
deciduous, and (c) temperate herbaceous PFTs; expressed as
prediction index, i.e., mean change/standard deviation of
change from the uncertainty experiment. An absolute value
of >2 indicates a robust model result; typically, trends have
similar direction for much lower values. See color version
of this figure at back of this issue.
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biosphere dynamics. In particular, LPJ-DGVM shows little
sensitivity to many of those parameters whose ‘‘correct’’
values, in the absence of suitable measurements, are partic-
ularly uncertain, for example, several parameters describing
allometry (kallom1, kallom2, kallom3), stand structure (CAmax),
and fire dynamics (rfire, fuelmin). Parameters that contribute
most to overall model uncertainty are those controlling net
assimilation rate and water exchange. This is in general
agreement with the results obtained by [Knorr, 2000; Knorr
and Heimann, 2001] for the BETHY model, and [White et
al., 2000b] for BIOME-BGC. In particular, only a few
parameters are associated with the uncertainty in A at
equilibrium, reflecting the big-leaf approach employed in
these models.
[40] The uncertainty range of NPP is of a similar magni-

tude to the range among models reported from model inter-
comparison studies [Heimann et al., 1998; Cramer et al.,
2001]. This suggests that these differences might to a large
extent be associated with parameter-based uncertainty.
Since NPP is the major driving force for plant performance
and vegetation dynamics, parameters that influence NPP
have a strong influence on the overall ecosystem dynamics
simulated by the model. NPP plays the dominant role in
determining the sizes of the various C pools in equilibrium,
as also noted by Gerber et al. [2004].
[41] The range of present-day global land-atmosphere

flux estimated in this study may be compared to �0.6 to
�3.0 PgC yr�1 (1990s) among six DGVMs (including LPJ-
DGVM) obtained by Cramer et al. [2001] using the same
driving data. Model based fluxes in the 1980s range
between �1.1 and �2.3 PgC yr�1 among four TBMs
(likewise including LPJ-DGVM [McGuire et al., 2001]).
The ‘‘residual terrestrial sink,’’ as inferred from the global C
budget, which also accounts for effects on vegetation that
are not modeled by LPJ-DGVM such as nitrogen deposition
and tropospheric ozone, has been estimated at �0.3 to
�4.0 PgC yr�1 (1980s) or �1.6 to �4.8 PgC yr�1 (1990s)
[House et al., 2003]. In the absence of any land-use
change that could alter the terrestrial C balance due to
deforestation or forest regrowth, the modeled present-day
land C uptake is located in roughly equal strength in the
tropics (between 20�S and 5�N) and the northern extra
tropics, with a particularly strong uptake above 40�N,
which is consistent with earlier findings [Kicklighter et
al., 1999].
[42] Despite considerable uncertainty in modeled present-

day and future net assimilation and primary production, as
well as C storage, some robust features are apparent from
the scenario analyses. Substantial increases in A because of
increased water-use efficiency occurred consistently in all
simulations (as noted by Kicklighter et al. [1999]), suggest-
ing that alternative parameter values do not change the
direction of the process response. All major regional
responses of vegetation to changes in climate are simulated
consistently for the majority of simulations. Resulting
regional patterns of C uptake or loss from vegetation and
soil are also consistently modeled, even though the magni-
tude of the effect is relatively uncertain.
[43] Whereas we evaluated the effect of parameter uncer-

tainty on future responses of the terrestrial biosphere as

simulated by one particular DGVM, Cramer et al. [2001]
assessed uncertainties associated with the different process
representations encapsulated by different models (i.e., six
DGVMs, one climate scenario), while Schaphoff et al.
[2005] investigated uncertainties associated with climate
change projections produced by different climate models
(i.e., one DGVM, five different climate models, all driven
with the IS92a emission scenario). Results from the three
studies agree well in terms of modern NPP, Rh and NBP, as
well as in inter-annual variability, and the overall decadal
trend for the scenario period when forced with the same
climate data. Uncertainty in present-day NBP is equally
large among different DGVMs and results obtained using
different parameterizations of one particular model. Under
climate change, all three studies point to an initial
increase in terrestrial carbon stocks, followed by a decline
in net C uptake in the second half of the twenty-first
century. The decline of biospheric C uptake, and a
potential net C loss toward the end of the twenty-first
century are in agreement with other model studies [Cox et
al., 2000; White et al., 2000a; Joos et al., 2001; Dufresne
et al., 2002; Friedlingstein et al., 2003; Jones et al.,
2003]. The uncertainty range in modeled C uptake inte-
grated over the entire twenty-first century in the present
study is 201 (117–264) PgC (vegetation) and 107 (32–
212) PgC (soil). These ranges compare to 151–340, and
28–220 PgC for vegetation and soil pools, respectively,
from the DGVM inter-comparison [Cramer et al., 2001],
and to 0–150 PgC (vegetation) and �70 to 41 PgC (soils)
for four different climate scenarios (excluding the older
HadCM2 scenario [Schaphoff et al., 2005]). In all three
studies, models predict a trend toward increased NPP and
vegetation growth as response to increased atmospheric
CO2 and temperature, particularly at high northern latitudes,
concurrent with an expansion of boreal forests. This trend
is consistently modeled among different DGVMs, future
climate scenarios and model parameterizations. Strong
regional differences in changes of vegetation composition
were, however, observed for tropical regions among dif-
ferent climate scenarios, mainly as a result of different
regional changes in precipitation [Schaphoff et al., 2005].
The present study shows that simulated shifts in dominant
vegetation types, regional patterns of NBP and their
change over time are relatively robust to the choice of
model parameterization.
[44] We applied a relatively simple method to constrain

the parameter-based model uncertainty in an attempt to
approach a realistic uncertainty range for modeled pres-
ent-day and potential future NBP, as well as to demonstrate
the effect of parameter-based uncertainty on modeling
terrestrial biosphere dynamics. A more sophisticated meth-
od of constraining distribution functions for model output
variables, assigning a probability to results from each model
run based on the distance between the run and the ‘‘best-
guess’’ region of a particular benchmark, was tested for the
present-day analysis. However, results were similar to those
obtained using the simpler approach, and would not greatly
affect the conclusions of our study.
[45] The obvious starting point to reduce parameter-

based uncertainty would be to constrain NPP directly from
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observations, because of the importance of A and NPP in
global vegetation models. As detailed in section 3.3.1,
currently available NPP measurements are probably insuf-
ficient for this purpose. C flux estimates from eddy-
covariance measurements that integrate C and H2O fluxes
at the ecosystem scale offer some potential to constrain the
parameter space using inverse methods [Wang et al., 2001;
Reichstein et al., 2003; Knorr and Kattge, 2005]. aC3 and
aa contribute most to the uncertainty in the modeled
seasonal cycle by amplifying its magnitude. However,
the importance of these parameters in determining monthly
NEE were in most cases strongly anti-correlated with
rgrowth, rmaint, and rea. This implies that a particular
modeled seasonal cycle of NEE might be obtained from
a multitude of combinations of these parameters, such that
these parameters might be difficult to constrain based on
net C fluxes. Partitioning the net flux into uptake and
respiratory components could potentially help to identify
parameter contributions, especially for respiratory process-
es [Wang et al., 2001]. However, large uncertainty still
exists with respect to the correct flux separation [Janssens
et al., 2001; Ogee et al., 2004]. Parameter correlations
could, however, be derived by constraining model results
with flux data and thus reducing the parameter space
[Knorr and Kattge, 2005]. The findings of the present
study demonstrate clearly that parameter importance varies
between different sites. A representative collection of high
quality seasonal NEE data sets for all major biomes would
thus allow uncertainty in global terrestrial modeling to be
reduced.
[46] Measurements of the seasonal variations of atmo-

spheric CO2 concentrations integrate carbon fluxes over
larger regions; hence they have the potential to avoid spatial
bias. The largest reduction in absolute error may be obtained
in the northern latitudes, where the seasonal cycle appears to
be most strongly controlled by light-use efficiency effects
on vegetation productivity. Atmospheric inversion studies
likewise point to light-use efficiency as a major controlling
factor for seasonal variation in CO2 exchange [Kaminski et
al., 2002; Still et al., 2004]. However, uncertainty about the
influence of the co-occurring fluxes of anthropogenic and
oceanic origin, atmospheric transport fields used to map
emissions of the terrestrial biosphere to the CO2 monitoring
stations, and data availability and quality [Rayner et al.,
2005] limit the degree to which uncertainty in parameter
values can be effectively reduced.
[47] Both, eddy-covariance and CO2 measurements could

potentially be used to constrain parameters that govern
short-term ecosystem processes (e.g., aC3, aa, q, rgrowth).
These parameters contribute most to the parameter-based
uncertainty in present-day NEE, and amplify the rate of A
and NPP increase as a response to future climate scenarios.
However, in our global change case study these parameters
contribute to only 4% and 45% of the uncertainty in C
uptake by vegetation and soil, respectively. Transient pro-
jections of climate change effects on vegetation C storage
are influenced to a much greater extent by uncertainty in
vegetation dynamics, primarily the rate at which forests can
accumulate C after disturbance, or in response to changing
environmental conditions. Similarly, uncertainty in modeled

SOM change, although showing a strong influence of
uncertainty in litter fall, is strongly linked to parameters
governing the average turnover time of the SOM pools,
particularly in regions in which soils become a source of
CO2 in the future in these scenario analyses. These results
highlight the need for improved understanding of the
response of SOM to changing environmental conditions
[e.g., Fang et al., 2005; Knorr et al., 2005], as well as for
improved understanding of potential changes in the com-
petitive balance between PFTs under climate change.
[48] We evaluated parameter importance for average pres-

ent-day conditions, and constrained the parameter space
further using present-day observations of the global C cycle.
Parameters that appear of little importance in this approach
may still have substantial impact on model simulations
under other than present-day conditions. For instance, Fang
et al. [2005] showed that uncertainty in the apparent Q10 of
soil respiration could lead to an up to 70% difference in
projected soil C losses under future climate change in
temperate regions. Joos et al. [2001], using LPJ-DGVM,
demonstrated that cumulative land-atmosphere fluxes
(2000–2100) differed by 188 PgC depending on whether
soil respiration was assumed to be temperature dependent
(Lloyd-Taylor) or not. Uncertainty in soil C changes
through the twenty-first century, as simulated in this study,
is of a comparable magnitude, but associated with different
parameters: The rate parameter in the Lloyd-Taylor equation
was found not to be important in determining present-day C
cycling, and was thus not included in estimating the
uncertainty in the future C balance. Data assimilation,
as discussed above, may improve the identification of
parameters that are of importance also under changing
environmental conditions. However, these methods rely on
present-day observations to test model performance [e.g.,
Rayner et al., 2005], which still might be insufficient to
reduce uncertainty of the long-term response of some
terrestrial processes, for example, the long-term responses
of photosynthesis to enhanced [CO2], or soil respiration to
global warming. Uncertainties due to gaps in process
understanding and uncertainties in associated with alterna-
tive process formulations at scales relevant to global
terrestrial biosphere modeling [Knorr and Heimann,
2001] are important, but beyond the scope of the present
study.
[49] The uncertainty range of a particular model output

variable depends on the choice of distribution function for
the parameters in question. We choose to apply the principle
of parsimony in assuming a uniform distribution function
for all but one parameter. An alternative choice would be a
bell-shaped function or similar, simulating parameter values
distal from the mean of ‘‘best guess’’ values with reduced
probability. This would tend to reduce the spread in model
results, giving a more conservative estimate of the potential
model uncertainty. Some parameters are likely to co vary in
nature, whereas they were assumed, with one exception, to
vary independently in our study; again, our approach is
likely to overestimate rather than to underestimate the true
uncertainty range.
[50] The exact ranking of the uncertainty contribution of

individual parameters, or their functional equivalents in
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other models, will be influenced by the structure of the
particular model under investigation. Nevertheless, LPJ-
DGVM may be considered exemplary for the DGVM
family of models. These models generally follow similar
approaches to simulate plant C and H2O exchanges with the
atmosphere. Certain parameter groups, for instance those
controlling the light-use efficiency of photosynthesis at the
ecosystem scale, will very likely play a pivotal role in model
uncertainty for any DGVM, due to the central role of NPP
in determining vegetation structure and dynamics. The
methodology presented here could be readily applied to
other models to further corroborate our findings.
[51] This study focuses on the uncertainty in process-

based terrestrial biosphere models due to imperfect knowl-
edge (or implicit uncertainty) of the ‘‘correct’’ parameter
values used in scaled representations of ecosystem processes,
and aims at providing quantitative information about the
confidence that can be placed in model results. However,
other aspects of model uncertainty were not addressed; for
example, uncertainty due to incomplete knowledge of the
true mechanisms underlying certain ecosystem phenomena,
as well as uncertainty in the driving environmental data,
which may be equally important [e.g., Knorr and Heimann,
2001]. Future steps toward a quantitative assessment of the
uncertainty in modeling terrestrial biosphere dynamics will
need to account for uncertainty related to model assump-
tions, for example, the equilibrium of C cycle at the
beginning of the twenty-first century, and to consider
driving factors other than climate and atmospheric CO2

change, such as land-use change [McGuire et al., 2001] and
N deposition [Vitousek et al., 1997]. It should be noted that
model robustness does not necessarily imply that model
predictions are correct. In fact, model failure to correctly
predict observations considering model uncertainty can
point to areas in which model improvements are required.
Better evaluation data and improved process understanding,
for example, of the response of ecosystem to disturbances,
are indispensable for the reliable modeling of the terrestrial
biosphere.

5. Conclusions

[52] We presented an assessment of parameter-based
uncertainty in modeling the present-day and future terres-
trial biosphere dynamics using one particular DGVM. Of
the 36 parameters in our survey, only a limited subset of
parameters is associated with most of the present-day model
uncertainty. An improved understanding of the scaling of
leaf-level photosynthesis to ecosystems, the hydraulic cou-
pling of vegetation and atmosphere and plant respiration
processes appear to be the most important priorities to
reduce parameter-based uncertainty in the modeling of
present-day ecosystem C cycling. The rate of C accumula-
tion in vegetation and the turnover time of SOM were
identified as major contributors to uncertainty in future C
balance estimates, highlighting the need for more appropri-
ate experiments and better validation data sets to improve
model performance.
[53] The substantial uncertainty range in NPP in this

study is of a similar magnitude to the range observed

between different DGVMs and other model-based estimates
of global NPP. Uncertainty propagation leads to consider-
able uncertainty in sizes of C pools. Soil C pools, due to
their long turnover times, represent the most uncertain
model outputs. Despite this, contemporary global vegetation
distribution and land-atmosphere flux are relatively robust
model results. The overall response of LPJ-DGVM to a
particular climatic forcing is maintained among most of the
alternative parameterizations tested in this study. In partic-
ular, the response of vegetation to increased levels of CO2,
shifts in vegetation patterns as a result of climate change,
and the effect of global warming on SOM pools are
reasonably robust model results. In effect, long-term trends
in global land-atmosphere fluxes are reliably modeled,
although uncertainty range reaches �3.35 ± 1.45 PgC
yr�1 by the end of the twenty-first century under the
particular climate scenario used in this study. On the basis
of our analysis we recommend that uncertainty analyses
should be an integral part of the development and validation
process for all process-oriented ecosystem models.
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Figure 3. Simulated and observed net ecosystem exchange (NEE, kgC m�2 month�1) for 1996–2000 at
six eddy-covariance sites of the EUROFLUX network. Data are taken from Valentini et al. [2000].
Statistics are available in auxiliary Table 4.
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Figure 5. Global land-atmosphere flux (10-year running
average, PgC yr�1) under the IS92a HadCM2-SUL climate
change scenario: (a) land-atmosphere flux, (b) C exchange
of the vegetation, and (c) C exchange of SOM pools.

Figure 6. Change in foliage projective coverage between
2000 and 2100 for (a) tropical rain green, (b) temperate
deciduous, and (c) temperate herbaceous PFTs; expressed as
prediction index, i.e., mean change/standard deviation of
change from the uncertainty experiment. An absolute value
of >2 indicates a robust model result; typically, trends have
similar direction for much lower values.
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