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Summary

A new statistical method for regional climate sim-

ulations is introduced. Its simulations are con-

strained only by the parameters of a linear re-

gression line for a characteristic climatological

variable. Simulated series are generated by re-

sampling from segments of observation series

such that the resulting series comply with the pre-

scribed regression parameters and possess realis-

tic annual cycles and persistence. The resampling

guarantees that the simulated series are physically

consistent both with respect to the combinations

of different meteorological variables and to their

spatial distribution at each time step. The resam-

pling approach is evaluated by means of a cross

validation experiment for the Elbe river basin: Its

simulations are compared both to an observed cli-

matology and to data simulated by a dynamical

RCM. This cross validation shows that the ap-

proach is able to reproduce the observed clima-

tology with respect to statistics such as long-term

means, persistence features (e. g., dry spells) and

extreme events. The agreement of its simulations

with the observational data is much closer than for

the RCM data.

1 Introduction

Regional climate modeling has received increased

attention in recent years. This is due to the fact

that the effects of climate change vary strongly

between different regions (Houghton et al. 2001),

meaning for example heavier precipitation events

together with flooding in one case and more se-

vere dry spells and heat waves in another. This

variety makes it necessary to analyse the changes

in detail on a regional scale. Spatially highly

resolved simulations of future climate develop-

ments are therefore needed as a basis for such im-

pact studies.

One common approach to obtain these simu-

lations is to translate output from Global Circula-

tion Models (GCMs), typically operating on hori-

zontal resolutions of 100–200 km, to a finer scale

of, say, 10 km or to specific locations, e. g., meteo-

rological stations. This task ofdownscaling raises

two questions: First,what to downscale, and sec-

ond,how to downscale it.

The first problem is concerned with the re-

lation between explanatory and dependent vari-

ables. These notions mean that the evolution of an

explanatory variable (for climate modeling often

referred to asforcing) can be used to explain the

evolution of a dependent variable. In the down-

scaling context, the explanatory variables are ex-

tracted from GCM output. The dependent vari-

ables are the local weather variables, which are to

be predicted from the GCM output.

The chosen explanatory variables must be suf-

ficiently relevant for the dependent variables of

interest. For instance, if the rather complex pre-

cipitation patterns in an alpine region are to be

obtained by a downscaling method, a sea level

pressure field – although certainly linked to pro-

cesses relevant for precipitation – will not by it-

self explain the fine-scale features of the spatial

precipitation distribution (Beersma and Buishand

2003). Additionally, the chosen explanatory vari-

ables should be simulated reliably for the region
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of interest by the GCM. This is not necessarily

given, as the vast literature about GCM valida-

tion shows (see e. g., Benestad 2004, Déqué 2004,

Murphy et al. 2004, Fox-Rabinovitz et al. 2006,

Ruiz-Barradas and Nigam 2006): The overall pic-

ture is ambiguous and does not give any clear in-

dications on which GCM-simulated variables re-

gional downscaling could be based.

For the second question, that is, how to down-

scale, a wide range of methods has been devel-

oped, using both dynamical (commonly referred

to as Regional Climate Models, RCMs) and statis-

tical approaches.

RCMs model physical processes as GCMs do,

but on a finer spatial and temporal scale. Usu-

ally, GCM output defines the boundary conditions

for these simulations. Recently, RCMs have im-

proved substantially and are more and more used

to produce climate change scenarios for impact

studies. As their simulations are based on repre-

sentations of physical processes, they are in partic-

ular able to deal with situations differing from the

present climate. On the other hand, this general

applicability is somewhat limited by the intrinsic

parametrisations of sub-scale processes, which

are often based on observational data statistics.

The applicability of statistical approaches in

turn is per definition limited to similar climates

– a serious drawback in times of climate change,

which also concerns the new statistical method for

regional climate simulations, which is introduced

in this paper. Its performance is tested by means

of a cross validation experiment. The climatol-

ogy of a 25 years time span of the observation pe-

riod is simulated and compared to the actual ob-

servations. As for the same time and region also

a simulation by a dynamical RCM exists, the per-

formance of the statistical model can be evaluated

not only with respect to the observed climatology

but also in comparison to the RCM.

In statistical downscaling, three different

strategies can be identified: (1) transfer functions,

making use of functional dependencies between

explanatory and dependent variables (e. g., Mur-

phy 1999, von Storch and Zwiers 1999, Zorita

and von Storch 1999); (2) weather generators,

which exploit stochastic models for variables of

interest and generate simulated series by sam-

pling from them (e. g., Semenov and Barrow

1997, Wilks 1999); (3) weather type schemes, us-

ing relationships between large-scale circulation

regimes and local weather, which allow for the

translation of changes in circulation regime statis-

tics into changes of weather statistics. See Enke

and Spekat (1997) for a combination of weather

types and transfer functions for downscaling. All

schemes rely on observed time series and aim at

generating simulated series for a period of inter-

est.

A special case of weather type schemes are

analogue methods, to which the approach pre-

sented here is similar. They are typically used

to generate simulated series of surface weather

data which are compatible to a series of GCM-

simulated large-scale circulation patterns: for the

simulated circulation pattern of each time step

they scan a pool of observed patterns, search-

ing for the most similar and its concurrent sur-

face weather (e. g., Timbal and McAvaney 2001,

Beersma and Buishand 2003). The elements of
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the simulated series are obtained by conditional

resampling from the pool of surface weather ob-

servations, where the resampling is conditional on

the large-scale circulation fields. See Wilby and

Wigley (1997), Wilby et al. (1998), Zorita and von

Storch (1999), von Storch et al. (2000) for general

reviews.

Like the analogue approaches, the scheme pre-

sented in this paper constructs simulated series

by resampling from elements of the observation

series. However, it is constrained by a forcing

which is much simpler than series of daily circula-

tion patterns as for the analogue methods: It con-

sists only of the two parameters of a regression

line, which the annual means of a characteristic

climate variable have to feature. For the appli-

cation in this paper, the characteristic variable is

temperature.

Section 2 explains the scheme in detail, first

for single station simulations only, which is then

extended to multi station or regional simulations.

Results from the cross validation experiment and

the comparison to the performance of an RCM are

shown in Section 3. Section 4 summarises and

gives a short outlook.

2 The resampling scheme

Similar to the analogue methods, the approach

presented in this paper is based on the assumption

that weather states from segments of the observa-

tion period may occur again or very similarly dur-

ing the simulation period. Hence, simulated se-

ries are constructed by resampling from segments

of observation series, consisting of daily observa-

tions. The obvious advantage of such resampling

is that the resulting series consist of observations

(combinations of temperature, precipitation, pres-

sure, etc.), which are insofar physically consistent,

as they once were real world observations. The

same holds for the spatial fields of the meteorolog-

ical variables, as the series of the simulated fields

is obtained by resampling from a pool of observed

fields.

However, in contrast to the analogue methods,

this resampling is not conditioned on daily series

of GCM-simulated circulation patterns, which in

general cannot be considered as a reliable explana-

tory variable (e. g., Mitchell and Ewins 2003, Mur-

phy et al. 2004). The idea is instead to constrain

the resampling by a very simple forcing, which

can easily be checked for plausibility and does

not depend on a single (possibly inaccurate) GCM

simulation. As the only external constraint to

the simulated series at a given location, the two

parameters of a regression line (e. g., mean and

slope) are prescribed, which the simulated annual

means of a characteristic climate variable at this

location have to feature. The characteristic vari-

able is to be chosen such that it captures the es-

sential climate variability of the region of interest.

E. g., for the data from the Elbe river basin, which

is used for the cross validation in Section 3, tem-

perature is a good choice. The forcing in this case

describes long-term level and (linear) increase of

temperature over the simulation period.

Figure 1 illustrates this principle together with

its external constraints: given are a time series of

observations (here: temperature) and a regression

line for the simulation period. From the observa-
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tions, a simulated time series covering the simu-

lation period is assembled, the annual means of

which feature the prescribed regression line.

[Fig. 1 about here.]

This kind of forcing of course does not com-

pletely determine the simulated series. There-

fore, a set of heuristic rules for the resampling

is defined, which ensure that the resulting series

exhibit realistic properties such as annual cycles

and persistence. Stochastic elements in the resam-

pling procedure make every simulated series a re-

alisation of the population of all series compatible

to the prescribed regression parameters and the

set of heuristic rules. The bandwidth of this popu-

lation, i. e., the range of possible climate develop-

ments under the assumption of the given linear de-

velopment of the characteristic variable according

to this approach, can be estimated by generating

a large ensemble of simulations.

Generating a simulation can thus be seen as

defining a date-to-date mapping, which each day

of the simulation period assigns a day of the ob-

servation period and the concurrent observations.

It should be noted that obtaining such a mapping

is equivalent to obtaining simulated series of all

observed variables, even if the construction of the

mapping only uses a single climate variable. The

mapping is constructed in a heuristic way which

makes sure that the resulting series, besides fea-

turing the prescribed regression parameters, ex-

hibit properties such as realistic annual cycles and

persistence. The notion of “realistic” in this con-

text refers to what is known from the observation

period. As the prescribed regression parameters

are the only outer constraint, all other properties

which make a simulated series realistic have to be

checked against the observation series. Here, “re-

alistic” therefore means that certain properties of

simulated and observed series are statistically not

distinguishable.

2.1 Single station simulations

The date-to-date-mapping is constructed in two

steps, which operate on different time scales, the

first on the time scale of years, the second on the

shorter time scale of blocks of 12 days. They are,

together with the preparation of the input data, il-

lustrated in Figure 2, and will be described and

motivated in the next paragraphs.

[Fig. 2 about here.]

Input: In preparation, the observational data is

organised in year-wise segments (from January

1st to December 31st) and in sliding blocks of

12 days. These blocks of the observation period

are grouped intonc classes of similar blocks, “sim-

ilar” referring to theR
12-tuple of their daily tem-

peratures, by means of a standard cluster analysis

(see Appendix A). Each of the resultingnc classes

is represented by the centroid of itsR
12-tuples.

Step 1: The first step (grey shaded in Figure 2)

generates a simple rearrangement of entire cal-

endar years from the observation period, thereby

producing a mapping which leaves the sequences

within the years unaltered. Series generated by

this first step are sure to exhibit realistic annual cy-

cles and persistence, as the sequences within the
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years are simply copied from the observed series.

The series are generated as follows:

1. The observed series are cut into pieces of

one year length, always starting on January

1st.

2. These pieces are randomly rearranged by

drawing with replacement. A large sample

of such rearrangements is generated, each

consisting of as many years as the simula-

tion period. Such a rearrangement is shown

in Figure 3, where for the simulation period

2007–2016 years from the observation pe-

riod (1997–2006) are randomly rearranged

(note the numbers indicating the years at

the bottom).

3. From this sample, the rearrangement is cho-

sen, which is the closest to the prescribed re-

gression line. This is found by minimising

the distance between the parameters of the

regression line of each rearrangement and

the parameters of the prescribed regression

line over the sample.

4. If this rearrangement consists of more days

than the simulation period (this is possible

due to leap years), the extra days are re-

moved from the end of the rearrangement.

Otherwise, lacking days are appended from

the beginning of the year which is the last

in the rearrangement.

[Fig. 3 about here.]

Step 2: The second step operates with blocks of

12 days length. The use of blocks instead of sin-

gle days makes sure that the weather sequences

of the simulated series are realistic at least within

the blocks, again simply because they are just

copied from actually observed sequences. By

experimenting with different block lengths, the

length of 12 days is found to essentially capture

the persistence of the observation time series from

the Elbe river basin. It aims at ameliorating the

series fromstep 1 such that the resulting series

matches the prescribed regression parameters. To

this end, it exchanges selected blocks from this se-

ries with appropriate blocks from the observation

series. This selection/replacement procedure is it-

eratively repeated until the prescribed regression

parameters are reproduced.

Step 2 a: The first part of the second step in Fig-

ure 2 consists of identifying blocks which are to

be replaced, namely those which contribute too

much to the mismatch between the regression line

of the series fromstep 1 and the prescribed regres-

sion line. “Too much” in this context is detected

as follows:

1. From the series of the characteristic climate

variable fromstep 1, a synthetic series is

generated by shifting thestep 1-series year

by year such that the regression line of the

resulting annual means corresponds to the

prescribed parameters. At this stage, two

series of the characteristic variable exist. A

few exemplary years of them are shown in

Figure 4, grey for the series ofstep 1, blue
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for the synthetic series. The figure also

shows the annual means (dots) of the re-

spective series. The first exhibits realistic

annual cycles and persistence, the second,

not very different, fits the prescribed param-

eters exactly.

2. Each of the consecutive 12 days-blocks is

compared with respect to these two series.

If a block is similar relative to both series,

it is kept from the series ofstep 1. For the

comparison, each of the blocks is assigned

the class with the closest centroid, both for

the step 1-series and the synthetic series.

The assigned classes are shown in Figure 4

by the coloured bars at the top, the lower

one for thestep 1-series, the upper one for

the synthetic series. If the two classes co-

incide, the blocks are considered as similar.

Otherwise, this block from thestep 1-series

is seen as too distant from the synthetic se-

ries and therefore as contributing too much

to the mismatch between the regression pa-

rameters of the too series. In that case, it is

marked for replacement, illustrated in Fig-

ure 4 by the shaded rectangles.

[Fig. 4 about here.]

Thereby, on the one hand, blocks which are

similar to the synthetic series are kept from the

first approximation. This leaves parts of the ob-

served intra-annual sequences unchanged for the

simulated series, which contributes to realistic an-

nual cycles in them. On the other hand, blocks

which contribute too much to the mismatch be-

tween the prescribed regression parameters and

those obtained fromstep 1, are replaced. This

can finally result in simulated series complying

with the prescribed regression parameters.

Step 2 b: Each replacing block is randomly

drawn from a set reduced by applying several

heuristic criteria. These criteria only allow for

blocks which on the one hand bring the regression

line of the resulting series closer to the prescribed

one and on the other hand make sure that the in-

serted replacement fits well into the parts of the

series which have been set already. The candidate

set is defined as follows:

1. Choose all blocks from the observation pe-

riod which belong to the same class as

the block from the synthetic series. These

blocks will improve the regression line of

the simulated annual means.

2. To avoid too frequent reuse of single blocks:

only keep unused blocks in the selection.

3. Keep blocks of which the position within

the year lies within a±20 days window

around the respective position of the block

to be replaced. This ensures that only sea-

sonally matching blocks remain in the selec-

tion.

4. Keep blocks which connect well with their

already chosen predecessor and, if also al-

ready defined, their successor.

This fourth criterion identifies valid blocks by

comparing the connecting blocks, that is, the sec-

ond half of the predecessor together with the first
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half of a candidate block, to the block of the ob-

servation series that starts in the middle of the pre-

decessor. If they both belong to the same class,

then the candidate is admissible. For an already

set successor, this works analogously.

Finally, draw randomly from the resulting set.

After all “blanks” are filled that way, the date-to-

date mapping of this iteration is fully defined.

Iteration of step 2: Despite the replacements

with blocks improving the regression line, the re-

sulting series may still miss the prescribed param-

eters. For example, consider a series ofstep 1 of

which the mean is lower than the one of the pre-

scribed regression line. In that case, the blocks

which are kept from thisstep 1-series will lead to

a systematic negative bias for the mean of the cor-

responding series, which has to be balanced by

the replacing blocks. If their effect turns out to

be insufficient, the second step is iterated, where

the next iteration uses slightly exaggerated regres-

sion parameters for the generation of the synthetic

series. These are given by the prescribed param-

eters plus the difference between given and simu-

lated parameters of the preceding iteration. This

results in more blocks which are exchanged and

of which the selection is based on a synthetic se-

ries that balances the bias of the first approxima-

tion more efficiently. These iterations are contin-

ued until the prescribed parameters are matched

within a certain tolerance.

Both at step 1 and at the end of step 2 b, years

or blocks are drawn randomly. This makes any

given simulation a stochastic realisation of the

population of possible simulations, the range of

which can be estimated by generating large en-

sembles of simulations. The ability of generating

large ensembles is a very important feature as it

allows the study of extensions of the space of pos-

sible climate developments. Dynamical models

in general do not offer this possibility, as they are

too demanding of computer resources.

2.2 Multi-station simulations

The approach is similar for multi-station simula-

tions, except for that it takes place in a param-

eter space of higher dimensionality. The ulti-

mate goal however, a date-to-date-mapping, is the

same. This means that the series of simulated

fields consist of spatial fields that were observed

during the observation period. They are spatially

consistent thereby, also for tricky variables such

as precipitation.

Depending on the station density in the region

of interest, it can be advantageous to restrict the

number of stations actually considered in the con-

struction of the mapping. This can be a practi-

cal necessity (e. g., memory limitations) but also

helps to avoid the use of redundant information

in the case of stations with highly correlated se-

ries. Using parameters like mean, variance and

trend estimates for precipitation and temperature

from the observation series, cluster analysis can

identify climatologically similar stations (see Ap-

pendix A). Choosing for each of the resulting

classes the station which is closest to the respec-

tive centroid, a small set of stations is obtained,

which represents the variability among the sta-

tions in a generalising way. For each of the repre-
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sentative stations, regression parameters are pre-

scribed, thereby allowing for the simulation of

spatially differentiated developments. See Fig-

ure 5 for an example from the Elbe river basin.

[Fig. 5 about here.]

For step 1 – the shuffled annual segments

from the observation series – again a large ran-

dom sample of rearranged annual segments is gen-

erated. From this sample, the realisation is cho-

sen for which the regression lines at all of the rep-

resentative stations are closest to the prescribed

ones.

For step 2, that is (2 a) the identification of

blocks to be replaced and (2 b) their replacement,

works analogously as for the single station case,

except for that blocks now are characterised by

the characteristic variables of all of the representa-

tive stations instead of just one. Consequently, for

each of the representative stations a synthetic se-

ries is generated, and the blocks of all of these se-

ries merged together are compared via the classi-

fication to the blocks of the combined series from

step 1.

If severaliterations are needed, the exagger-

ated trends for the next step are calculated as for

the single station case for each representative sta-

tion individually.

2.3 Limitations of the approach

As for all statistical methods, it is necessary to de-

fine limits to the applicability of the approach by

giving bounds for an appropriate measure of cli-

matological dissimilarity between simulated and

observed series. This is not trivial as the study

of at least moderate differences between observed

and simulated climate are the very reason for its

application – long-term means will change, as

will annual cycles (Wallace and Osborn 2002).

A plausible criteria therefore focuses on the

fluctuations in the series, the noise, which is super-

imposed on top of long-term trends and annual cy-

cles. If the empirical distributions of the noise of

observed and simulated series, respectively, can

be seen as characterising the same random vari-

able, then the observation series apparently pos-

sesses – despite eventually different trends and

annual cycles – enough variability to generate the

simulated series for the prescribed regression pa-

rameters. The noise signal from a time series can

for example be extracted by the STL approach

(Cleveland et al. 1990), for the comparison of

the two empirical distributions the Kolmogorov-

Smirnov test (KS test) is used (see, e. g., von

Storch and Zwiers 1999).

3 Performance study: a cross
validation

3.1 Experimental setup

To evaluate the quality of the resampling scheme

simulations, for the Elbe river basin a period

with a known climatology is simulated. There-

fore, from the station data of this region cover-

ing 1951–2003, two periods of 25 years each are

selected, a training period 1951–1975 and a sim-

ulation/reference period 1976–2000. Comparing

simulated and observed climatology of the refer-
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ence period gives insight into the ability of the

scheme to produce realistic simulated series.

The simulation period 1976–2000 was chosen

for three reasons:

1. There is sufficient data independent on the

simulation period data for the resampling.

2. For this period, data from a similar experi-

ment conducted using the dynamical RCM

REMO (REgional MOdel, the RCM run

at the MPI Hamburg, Germany, see Jacob

2001) is available. This enables a compari-

son not only between model output and ob-

servations but also between different types

of models.

3. The observed climatologies of training and

reference period differ significantly, both

with respect to surface observations such

as temperature and with respect to large

scale circulation statistics (Gerstengarbe

and Werner 2005), that is they result from

different atmospheric dynamics. If the re-

sampling reproduces these differences satis-

fyingly, it is applicable to studies of a chang-

ing climate (at least to changes of the same

order of magnitude as in this experiment)

despite the inherent assumption of station-

arity innate to all statistical approaches.

Resampling scheme (RS): Daily data from 32

stations of the Elbe river basin covering 1951–

2003 are used, out of which four representative

stations are identified as described in Section 2.2.

They are shown in Figure 5. Observations in-

clude among others several temperature parame-

ters (Tmax, Tmin andTmean) and precipitation. They

are carefully compiled and homogenised (Österle

2005). The numbering of the stations (as for, e. g.,

Figure 6) starts at the estuary of the Elbe and in-

creases the closer the station is to the source.

Prescribing the regression parameters esti-

mated from the annual mean temperatures 1976–

2000 at the representative stations, the data from

the training period is used to generate simulated

series for this period.

An ensemble of 1000 simulations is gener-

ated, which on a 3 GHz CPU takes approximately

40 hours. The prescribed regression parameters

do not yield series violating the limiting criteria

proposed in Section 2.3.

Special attention is paid to the evaluation of

precipitation: It is well known that the Hellmann

measuring devices for precipitation underestimate

the true precipitation due to wind, evaporation

etc.. As long as only precipitation from the re-

sampling scheme simulations and observations

are to be compared, this does not constitute any

problem. However, since both of them shall be

compared to the REMO simulated precipitations

(which simulates true precipiation), an empirical

correction is applied to the observed precipita-

tion, which aims at adjusting for the underestima-

tion. This correction is based on Richter (1995)

and meta-data of the stations from the German

Weather Service (DWD).

REMO: Within an initiative by the German fed-

eral environmental agency, climate simulations

for Germany 1950–2100 are generated by REMO,
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and are available to the public (Jacob 2007b).

Their horizontal resolution is of 10 km, time

step length is 30 s. They are forced by out-

put from the coupled atmosphere-ocean-model

ECHAM5/MPI-OM, developed at MPI Hamburg

as well, which for the 20th century simulations

is constrained by observed radiative forcing (e. g.,

greenhouse gas concentrations).

The REMO output for 1976–2000 is interpo-

lated to the station locations for the comparison

to observational data and the RS simulations. The

interpolation is done as recommended in Jacob

(2007a).

As stated there, a direct comparison of RCM

output to observational data is problematic. First,

RCMs produce areal averages rather than point

data such as station data, which complicates the

comparison. Second, it is known from cross val-

idation experiments that RCMs better reproduce

tendencies and variabilities than absolute values.

This has to be kept in mind when interpreting the

results of the following Section.

3.2 Results

First, the validation considers the entire ensemble

of simulations from the resampling scheme and

its comparison to observational and REMO data.

Second, a single simulation is chosen from the en-

semble and analysed in detail.

Statistical analysis and plots are done using

the statistical programming language R (R Devel-

opment Core Team 2004).

3.2.1 Entire Ensemble

Figure 6 shows the long-term mean of tempera-

ture. The range of the means estimated from the

resampling scheme simulations is very small and

agrees satisfyingly with the observed means, devi-

ations being smaller than 0.2 K. The REMO data

shows a systematic overestimation of mean tem-

perature, which becomes more pronounced the

closer the station is to the source region of the

Elbe (the high station numbers) and there exceeds

1 K.

[Fig. 6 about here.]

The corresponding picture for mean annual

precipitation is given in Figure 7. As expected,

the simulated range from the RS is not as nar-

row as for temperature, however, for most stations

the observed means lie within the range with de-

viations generally not exceeding 10%. REMO

strongly tends to underestimate mean precipita-

tion amounts. A particularly pronounced under-

estimation occurs for the mountain stations, for

example station 15 from the Harz: apparently,

the spatial discretisation in the REMO simula-

tions cannot capture orographic effects correctly

in these cases.

[Fig. 7 about here.]

Figure 8 shows the standard deviation of daily

mean temperatures – again observations and sim-

ulations from the RS agree pretty well. The dis-

agreement between REMO and observations is

weaker than for the means of temperature and

precipitation, however, at least for some of the
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coastal stations the RS better reproduces the true

variability. The stations closer to the coast (cor-

responding to the small station indexes) show a

lower variability than those from the middle and

upper estuary. This dampening influence from the

sea is known both from observations and GCM

simulations, see, e. g., Blender and Fraedrich

(2003) and Fraedrich and Blender (2003). This

feature is also captured by REMO.

[Fig. 8 about here.]

Exemplarily, for two of the representative sta-

tions the simulated annual cycles of temperature

are analysed by calculating monthly means (see

Figure 9). The simulations by the RS reproduce

the observed means very well. Differences be-

tween observed means and the median of the sim-

ulated means do not exceed 0.5 K. The scattering

for the winter months is a little larger than for sum-

mer. The agreement between REMO and the ob-

servations is good for summer and winter, how-

ever, for spring and autumn, large differences oc-

cur, which in some cases reach 2 K.

[Fig. 9 about here.]

Of special importance for climate impact stud-

ies are extreme events such as dry spells or heavy

precipitation. The applicability of any downscal-

ing approach therefore crucially depends on its

skills to reproduce such extremes. Figure 10

shows simulated and observed mean dry spell

lengths. For the stations close to the coast (in-

dexed with small numbers), a systematic under-

estimation of the observed dry spell lengths of

about half a day becomes apparent for the RS sim-

ulations. They are pretty close to the dry spell

lengths observed during the training period, how-

ever (not shown). As the approach generates se-

ries with persistences compatible to the ones of

the training series, systematic changes of persis-

tence such as those seen here for the coastal sta-

tions cannot be reproduced. REMO also underes-

timates the true dry spell lengths, however with

much larger deviations, which decrease slightly

the closer the stations lie to the source.

[Fig. 10 about here.]

The Elbe region in the recent past repeatedly

suffered from severe floods, some of them caused

by single heavy precipitation events. Future wa-

ter management is thus in need of reliable estima-

tions of such events. Figure 11 shows mean an-

nual occurrences of daily precipitation exceeding

10 mm. As can be expected for any extreme event,

the scattering over the RS simulations is not as

narrow as for, e. g., mean temperatures, however,

at almost all stations the observed occurrences lie

within the range of the RS simulations without

any systematic deviation. REMO in contrast un-

derestimates these occurrences strongly.

[Fig. 11 about here.]

3.2.2 Single simulation evaluation

From the entire RS ensemble, one single simula-

tion is selected which represents the median of

the ensemble on a scale from wet to dry (see Ap-

pendix B). Its time series are compared to the ac-

tual observations of the simulation period and to
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the REMO data by statistical tests for four statis-

tics from the analysis in Section 3.2.1.

1. Mean temperatures of the RS and the

REMO simulation each are tested for the

Null that they stem from a population with

the same mean as the observational data

from the simulation period. The test ap-

plied is the t-test, taking serial correlation

into account as proposed by von Storch and

Zwiers (1999).

2. Mean precipitation from observational and

simulated data are tested in the same way,

using the Mann-Whitney test (see von

Storch and Zwiers 1999), which is suitable

for non-normal samples. The very little se-

rial correlation in the precipitation series is

neglected.

3. Numbers of heavy precipitation events

(RR>10 mm) per year are examined simi-

larly: The empirical distributions of these

annual occurrences according to the RS

and the REMO simulations are tested for

the Null of being a sample from a popu-

lation with the same distribution function

as the occurrences estimated from the ob-

servational data. For this, the two-sample

Kolmogorov-Smirnov test is used, which

tests whether two samples can be seen as

drawn from populations with identical dis-

tribution functions.

4. The empirical distributions of dry spell

lengths from observational and simulated

data are analysed in the same way.

Table 1 summarises the results of the tests:

The first column contains the bias (absolute de-

viation), averaged over all stations, both with re-

spect to the RS and the REMO simulation. For the

heavy precipitation days, this refers to the mean

annual number, for the dry spells to the mean dry

spell. The second column gives the range over all

stations of the respective deviation, again for RS

and REMO simulations. The third column con-

tains the number of stations, at which the respec-

tive test rejects its Null for an error probability of

5%, that is the number of stations at which signif-

icant differences between observation and simula-

tions can be detected. For an ideal simulation, all

these numbers should vanish. As Table 1 shows,

neither the RS nor REMO are able to deliver such

a simulation. However, the RS is much closer to

this goal than REMO, which agrees with the sub-

stantially larger biases between observational and

REMO data.

[Table 1 about here.]

4 Conclusions and outlook

This paper introduces a heuristic resampling

scheme for regional climate simulations and eval-

uates its performance in a cross validation exper-

iment, where its simulations are compared both

to observational data and to data simulated by a

dynamical RCM.

It assembles simulated series from segments

of observed series. As the simulated series

thereby consist of observations and fields from

the observation period, physical consistency both
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of the simulated fields and of the combinations of

different variables is ensured. The only outer con-

straint to the resampling are the parameters of a

regression line, which the annual means of a cho-

sen characteristic variable have to feature. By us-

ing several heuristic criteria, the simulated series

are assembled such that they possess realistic an-

nual cycles and persistences. Lacking any other

constraints, realistic in this context means statisti-

cally compatible to the observed series.

For the cross validation experiment, two in-

dependent and climatologically different 25 years

periods are extracted from a dataset of daily data

from the Elbe river basin, one serving as training,

the second serving as reference period. The sim-

ulations of the climatology of the reference pe-

riod by the resampling scheme show a remark-

able agreement between observed and simulated

series, not only for simple statistics such as mean

or standard deviation but also for persistence and

extreme events. As for the reference period data

simulated by the RCM REMO is also available,

the same analysis is carried out for the REMO

data. It turns out that the resampling scheme

clearly outperforms REMO.

A frequent argument in the discussion on ad-

vantages and drawbacks of dynamical and sta-

tistical downscaling approaches states that statis-

tics are of limited use when a changing climate

is the subject of study. This is certainly true,

and the here introduced scheme shares this limita-

tion. However, as the example presented in this

paper shows, such a limitation may weigh less

than the difficulties which RCMs have to face (too

coarse spatial and temporal resolution, inaccurate

representation of physical processes, incomplete

boundary conditions etc.).

RCMs are the tools to be chosen for simula-

tions of climate conditions strongly differing from

the present climate and for all kinds of analysis

which focus on the physical processes. Statistical

downscaling techniques on the other hand are still

indispensable when accurate estimations of a near

future climate are needed, such as for regional im-

pact studies for the next few decades.

As it is, the scheme presented in this paper

provides a fast and easy-to-use tool, which, unlike

many of its alternatives, is relatively independent

on complex driving information, e. g., extensive

GCM output. As the simulation series consist of

station observations, plausible data with respect

to every aspect of local weather conditions are

generated – a feature which any kind of dynam-

ically generated grid box series lacks. Series sim-

ulated by this approach may therefore serve as a

sound starting point for regional impact studies.

Acknowledgements

Two anonymous reviewers are gratefully acknowl-

edged for their helpful comments on the first ver-

sion of this manuscript.

A Cluster analysis

Cluster analysis is a classical tool for un-

supervised pattern recognition from a set of ob-

servations (e. g., Hartigan 1975, Steinhausen and

Langer 1977). For this paper, a combination of
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hierarchical and non-hierarchical cluster analysis

is used.

Hierarchical methods, as opposed to their non-

hierarchical relatives, do not operate on the obser-

vations themselves but on their mutual similari-

ties or distances. The therefore necessary distance

matrix of the observations is calculated using the

Euclidean distance. Cluster aggregation is based

on the Minimal-Variance-distance, which tends to

produce hyper-spherical clusters. A thus obtained

classification is passed as initial classification to

the non-hierarchical k-means algorithm (Hartigan

and Wong 1979).

In contrast to non-hierarchical methods, the re-

sults from a hierarchical classification do not de-

pend on the initialisation and the order in which

the observations are processed. The initial classi-

fication it generates for the non-hierarchical part

is therefore robust. The non-hierarchical part

merely serves as a fine-tuning to achieve the

unique representability of the clusters by their cen-

ters of mass, a mandatory feature for this appli-

cation, which by means of a hierarchical cluster

analysis alone cannot be guaranteed.

The choice of the cluster number remains to a

certain degree subjective. For the number of rep-

resentative stations, it is based on visual inspec-

tion and the climatological knowledge of the re-

gion. For the classification of the blocks, for the

Elbe data typically 40 clusters are used. This or-

der of magnitude can be found in related litera-

ture (e. g. Enke and Spekat 1997). Experiments

with differing cluster numbers between 20 and

100 did not yield detectable differences, however

(not shown).

B Selection of a single simula-
tion

For the single simulation analysis, the simula-

tion is chosen from the ensemble which on a

scale from wet to dry corresponds to the median

of the ensemble. The measure used for this is

the climatological water balance (CWB), that is

the difference between precipitation and potential

evaporation, which is calculated according to the

empirical Turc-Ivanov formula given in DVWK

(1996). The CWB thus measures the amount of

water which is potentially exchanged between at-

mosphere and soil, negative values indicating a

loss for the soil.

Each simulation is characterised by mean and

trend of the annual CWB sums at the representa-

tive stations, which gives an eight-tuple (four sta-

tions, two parameters each) for each simulation.

After calculating the median of each of these eight

parameters, the simulation closest to this median-

tuple is chosen.
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Table 1: Single simulation comparison. Four statistics are evaluated: mean temperature (t-test), mean precipita-
tion (Mann-Whitney-test), annual occurrences of heavy precipitation events and dry spell lengths (Kolmogorov-
Smirnov-test for both). Columns give deviations of the respective statistics between simulations and observa-
tions and summaries the results from the tests.

Mean bias Range deviations # stations| p < 5%
RS REMO RS REMO RS REMO

Tmean(K) 0.07 0.72 -0.17..0.17 0.22..1.62 0 32
RRmean(%) 3.45 27.05 -9.57..4.59 -61.66..81.6412 32
# Days| RR> 10mm 1.23 6.71 -3.96..2.24 -33.16..22.24 1 13
Dry spell (Days) 0.13 0.63 -0.29..0.18 -1.09..0.04 4 30
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