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Abstract

The study of pathological changes of bone is an important task in diagnostic procedures of

patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health

state of astronauts during long-term space flights. The recent availability of high resolution 3D

imaging of bone challenges the development of data analysis techniques able to assess changes of

the 3D micro-architecture of trabecular bone. We introduce a novel approach based on spatial

geometrical properties and define new structural measures of complexity for 3D image analysis.

These measures evaluate different aspects of organisation and complexity of 3D structures, such

as complexity of its surface or shape variability. We apply these measures to 3D data acquired

by high resolution micro-computed tomography (µCT) from human proximal tibiae and lumbar

vertebrae at different stages of osteoporotic bone loss. The outcome is compared to the results

of conventional static histomorphometry and exhibits clear relationships between the analysed

geometrical features of trabecular bone and loss of bone density, but also indicate that the new

measures reveal additional information about the structural composition of bone, which were not

revealed by the static histomorphometry. Finally, we have studied the dependency of the developed

measures of complexity on the spatial resolution of the µCT data sets.

PACS numbers: 05.45.-a, 07.05.Pj, 87.57.N-, 87.57.Q-
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I. INTRODUCTION

Bone is a dynamic tissue that adapts its architecture to the loading conditions it is subjected

to over the extent of human life. In addition, from the third decade of human life the amount

of bone tissue is gradually decreasing. However, patients with osteopenia or osteoporosis,

immobilised persons, or astronauts staying in micro-gravity conditions for a long period

of time, may have underwent such dramatic loss of bone that they have lost a significant

amount of bone stability resulting in an increased fracture risk. The changes appear as an

overall loss of bone material (bone density) which is tightly coherent with a deterioration of

the the micro-architecture of the interior spongy part of the bone (trabecular bone). During

the last years, changes in the bone micro-structure have received much attention as the loss

of bone mass alone cannot explain all variation in bone strength [1–3]. Moreover, the rapid

progress in high resolution 3D micro-computed tomography (µCT) imaging facilitates the

investigation of the micro-architecture of bone [4]. This new kind of high resolution 3D data

requires new approaches for 3D image analysis.

The conventional method for assessing the bone status and micro-architecture is bone

histomorphometry, which was developed for 2D [5] and later extended for 3D analysis [6, 7].

More recent methods for quantifying the complexity of trabecular structures derived from

complexity based on symbolic dynamics [8, 9], fractal properties [10], recurrence [11], or

volumetric spatial decompositions [12] have been developed. By applying these approaches

to 3D images of trabecular bone, it was shown that the bone micro-architecture changes

substantially during the development of osteopenia and osteoporosis. The main conclusions

in [9–11] were that the complexity of the bone micro-architecture decreases with increasing

bone loss and that the volume and surface of the trabecular structure changes in a different

way. This latter conclusion confirms previous findings that the shape of the trabeculae

changes during bone loss, e. g., from plate-like to rod-like [7].

In the present study we develop new measures of complexity for quantifying the shape

and the complexity of 3D bone structures. We use 3D geometrical properties like local

ratio of bone volume to bone surface and the local configuration of the neighbourhood of

the bone voxel. The latter allows an assessment of the bone surface variation. We apply

these measures to 3D µCT images of human proximal tibiae and vertebral bodies in order

to investigate differences in trabecular bone structure at different stages of bone loss. The
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available 3D µCT data sets provide for the first time a large ensemble of high quality and high

resolution data of trabecular bone at different stages of osteoporosis and at different skeletal

sites. We compare the results with the outcome of a conventional histomorphometrical

evaluation of the same bone material. Finally, we perform an analysis based on downsampled

µCT images in order to study the dependence on the image resolution and to suggest an

optimal or minimal required resolution for assessment of the bone architecture.

II. MEASURES OF COMPLEXITY

The main idea behind the quantification of a geometrical shape is based on the fact that

different 3D objects of the same volume have different surfaces, depending on their geomet-

rical shape. For example, a long cylinder (length is much larger than radius) has a larger

surface than a cube of the same volume, whereas a sphere has the smallest possible surface

for the same given volume.

Based on the relationship between surface and shape, we introduce measures using the

local bone surface and local bone volume. Because trabecular bone is a highly complex

structure (cf. Figs. 6 and 7), we locally estimate the surface and volume of the trabecular

bone in a small cubic box of size s, which moves without overlapping through the entire 3D

image.

Surface and volume can be estimated by a simple LEGO brick approach (LEGO is a

famous company that manufactures toys mainly consisting of interlocking plastic bricks)

[13]: The number of voxels forming the bone structure is used as the volume, and the number

of such bone voxels, which are connected to the bone marrow (surface voxels), is used as

the bone surface (Fig. 1A). However, this approach is rather problematic, because, roughly

speaking, the amount of surface voxels is actually not a two-dimensional surface measure as it

should be, but a three-dimensional volumetric measure (after multiplying with the volume

of a single voxel). Moreover, the bone volume will be overestimated when such a simple

voxel counting algorithm is used. Subsequent calculations based on this simplified surface

and volume estimation technique will lead to even more erroneous estimations. Therefore,

in order to get more precise results, we apply an iso-surface algorithm to the 3D image

(Fig. 1B).

An appropriate approach to construct an iso-surface is the marching cubes algorithm
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FIG. 1: A fragment of data consisting of eight voxels including four bone voxels (black nodes) and

four marrow voxels (white nodes). In the LEGO brick approach (A), the bone surface is estimated

by counting the number of bone voxels which are connected with marrow voxels (the top, front

and right black nodes), and the bone volume is the number of all bone voxels. In the iso-surface

approach (B), the surface is estimated by the sum of triangles which form an iso-surface between

bone and marrow voxels; the volume is the sum of the tetrahedrons which can be filled between

such iso-surface and the grid lines. The bone volume (gray shaded) will be overestimated with the

LEGO brick approach (A), but will be calculated more precisely with the iso-surface approach (B).

[13, 14], which is widely used for constructing iso-surfaces in 3D data visualisation. A

marching cube (MC) consists of eight neighbouring voxels. If two neighbouring voxels of

this MC have voxel values above and below a predefined threshold value (i. e. one is a bone

voxel and the other is a non-bone voxel), the iso-surface will lie between these two voxels.

In such MC the iso-surface is formed by a set of triangles, and the surface estimation is

the sum of the areas of these triangles (Fig. 1B). Now we introduce the same approach

for the estimation of the bone volume. The bone volume within the MC is filled with

tetrahedrons in such a way, that the resulting surface equals the iso-surface, which is formed

by triangles (Fig. 2). The sum of the volumes of these tetrahedrons is the estimated bone

volume contained in the MC.

For the quantification of the 3D shape, we firstly introduce the ratio between the local

bone surface Sbone and the minimal possible surface of the given local bone volume Vbone,

which is the surface of a sphere Ssphere of this volume Vbone. We call this ratio local shape

index σloc. Since the local bone volume Vbone depends on the size of the moving box s, the

normalised local bone volume V̂bone = Vbone/s
3 is used instead (V̂ corresponds to the local
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FIG. 2: Same fragment as shown in Fig. 1, which is also called marching cube. For volume

estimation, the marching cube is filled with tetrahedrons constructed between the iso-surface and

the grid lines.
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FIG. 3: The 21 pseudo-unique marching cube configurations used for defining the marching cubes

entropy index.

bone volume fraction Vloc). The local shape index

σloc =
Sbone

Ssphere

with Ssphere = 6
3

√

πV̂ 2
bone (1)

is able to distinguish between different shapes with the same volume but whose surface differ,

like plates and rods. In principle, σloc should be equal to or larger than one, as the surface

of a sphere is the smallest possible surface. However, the object could be cut by the faces of
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the moving box, and as these interfaces are not included in the surface the resulting surface

can be smaller than that of a sphere. Actually, this bias could be corrected by considering

the cutted faces, but instead we decided to utilise this effect. This bias would mainly occur

if the measured structure is concave. Therefore, σloc values less than one represent concave

structures, whereas σloc values larger than one represent convex structures. Nevertheless,

the size of the moving box should be as large as possible in order to reduce the effects by

the cutting planes. However, the box should have such a small size that it covers only one

structural element in order to get a good estimate of its shape. Therefore, the box size is

a trade-off between the requests to reduce artificial effects and to increase the reliability of

the estimate of the shape. We have found empirically that an optimal box size would have

a size such that it covers the structural element together with its surrounding space. The

box should be a little bit smaller that it just does not cover the next structural element.

Because σloc is computed within a small cubic box while moving through the studied

object, we can determine a frequency distribution of the shape index over the entire object

p(σloc). Based on this distribution, we define the average shape index

Aσ = 〈σloc〉VOI, (2)

which is the average of all σloc in the volume of interest (VOI). Aσ measures the mean shape

of the trabecular structures.

Next we define the shape mutual information as the mutual information between the local

shape index σloc and the local bone volume fraction Vloc

Iσ = −
∑

σloc,Vloc

p(σloc, Vloc) log
p(σloc, Vloc)

p(σloc)p(Vloc)
. (3)

The mutual information is a generalisation of the Shannon entropy which quantifies the

dependence between two series [15]. The shape mutual information quantifies the form of

the joint distribution p(σloc, Vloc) and, thus, the relationship between the local shapes of the

trabecular structures and their mass. Trabecular bone with a homogeneous distribution of

shapes and mass will have a joint distribution with high density in a small bounded point;

i. e. the mass and shape variation are not independent, resulting in a high Iσ (Fig. 5A). For

trabecular bone with a heterogeneous distribution the trabecular elements differ in shape

and mass. A reduction of, e. g., plate-like elements to rod-like elements decreases both

local shape index and local bone volume. Therefore, the form of the corresponding joint
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distribution is stretched, but a dependence between σloc and Vloc still remains, resulting

in a high value of Iσ (Fig. 5C). However, a higher variability of the same basic structural

elements is also possible. This means that similar shapes (e. g. rod-like structures) occur

with different thicknesses and thus with different bone volume fractions. Mass and shape

variation are then independent. The joint distribution p(σloc, Vloc) can have the form of a

normal distribution (Fig. 5B) or can be more distorted and can even exhibit several maxima

(Fig. 5C). For such cases, Iσ has lower values than in the case of a homogeneous shape and

mass distribution (Fig. 5A).

As another measure based on the joint distribution p(σloc, Vloc), we define the shape

complexity as the conditional entropy of the joint distribution p(σloc, Vloc) in a given bone

volume Vloc

Cσ = −
∑

σloc,Vloc

p(σloc, Vloc) log
p(σloc, Vloc)

p(Vloc)
. (4)

This measure quantifies the variety of different shapes for various bone volumes. If the

bone surface changes in the same manner as the bone volume changes, i. e. the shape of

the structure is roughly preserved, this measure will be low. However, if the bone surface

is changing more dramatically and perhaps irregularly in comparison to the bone volume

(i. e. shape of the structure changes), Cσ will be high.

As already mentioned, an MC is formed by eight neighbouring voxels, arranged in the

shape of a cube. The entire VOI is actually a composition of many such MCs. In each

MC, depending on the positions of the bone voxels, there are 256 configurations possible;

neglecting rotational and inversion symmetry, there are 15 unique and fundamental MC

configurations [14]. However, we will only consider rotational symmetry and ignore inversion,

which result in 21 pseudo-unique MC configurations (Fig. 3). A specific marching cube

configuration corresponds to a specific bone surface configuration and, hence, it is related to

the complexity of the surface. For all MCs composing the VOI, we identify and count each

detected MC configuration and can derive the probability p(MC) with which a certain MC

configuration occurs in the 3D architecture.

Since these pseudo-unique marching cube configurations (MC cases) are related to the

surface complexity, we define an additional measure, the marching cubes entropy index

IMC = −
∑

MC

p(MC) log p(MC), (5)
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which is the Shannon entropy of the probability density p(MC) of the MC cases, and

measures the complexity of the surface of the trabecular elements. Simple complex surfaces

will result in low values of IMC , whereas complex surfaces will result in high values of IMC .

Note that the shape complexity Cσ, shape mutual information Iσ, and marching cubes

entropy index IMC characterise different kinds of order in a structure. In contrast, IMC

assesses a global order (or disorder) of bone surfaces and Cσ and Iσ quantify the order of

certain structural shapes (and for Cσ depending on the structure volume). Consequently,

these measures are not necessarily correlated with each other.

FIG. 4: (Color online) Prototypical models of a trabecular structure consisting of (A) rods, (B)

plates, or (C) a deteriorated combination of rods and plates.

We illustrate the abilities of these measures on prototypical examples of 3D grids con-

sisting of the typical structural elements of trabecular bone: rods and plates. The models

have a size of 300×300×300 voxels. The structural elements are periodically arranged with

distances of 50 voxels in the x-, y-, and z-directions. We consider the following models:

(1) A model which is build from rods only, where 10% of the rods are removed and 10%

of the rods are discontinuous. The diameter of each rod is 20 voxels (Fig. 4A).

(2) A model which is mainly build of plates; 80% of the spaces between the vertical rods

is filled with plates, and 50% of the spaces between the horizontal rods is filled with plates.

The thickness of each plate is 8 voxels. In order to ensure that the bone volume fraction

of this model is similar to that of model (1), the diameter of the rods is scaled down to 17

voxels (Fig. 4B).

(3) Same configuration as model (2), but the probability of occurrence of plates is 10%

(between vertical rods) and 1% (between horizontal rods), respectively. The diameter of

each rod is 20 voxels. A deterioration of the structure is simulated by the reduced number

9



of plates and higher probability of removed rods (50%) and broken rods (30%) (Fig. 4C).

The amount of bone voxels, i. e. the bone volume fraction is similar for all three models.

We calculate the measures, Eqs. (2–5), based on a 50×50×50 voxels moving box. Using

this box size, we ensure that one structural element together with its surrounding space (up

to the next structural element) will be covered by the moving box.

For the model consisting of rods only (model 1), the distribution of the local shape index

σloc reveals a prominent (almost singular) peak in the distribution around a low value of

σloc (Fig. 5A, vertical axis). If there were no removed or broken rods, this distribution

would be a singular peak. For the model mainly consisting of plates (model 2), we find

a distribution of σloc which is much wider than that for the first model (Fig. 5B). The

model with the simulated deterioration has the widest distribution among the three models

(Fig. 5C, vertical axis). The joint distribution between the local shape index σloc and the

local bone volume fraction Vloc represents these behaviours more clearly. The form of the

joint distribution is very different for the different structural models: it is almost singular

for the rod model (1), similar to a normal distribution for the plate model (2), and stretched

for the deterioration model (3) (Fig. 5). Moreover, the joint distribution for the simulated

deterioration shows even several peaks, indicating the different sets of structural elements

(rods, plates, broken elements).
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FIG. 5: (Color online) Joint distribution of local shape index σloc and the local bone volume

fraction Vloc for the three test models consisting of (A) rods, (B) plates, and (C) a deteriorated

combination of rods and plates.
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TABLE I: Structural measures of complexity for the three test models consisting of rods, mainly

plates, and a deteriorated combination of rods and plates.

Aσ Iσ Cσ IMC

Rods 1.23 0.09 0.12 0.22

Plates 1.40 0.02 0.23 0.19

Deteriorated 1.20 0.06 0.24 0.22

The differences in the shape of the trabecular elements are quantified by our measures.

The average shape index Aσ clearly distinguishes between both model configurations of

plates and rods (Tab. I). As expected, the rod model has a lower value of Aσ than the plate

model. The model of the simulated deterioration consists mainly of rods, but also of gaps

and stumps of broken rods. Therefore, for this model we find the smallest Aσ. The variability

of the shapes is quantified by the shape complexity Cσ. This measure indicates the highest

shape variability for the deteriorated model and the lowest one for the rod model (Tab. I).

In contrast, the complexity of the surface, as measured by the marching cubes entropy index

IMC , is similar for these two models (rod and deterioration model). The plate model has a

lower complexity of the surface, which is not surprising due to the plates large amount of

flat areas causing the same surface configuration of the marching cubes. The homogeneity

of the variation of local shapes and local bone mass, as described by the joint distribution

of σloc with respect to Vloc, is quantified by the shape mutual information Iσ. This measure

indicates that the plate model is more heterogeneous than the other two models, and that

the rod model is the most homogeneous of the three models. Thus, the introduced measures

provide qualitative and quantitative information of the different architectural compositions.

In the next section we will apply these measures to data of human trabecular bone.

III. MATERIALS

In the following the newly introduced measures, Eqs. (2–5), are used for the assessment of

structural changes in trabecular bone due to osteoporotic bone loss.

29 bone specimens of proximal tibial biopsies (Fig. 6) and 18 entire L4 lumbar vertebral

bodies (Fig. 7) were obtained at autopsy from the same set of donors (29 donors; for this kind

of data, 29 (18) samples is a large number). The proximal tibial bone biopsies were scanned
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at Scanco Medical AG (Brüttisellen, Switzerland) with a Scanco µCT 40 micro-computed

tomography scanner with an isotropic voxel size of 20 µm [16]. The vertebral bodies were

scanned at Scanco Medical AG with a Scanco µCT 80 scanner with an isotropic voxel size

of 37 µm. In order to get comparable images for both skeletal sites, the data set from the

proximal tibia were downsampled to a voxel size of 40 µm. The analysed set of specimens

includes normal, osteopenic (initial stage of osteoporosis), and osteoporotic bones.

FIG. 6: (Color online) µCT scan of the cylindrical biopsy of the proximal tibia.

Standardised volumes of interest (VOI) were applied to the µCT data sets in order to

quantify the 3D architecture: The VOI for the proximal tibial biopsies was located 5 mm

below the cortical shell and is 10 mm long, whereas the VOI for the vertebrae was a 25 × 15

× 10 mm cuboid with the center shifted 4.5 mm backwards from the center of the vertebra

along its symmetry line (Fig. 7). The results of the purposed 3D data evaluation will be

compared against conventional bone histomorphometry [17]. The histomorphometry was

conducted as previously described in details [16, 18]. Typical histomorphometric measures

are discussed below.

IV. RESULTS

Applying the introduced measures of complexity to the VOIs of the 3D µCT data sets, we

perform an evaluation of the micro-architecture of the trabecular bone of 29 proximal tibial

biopsies and 18 lumbar vertebrae representing different stages of bone loss in osteoporosis.

As explained in Sect. II, the size of the moving cubic box should be small enough to locally
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FIG. 7: (Color online) Volume of interest applied to a human lumbar vertebra. Analysed part

of the trabecular structure is shown in brown, grey-scale image is the axial CT slice through the

middle of the vertebral body.

quantify structural elements, but large enough to cover a sufficient surface necessary to

distinguish between different shapes and to reduce artefacts. Based on this requirements, we

have found empirically a trade-off for the box size to be 20×20×20 voxels (740×740×740 µm)

suitable for the analysis. This size equals the box size suggested for another method for

structural bone analysis as proposed in [8].

Firstly, we study the joint distribution of the local shape index σloc with respect to the

local bone volume Vloc (Figs. 8 and 9). These two local measures are both calculated within

the moving box. Their distributions give indications about the spatial variability of the

trabecular shapes and masses. The bone volume fraction, i. e. bone volume to total volume

ratio, BV/TV quantifies the bone density and can be used as an indicator of bone loss.

As we expect, the centre of gravity of the distribution of the local bone volume Vloc moves

towards lower values during bone loss for the two different skeletal sites.

The majority of the values of the local shape index σloc is increasing during bone loss

(i. e. decreasing BV/TV) in the proximal tibia. However, these values are close to and even

less than one. By definition of the local shape index (1), we would expect values larger

than one. The low values can be understood by considering a small piece of a trabecular

structure in the proximal tibia within the moving box (Fig. 10). In contrast to a vertrebra,
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FIG. 8: (Color online) Joint distribution of the local shape index σloc and the local bone volume

fraction Vloc for three representative µCT scans of proximal tibia biopsies.
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FIG. 9: (Color online) Joint distribution of the local shape index σloc and the local bone volume

fraction Vloc for three representative µCT scans of lumbar vertebrae L4.

the trabecular bone of the proximal tibia does not consist of mainly rod-like and plate-like

structures, but of more inward curving objects forming holes (Fig. 10). If the moving box

covers such a cavity, the bone surface is calculated from a concave object. Consequently, the

surface area may be smaller than that of a sphere of the corresponding bone volume within

the moving box. This effect is an excellent indicator for concave structures. For bone loss

14



in proximal tibia, we find that the local shape index is increasing (at least for higher Vloc).

This suggests a decrease of concave structures and an increase of convex structures during

bone loss. Lower values of σloc occur then only for low Vloc, which indicates a thinning of

formerly concave structures.

FIG. 10: (Color online) Detail of trabecular bone within the moving box. The concave structure

yields to a surface which is smaller than that of a sphere of the same bone volume; hence, the

corresponding local shape index will be less than one.

In contrast, the values of the local shape index σloc in the lumbar vertrebra is larger

than one and decreases during bone loss. This is a clear indication of the convex nature

of the vertebral trabecular micro-architecture. As plate-like structures have a higher shape

index, the decrease of σloc during bone loss suggests that a significant amount of plate-like

structures reduces to rod-like structures during bone loss in vertebral bodies.

Next, we use the developed approach to compare the structural changes in trabecular bone

of proximal tibia and vertebral bodies caused by the bone loss in osteoporosis (Fig. 11).

As an indicator of bone loss, we use the bone volume fraction BV/TV as derived from

histomorphometry. Again, we find some remarkable differences between the proximal tibia

and the lumbar vertebra.

During bone loss, the averaged shape index Aσ decreases in the vertebra, but increases in

the proximal tibia (Fig. 11A). Moreover, for high density proximal tibiae (BV/TV > 20%)

its values are below one. This confirms our previous findings that normal trabecular bone

in the proximal tibia contains a large number of concave structures. Bone loss causes a
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FIG. 11: (Color online) Measures of complexity vs. bone loss (represented by bone volume fraction

BV/TV) for proximal tibiae (dots) and lumbar vertebrae (crosses). The lines are polynomial fits

of 2nd order to guide the eye.

shift from concave structures to convex structures. Aσ for vertebra is greater than one. The

Spearman’s rank correlation coefficient between BV/TV and Aσ is R = −0.75 (p < 0.01)

for proximal tibia and R = 0.57 (n. s.) for vertebra.

The shape mutual information Iσ does not depend on the different stages of bone loss

in the proximal tibia. In contrast, Iσ shows a clear linear correlation with bone loss for

the vertebra (Fig. 11B). Moreover, the values of Iσ are considerably higher for the proximal

tibia than for the vertebra. These findings suggest that the variability of the shapes of the

trabecular elements is higher in the vertebra than in the proximal tibia. Furthermore, the

change of the structural shape of the trabeculae is different at these two skeletal sites. In

vertebrae the trabeculae change from a given set of shapes to another set of shapes (plate-

like to rod-like structures) during bone loss, whereas in proximal tibiae the shape of the

structures do not undergo such a well defined transition during bone loss. An explanation

for this could be that proximal tibial trabecular bone has a more homogeneous and less
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complex micro-architecture than vertebral trabecular bone.

The shape complexity Cσ reveals the same trend for both proximal tibia and vertebra

(Fig. 11C). During bone loss, the variety of the shapes of the trabecular elements increases.

This variability is higher in the vertebrae than in the proximal tibiae. IMC reveals a tendency

similar to that of Aσ: anti-correlation for the proximal tibia, but weak correlation for the

lumbar vertebra (Fig. 11D). However, the correlations are only significant for the proximal

tibia. From the correlation between IMC and BV/TV we infer that in the vertebrae the

complexity of the bone surface decreases during bone loss, whereas in the proximal tibia

the complexity of the bone surface increases during bone loss. However, this effect is not as

pronounced for vertebral bone as it is for tibial bone.

Next, we compare the introduced structural measures of complexity with some of the

classical histomorphometrical measures (Tab. II, Fig. 12). We find that the majority of

these measures are significantly correlated to the measures of complexity at the proximal

tibia only (except Iσ). This is probably due to a higher variability of the shapes over the

vertebral bodies and selection of only one region for histomorphometric analysis.

The trabecular separation Tb.Sp measures the mean trabecular plate separation under

the assumption that the bone tissue is distributed as parallel plates [5]. In trabecular bone,

consisting of emphasised and clear rod-like and plate-like structures, as in the vertebra, a

variation of these structures should be measured by Tb.Sp and also on shape index based

meaures. At the vertebral body Aσ and Iσ are significantly correlated with Tb.Sp, whereas

at the proximal tibia only Cσ is correlated with Tb.Sp.

The nodes-termini ratio Nd/Tm represents the connectivity of the network as it appears

on a 2D section [19]. A change in the connectivity of the network causes a change in the

complexity of the bone surface. Therefore, at the proximal tibia we find that Nd/Tm is

strongly correlated with IMC . At the vertebral body Nd/Tm and IMC are also correlated,

but this correlation does not reach the level of significance.

A further histomorphometric measure, which characterises the trabecular network, is the

trabecular bone pattern factor TBPf [20]. Similar to Nd/Tm, this measure is up to some

account related to the complexity of the trabecular bone surface. We find that TBPf is, like

Nd/Tm, strongly related with the suggested measures of complexity, in particular with IMC .

Again, for vertebrae these correlations are not significant (except for Iσ).

These results confirm that the averaged shape index Aσ, the shape mutual information Iσ,
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FIG. 12: (Color online) Measures of complexity vs. node-terminus ratio (Nd/Tm) and trabecular

bone pattern factor (TBPf) for proximal tibiae (dots) and lumbar vertebrae (crosses). The lines

are squared fits to guide the eye.

the shape complexity Cσ, and the marching cubes entropy index IMC assess the shape and

complexity of the trabecular micro-architecture. The ability to quantify architecture as well

as the different aspects of the introduced measures of complexity are clearly illustrated at the

proximal tibia and vertebra by comparing the micro-architecture of the trabecular bone at

these two skeletal sites. We have demonstrated quantitatively that the architecture of lumbar

vertebral trabecular bone is very different from proximal tibial trabecular bone by use of the

new structural measures. Since this difference is less pronounced for the histomorphometric

measures we therefore infer that these introduced structural measures reveal additional

information about the bone structure, which are not included in the histomorphometric

measures. In addition, our results confirm the well-known structural differences of different

skeletal sites [21–23].

The relationships we found between the developed measures and the bone architecture as
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TABLE II: Spearman’s rank correlation coefficients between structural measures of complexity

and bone volume fraction as well as histomorphometrical measures. Statistically significant values

(p = 0.01) are black, non-significant values are gray.

Aσ Iσ Cσ IMC

Proximal Tibiae

BV/TV −0.75 −0.08 −0.72 −0.61

Tb.Sp 0.45 0.26 0.58 0.35

Nd/Tm −0.72 −0.05 −0.65 −0.71

TBPf 0.72 0.09 0.66 0.69

Lumbar Vertebrae

BV/TV 0.57 0.78 −0.27 0.31

Tb.Sp −0.71 −0.81 0.26 −0.44

Nd/Tm 0.38 0.81 −0.07 0.17

TBPf −0.35 −0.82 0.14 −0.11

well as the relationships between the structural complexity measures and the histomorpho-

metric measures suggest that the proposed new measures of complexity are able to quantify

3D bone architecture. In addition, they contain important information about the trabecular

geometry and can be used to describe changes in the spatial structure of trabecular bone.

V. SENSITIVITY TEST

In order to study the sensitivity of the developed complexity measures to the voxel size

of the CT images and to find a minimal required voxel size (or image resolution) for the

application of the introduced measures of complexity, we use the available 18 µCT scans of

lumbar vertebra including normal, osteopenic, and osteoporotic specimens (as described in

Sect. III).

In a computer experiment we simulate that the vertebrae were scanned with different

lower resolutions (i. e. larger voxel sizes). To simplify the notion we assume that the reso-

lution of the 3D image is only defined by its voxel size. For this purpose we downsample

the data sets using a Lanczos kernel [24]. For example, a resampling to two times larger

19



voxel size means a decreasing of the resolution by 50%. In order to compare the different

resolutions, we resample the downsampled data back to the original resolution and assess the

resulting data sets with the complexity measures. The VOI is the same as for the original

resolution: a vertical cuboid of size 10×10×25 mm in the centre of the vertebra. We down-

sample the µCT images to 10% to 90% of the original size (with steps of 5 percent points

between 10% and 50% and with steps of 10 percent points between 50% and 90%). These

values correspond to a reduced resolution, or higher voxel size. Because of the original voxel

size of S = 37 µm, the voxel size S(d) of the simulated new CT image can be calculated as

S(d) = 37 µm/d, where d is the downsampling ratio. E. g., for a downsampling of d = 50%

= 0.05 we have a corresponding voxel size of S = 74 µm. The size of the moving box is as

in Sect. IV 20 × 20 × 20 voxels for all downsampling stages.

The introduced complexity measures show a more-or-less linear dependence on the image

resolution between 40% and 90% of the original resolution (Fig. 13). For decreasing reso-

lution, the values of these measures decrease as well. However, for resolutions smaller than

30% of the original resolution, the values decrease more dramatically, especially for Aσ, Cσ,

and IMC. Moreover, the values come closer to each other, preventing a clear discrimination

of the different architecture of the samples. The values of Iσ strongly increase for very low

resolutions. For IMC we find a critical change in the values resulting in an alteration of the

order of the samples (crossing of the curves in Fig. 13D).

In order to quantify the differences in the measures of complexity due to the resolution,

we compute the Spearman’s rank correlation coefficient between the complexity measures
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FIG. 13: (Color online) Measures of complexity of the µCT images of lumbar vertebrae L4 (dif-

ferent curves) for different simulated image resolutions (given in percentage of the original image

resolution).
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FIG. 14: (Color online) Spearman’s rank correlation R between the complexity measures derived

from µCT images of lower resolutions and the complexity measures derived from using the original

resolution.

of the original data and the complexity measures of the lower resolution (Fig. 14).

In this way we can estimate the minimal possible resolution necessary to obtain results

that are comparable to those obtained at the original resolution (which could be further

improved in the future by the technological progress). Applying a threshold of R = 0.9,

we find that for the averaged shape index Aσ the minimal required resolution is 20% of the

original resolution, corresponding to a voxel size of 185 µm, for the shape mutual information

Iσ it is 40% (93 µm), for the shape complexity Cσ, it is 35% (104 µm), and, due to its high

sensitivity, for the marching cubes entropy index IMC the minimal resolution is 80% of the

original resolution, corresponding to 46 µm.

VI. CONCLUSION

In the present study we have introduced a series of new measures of complexity for structural

analysis of 3D data sets and tested their ablities on prototypical model systems. Using

the introduced measures, we have been able to establish significant differences in 3D bone

21



TABLE III: Summarised main results (differences and change under bone loss) found for proximal

tibia and lumbar vertebra; ↓– property decreases during bone loss, ↑– property increases during

bone loss, and →– property does not change much during bone loss.

proximal tibia lumbar vertebra

bone density (BV/TV) higher ↓ lower ↓

shape of trabecular elements concave and convex, amount mainly convex →

(Aσ) of concave elements ↓

shape distribution of trabecular more homogeneous → less homogeneous ↓

elements/ homogenity (Iσ)

shape variability of trabecular lower than in lumbar higher than in proximal

elements (Cσ) vertebra ↑ tibia ↑

complexity of bone surface (IMC) lower ↑ higher ↓

architecture at different levels of bone loss including osteopenia and osteoporosis at the

proximal tibia and lumbar vertrebra (Tab. III). Furthermore, we found that proximal tibial

trabecular bone contains more concave structural elements than lumbar vertrebral trabecular

bone. Moreover, the amount of concave structures decreases during bone loss, while the

proportion of convex structures increases. In addition, the complexity of the bone surface is

decreasing during bone loss in lumbar vertebral trabecular bone, whereas it is increasing in

proximal tibial trabecular bone. Although the complexity of the trabecular bone structure is

higher in healthy bone, the complexity of the shapes of local structural elements dependency

on its volume is lower in healthy bone. This means that osteoporotic structural elements

of a given volume have a higher variability in the shape than healthy bone. Furthermore,

we have found that the new measures reveal additional information about the structural

composition, which were not obtained by the measures of static histomorphometry.

Based on computer simulations, we studied the sensitivity of the introduced measures on

the voxel size. The measures based on the shape index (Aσ, Iσ, and Cσ) are less sensitive

to increases in voxel size, whereas the marching cubes based measure (IMC) is much more

sensitive to increases in voxel size.

The proposed new structural measures of complexity can be directly computed from

3D images and, thus, are non-invasive and non-destructive. They convey important and
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additional information about the 3D structure of trabecular bone and can be used to describe

the deterioration of the trabecular bone network that takes place during the development

of osteopenia and osteoporosis. Although high resolution 3D images are preferable, these

measures can be applied on 3D images of lower resolution as obtained in vivo. First tests on

patients have already revealed promising results. Moreover, as there is an ongoing process

of technological improvements in the CT technology, we can expect higher resolution micro-

CTs even for in vivo imaging in the next years. Furthermore, our measures are also a

promising approach for the investigation of other complex 3D structures of different origin,

like ceramic foam.

Acknowledgments

This study was made possible in part by grants from the Microgravity Application Pro-

gram/ Biotechnology from the Human Spaceflight Program of the European Space Agency

(project MAP AO-99-030) and support from Siemens AG and Scanco Medical AG. Scanco

Medical AG is gratefully acknowledged for µCT scanning the bone samples. We appreciate

the great support we received from Gottfried Bogusch, Charité Berlin, Campus Mitte, for
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