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Major restructuring of the Atlantic meridional overturning circulation,
the Greenland and West Antarctic ice sheets, the Amazon rainforest
and ENSO, are a source of concern for climate policy. We have elicited
subjective probability intervals for the occurrence of such major
changes under global warming from 43 scientists. Although the
expert estimates highlight large uncertainty, they allocate significant
probability to some of the events listed above. We deduce conser-
vative lower bounds for the probability of triggering at least 1 of
those events of 0.16 for medium (2–4 °C), and 0.56 for high global
mean temperature change (above 4 °C) relative to year 2000 levels.

climate change � expert elicitation

The potential of large-scale changes in the earth system as a result
of anthropogenic climate change has received increasing atten-

tion (cf. refs. 1 and 2), fuelled by observations of, among other
things, accelerated ice discharge from Greenland and West Ant-
arctica (see ref. 3 for an overview). Nonetheless, the assessment of
the likelihood of such changes under global warming has largely
defied quantification due to insufficient data, and a limited ability
to model the underlying processes (2). As a consequence, it is
difficult to account properly for the possibility of major changes in
the earth system in climate policy assessments, although the po-
tentially large socioeconomic impacts of such events are a source of
concern (4, 5).

To overcome this unsatisfactory situation, we have elicited beliefs
about major changes in the Atlantic meridional overturning circu-
lation (AMOC), the Greenland ice sheet (GIS), the West Antarctic
ice sheet (WAIS), the Amazon rainforest and the El Niño/Southern
Oscillation (ENSO) from experts in the field. These systems have
been cited as candidates for harbouring large-scale discontinuities,
or ‘‘tipping points,’’ where a small change in a driver, such as global
mean temperature (GMT) can result in a disproportionate response
of the system (2, 6). Building upon Lenton et al.’s (6) broad review
of a range of potential tipping points, here we seek to quantify
beliefs about critical transitions in the 5 components of the climate
system listed above. Each event of ‘‘crossing a potential tipping
point’’ was precisely defined in terms of the final state of the
transition process (Table S1). Our aim was to produce policy-
relevant information in terms of a set of subjective probabilities for
‘‘triggering’’ those transition processes under different scenarios of
future GMT increase. In this context, ‘‘triggering (the crossing of)
a tipping point’’ denotes the event of initiating the transition, or
making its future initiation inevitable.

In the Bayesian paradigm, subjective probabilities constitute a
measure of degree of belief as reflected in an individual’s disposi-
tion to act (as opposed to the frequentist paradigm in which
probabilities are thought of as limiting frequencies) (7, 8). The use
of subjective probabilities is closely linked to decision analysis,
which tries to identify best courses of action based on quantified
preferences and beliefs together with a set of normative criteria for
rational decision making (cf. ref. 9). To better inform decision
making processes, formal elicitation protocols have been developed
for assessing subjective probabilities of experts in the field (see ref.

10 for an overview). Such protocols established procedures to avoid
common biases in the assessment of probabilities, drawing on a
large body of literature on heuristics and framing effects in decision
making under uncertainty (11). A common criticism is that expert
elicitations do not add to the body of scientific knowledge unless
verified by data or theory. In the context of risk analysis and
decision making, however, expert elicitations have proved to be a
unique tool for systematically gathering and projecting scientific
information in complex policy problems (12, 13). It is increasingly
recognized that they can play a valuable role for informing climate
policy decisions (14). Formal elicitations have already been con-
ducted in various areas of climate science (cf. refs. 15–17).

Subjective probabilities used in the context of normative decision
theories can be interpreted as betting rates in a risk-neutral (linear
utility) environment (18). For eliciting such probabilities, proper
scoring rules have been proposed that reward the specification of
the probability value that reflects the expert’s ‘‘true’’ belief (cf. ref.
19). In practice, however, it is more common to assess probability
values directly by measuring strength of belief in reference to
well-defined frequencies. Owing to the specific challenges of judg-
ing the prospect of tipping points in the climate system, we have
admitted imprecise probability assessments in this study.

The current knowledge base about tipping points is poor, with
very limited data and process understanding that would allow
experts to update their beliefs (2). Imprecise probability theory
(20) offers a rigorous framework to capture potentially ambig-
uous beliefs. Such beliefs are described by an interval of sub-
jective probabilities whose bounds can be interpreted as lower
and upper betting rates in the context of generalized normative
decision theories (cf. ref. 21) (see Methods and SI Appendix 1,
Section 2). From a practical point of view, probability assess-
ments aim to elicit some probability � [0,1] that best charac-
terizes the expert‘s belief, whereas imprecise probability assess-
ments seek to exclude those probabilities � [0,1] that would be
incommensurate with the expert’s belief. It is the general
philosophy of this study to present a conservative assessment of
the information available from experts.

The expert elicitation was conducted between October 2005 and
April 2006 with a computer-based interactive questionnaire com-
pleted individually by participants. A total of 52 experts participated
in the elicitation (see Table S2 for names and affiliations). The
questionnaire included 7 events of crossing a tipping point. Five of
them are discussed here whereas the remaining 2, concerned with
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a dieback of boreal forests and a decline of the ocean carbon sink,
were judged by experts to be of more speculative nature and are
discussed in SI Appendix 2 and Figs. S1 and S2. The questionnaire
proceeded in 4 parts: (i) selection of tipping points, (ii) ranking of
tipping points in terms of sensitivity to global warming and uncer-
tainty about underlying physical mechanisms, (iii) elicitation of
lower and upper probabilities for the event of triggering the
(crossing of) selected tipping points, and (iv) assessment of inter-
actions between tipping points. The results from the ranking
exercise (part ii) are reported in ref. 6, whereas this article focuses
on the elicited probability statements (parts iii and iv).

Participation in our study was voluntary, which may have intro-
duced a self-selection bias toward experts with higher concerns
about tipping points. The possibility of such a bias will have to be
judged on the basis of the list of participating experts (Table S2). In
addition, nonzero probabilities of triggering major changes in the
climate system may have emerged simply because we confronted
experts with those particular events. We believe that such an
‘‘availability bias’’ is mitigated by the use of imprecise probabilities,
which allows experts to register concern in terms of a nonzero upper
probability, while at the same time expressing doubt with a zero
lower probability. This article will therefore focus on the lower
probability estimates provided by the experts.

Results and Discussion
Overview of Expert Response. Table 1 shows a break down of the
expert response (see Table S1 for more details). Participants were
allowed to choose the subset of tipping points they wished to
comment upon, but were encouraged to restrict themselves to their
area of expertise. Participants were asked for a self-assessment of
their expertise on the selected tipping points, ranging on a scale
from ‘‘1: Active researcher’’ to ‘‘4: Leading expert.’’ This identified
subsets of ‘‘core experts,’’ defined as those who gave their highest
self-assessment for the particular tipping point in question. An
exception was made for the 2 pairs of cryosphere (Greenland and
West Antarctic ice sheet) and biosphere tipping points (Amazon
rainforest and boreal forests). Core experts on tipping point A of a
pair (A, B) were also assigned ‘‘core’’ status on B if self-assessments
matched the combinations (4, 3), (4, 2), (3, 2), or (2, 1) for (A, B).
Participants were free to refuse to specify probabilities of triggering
a tipping point (options B and C, Table 1) and, in 21% of all

responses, experts exercised this option. Nine of 52 experts declined
to estimate probabilities at all. The elicitation process is described
in SI Appendix 1.

Fig. 1 shows the elicited probability intervals for ‘‘triggering’’ the
events in Table 1 conditional on 3 scenarios representing low,
medium and high warming (numerical values listed in Table S3).
These scenarios are specified in terms of corridors of GMT increase
relative to the year 2000 (Fig. 1 upper row). The corridors run out
to 2200 to allow for a long-time perspective that is particularly
important for the assessment of major changes in the ocean and the
cryosphere. The long time horizon distinguishes our study from
other assessments of abrupt climate change focusing on the 21st
century (e.g., ref. 17). In particular, it extends beyond the time
frame of the IPCC Fourth Assessment Report’s (AR4) conclusion
that ‘‘abrupt climate changes .. are not considered likely to occur in
the 21st century’’ (ref. 2, p 818). Nonetheless, the slow transition
time scales of particularly the cryosphere can extend far beyond a
policy relevant time horizon of at most 200 years, which requires us
to focus on the triggering of the transition process rather than the
reaching of its final state. Because the former event can be difficult
to observe, the additional cognitive demand on the experts may add
to ambiguity in beliefs.

The probability of an event B conditional on some environ-
mental variable is typically assessed across a range of environ-
mental conditions, in our case described by the temperature
corridors C1, C2, C3. Fig. 1 shows the change in the probability
of triggering a tipping point (CMOC, row 2; MGIS, row 3; DAIS,
row 4; AMAZ, row 5; NINO, row 6) from low (Left) to high
warming (Right). Each panel summarizes the probability inter-
vals of the respondents, thus providing information about the
spread of assessments across experts. The dependence of indi-
vidual estimates on the amount of warming can be traced by
focusing on the bins with identical expert label across panels. A
trend toward higher probabilities with increasing warming is
clearly visible for all tipping points. With the exception of expert
A1, all individual lower and upper probability values are mono-
tonically increasing with temperature corridor. Because a cor-
ridors specifies a range of GMT trajectories, the spread between
lower and upper probability of tipping may incorporate not only
the ambiguity in expert beliefs, but also the range of trajectories
within the corridor.

Table 1. Excerpts from definition of the events of crossing a tipping point, and distribution of responses from experts

Reorganisation of the Atlantic Meridional Overturning Circulation (CMOC) �that involves a permanent shutdown of convection in the Labrador
Sea and a drastic reduction in deep water overflow across the Greenland-Scotland ridge by at least 80%.�

(A) 16 (B) 4 [Reasons: remote; model results inconclusive] (C) 2 [local cooling overwhelmed by overall warming trend]

Melt of the Greenland ice sheet (MGIS) �. . . an alternative state that is largely ice-free.�
(A) 13 (B) 1 [Reason: too far into the future] (C) 1 [fastest melt is 600 years, too slow to be dangerous]

Disintegration of the West Antarctic ice sheet (DAIS) �. . . in which West Antarctica becomes an archipelago . . . �

(A) 14 (B) 1 [Reason: uncertainty about time scale of disintegration; possibility of collapse due to glacial readjustments only]

Dieback of the Amazon rainforest (AMAZ) �. . . in which at least half of its current area is converted to raingreen forest, savannah or grassland.
Besides climate change, a second driver . . . is land use change from human activity . . . factor out this driver by assuming . . . that not more
than 20 percent of the current rainforest will be deforested by human activity in the long run.�

(A) 10 (B) 1 [Reason: vegetation change inconclusive for assessing feedbacks on climate] (C) 3 [Global effects limited; CO2 sink to source
conversion not a dangerous feedback on the climate]

Shift to a more persistent El Niño regime (NINO) �. . . a shift of the ENSO mean state towards El Niño like conditions.�†

(A) 10 (A*)‡ 1 (B) 3 [Reasons: original definition remote; Model results, paleo record inconclusive] (C) 1 [impacts of El Niño superimposed on a
warmer world uncertain]

Option A: event will lead to potentially dangerous climate change, and willing to answer questions about its probability; option B: elicitation of probabilities
not appropriate; option C: event will not lead to potentially dangerous climate change. See Table S1 for more details of the expert response.
†Definition was changed during the final phase of the elicitation during which participants were allowed to revise their statements (see Table S1).
‡Expert specified probabilities only for the original definition of the event. The response is not included here.
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Fig. 1 reveals that the experts’ ambiguity about the probability of
triggering a tipping point (as measured by the distance between
their lower and upper probability assignments) is large. One-third
of all estimates (38% of estimates from core experts) cover at least
half the range of the unit probability interval, and several of them

express near ignorance. In addition, expert intervals scatter widely.
Nonetheless, there is a considerable amount of information con-
tained in the expert assessments. The prospect of triggering a
tipping point may be considered ‘‘remote’’ if the upper probability
P*(B) � 0.1. It may be labeled ‘‘significant’’ if the lower probability
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Fig. 1. Probability intervals from experts for the events CMOC, MGIS, DAIS, AMAZ, and NINO (see Table 1) conditional on 3 different corridors for future global
mean temperature (GMT) increase to 2200 (relative to year 2000 temperatures, see top row). The presentation of expert opinions has been anonymized by
numbering a random permutation of experts (shown below each panel). Labels are tipping point specific as indicated by the preceding letters C, M, D, A, and
N. The self-assessment of experts is shown above each panel. Probability estimates of core experts (see text for an explanation) are depicted in black, and the
remaining estimates are shown in gray. The rightmost bar in each panel shows the aggregation of probability intervals from core experts based on increasingly
restrictive assumptions about expert weights: (i) weights are allowed to vary by �100% (green) or �50% (yellow) around uniform weights, and (ii) unweighted
average of lower and upper bounds (red). The increasing strength of assumptions leads to nested probability intervals (Red � Yellow � Green). If bounds fall
onto each other, the color of the outer interval is not seen.
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P*(B) � 0.1, and ‘‘large’’ if P*(B) � 0.5. It can be seen that the
majority of experts assessed the prospect of triggering a tipping
point as ‘‘not remote’’ for all cases except for ‘‘CMOC, corridor C1’’
(41% of experts) and ‘‘NINO, corridor C1’’ (33% of experts). For
all tipping points, for high climate change, the majority of experts
regard the probability of triggering as ‘‘significant,’’ and in the case
of MGIS and AMAZ as ‘‘large.’’ For medium climate change
(corridor C2), the majority sees a ‘‘significant’’ probability of MGIS
and AMAZ, and 50% of core experts judge the probability of
MGIS to be ‘‘large.’’ These results can be compared with a
discussion of reasons for concern in the IPCC Third Assessment
Report, which included large-scale climate system discontinuities
(4). The qualitative assessment of increasing risk from such dis-
continuities for small to medium warming and high risk above 4 °C
warming is broadly supported by our collection of expert estimates.

Some aggregation of the probability information in Fig. 1 is
required for making it accessible to decision analysis. We have
conducted a sensitivity analysis of pooling rules (Methods and SI
Appendix 1, Section 3), and found weighted averages for lower and
upper expert probabilities, respectively, a so-called linear opinion
pool (22), the most satisfactory choice. The assessment of expert
weights is typically attempted by cross- or self-evaluation of experts,
or scoring past expert performance if available (13). Beyond the use
of self-evaluation to identify core experts for each tipping point,
none of this was practical in our application. Like others (ref. 20,
chapter 5), we are skeptical of using a uniform weighting function
to capture ignorance about the quality of expert statements. There-
fore, we compare uniform weighting with 2 cases where the expert
weights can vary by �50% and �100%, respectively, around
uniform weights. Fig. 1 shows the probability intervals from linear
pooling under those 3 assumptions about expert weights for all 5
tipping points and GMT corridors (rightmost bar in each panel).
We restricted the aggregation to core experts. Obviously, the
pooled probability intervals will widen with increasing imprecision
in expert weights. We note that ambiguity in individual expert
beliefs, and ambiguity in the weighting of expert estimates, repre-
sent 2 different layers of imprecision that contribute to the overall
imprecision of the pooled probability estimates.

Reorganization of AMOC (CMOC). The probability intervals for
CMOC are marked by comparatively low values for corridor C1,
with a large increase in predominantly the upper probability bounds
toward corridor C3. We associate the response pattern with the
inconclusive nature of evidence from model intercomparison stud-
ies of a collapse of AMOC in the long run (2, 23, 24). A previous
study (17) conducted detailed interviews with 12 scientists in the
field (5 of whom participated in our survey) on the response of the
AMOC to climate change. In qualitative agreement to our results,
Zickfeld et al. (17) report probability estimates for the shutdown of
AMOC (until 2100) in the range of 0–0.2 for low (�2 °C), 0–0.6 for
medium (2–4 °C), and 0.05–0.95 for high climate change (4–8 °C)
from those experts who considered a shutdown possible.

Shift of ENSO (NINO) and Dieback of the Amazon Rainforest (AMAZ).
The expert response for NINO shows a similar pattern to CMOC.
However, as GMT increases, experts tend to fall into 2 groups. The
response of experts N8 and N14 were motivated by model inter-
comparison studies that showed no consistent trend in El Niño
amplitude and frequency under climate change (25, 26). In contrast,
other experts assume an increase in the probability of more
persistent El Niño conditions in a warmer world, as found in a
subset of models that best simulate the tropical Pacific climatology
(27). The prospect of a dieback of the Amazon rainforest is closely
linked to future changes in ENSO. Vegetation models driven with
a strong drying of the Amazon basin have shown a dieback (28), but
the magnitude of potential precipitation decrease over the Amazon
remains controversial. Expert responses for AMAZ cluster above
a probability of 0.5 for corridor C3 with the exception of expert A6,

who believes that more persistent El Niño conditions in a warmer
world are remote.

Melt of the GIS (MGIS). The expert response for MGIS differs
markedly from NINO and CMOC. The upper bounds of some
probability intervals already reach 0.9 for corridor C1. The lower
bounds increase strongly toward larger warming. The exception is
expert M3, who judged MGIS likely to be avoidable in the year 2200
regardless of the magnitude of warming (a similar response was
given by expert D7 for DAIS). This points to an important
controversy to what extent positive feedback such as (i) increased
ablation due to changes of ice sheet topography and surface
properties and (ii) rapid ice discharge due to lubrication of the ice
sheet base (29) affect the stability of GIS. Dynamic deglaciation
processes were discussed, but not incorporated in model-based
inferences about GIS stability presented in IPCC AR4 (2). The
expert response in our study might indicate a larger concern about
such feedback, reinforced by data about rapidly increasing ice
discharge from Greenland (30). However, this conclusion cannot be
drawn unanimously from our elicitation, because the assessment of
the likelihood of ice sheet decay will also depend on the extrapo-
lation of the GMT corridors beyond 2200, which was left to the
discretion of the experts. IPCC AR4 gives a threshold of 1.9–4.6 °C
warming above preindustrial (�1.3–4.0 °C above 2000, which in-
tersects corridor C1 and C2 here) at which the surface mass balance
of GIS becomes negative (ref. 2, p. 829). After the elicitation, more
information about the extent of GIS during the last interglacial has
become available (31, 32). This information might affect expert
estimates for low climate change (corridor C1), but less so for the
other 2 corridors describing temperature changes above the last
interglacial.

Disintegration of WAIS (DAIS). The response pattern for DAIS is
marked by large uncertainty among experts. This reflects the fact
stated in IPCC AR4 that ‘‘no quantitative information is available
from the current generation of ice sheet models as to the likelihood’’
of a disintegration of WAIS (ref. 2, p. 819). In the absence of model
studies, a survey of expert opinions was conducted by ref. 16
revealing disagreement on the likely mechanism and time scale of
a WAIS disintegration. In our study, experts mentioned specifically
(i) the uncertain role of ongoing glacial readjustments and (ii) the
lack of data on the size of WAIS and buttressing ice shelves in
previous interglacials as contributing factors to the uncertainty.
Point ii is closely related to a finding in IPCC AR4 identifying the
role of surrounding ice shelves for the stability of WAIS as a major
uncertainty (ref. 2, p. 817). At the time of the study of Vaughan and
Spouge (16), recent evidence of ice shelf disintegration and sub-
sequent acceleration of ice flows (3) was not available. This
evidence may now be reflected in the high upper probability bounds
for medium and high climate change. We note that experts express
such concern despite the fact that quantitative model studies are
lacking. This points to the strength of expert elicitations in provid-
ing a holistic picture of beliefs incorporating not only model results,
but also insights from empirical data and theoretical considerations.

Interactions Between Tipping Points. The probability of triggering a
tipping point may be increased or reduced depending upon whether
or not a tipping point in another subsystem has already been crossed
(6). For the tipping points selected under option A or B (Table 1),
we asked participants whether knowing that another tipping point
on the list had been triggered would (increase/decrease/increase or
decrease/have no effect on) their estimate of the probability of
triggering the particular tipping point in question at a later point in
time. As depicted in Fig. 2, a majority of respondents identified an
effect of some kind in 12 of 20 possible combinations of preceding
and succeeding tipping point, highlighting the intricate web of
interactions between these sensitive components of the earth
system. As a matter of concern, the majority of experts anticipated
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an aggravating effect in 7 of 12 cases. The depicted interaction
between the ice sheets via sea level rise and associated grounding
line retreat might have to be reevaluated due to a recent finding of
grounding line stability (33) that was not available at the time of
elicitation. However, the coupling between the 2 ice sheets via
bipolar see-saw [mediated via AMOC (34)] is unaffected by this
finding.

To quantify the interactions for those tipping points B for which
the respondents had provided probability intervals, we asked them
to specify lower and upper bounds on the factor PF by which their
probability of triggering B would [increase/decrease/increase (up-
per bound) or decrease (lower bound)] if they learned that tipping
point A had already been triggered (see Methods and SI Appendix
1, Section 4). Fig. 2 records the union of PF intervals from those
experts who agreed with the majority on the particular direction of
the effect. These intervals are conservative in as much as they
always include the possibility that tipping point A has no effect on
B, i.e., PF � 1.

Because all tipping points listed in Table 1 may inflict large
damages on socioeconomic systems, and may also aggravate the
probability of triggering yet another tipping point (Fig. 2), we
deduced bounds on the overall probability of triggering at least 1 of
the 5 tipping points (henceforth called event ONE) conditional on
the 3 GMT corridors. Including the information about the proba-
bility ratios above (Fig. 2), we have calculated the probability
intervals for ONE, for (i) a sample of possible combinations of
probability estimates from core experts for different tipping points
and (ii) the pooled probability intervals for triggering the individual
tipping points (see Methods and SI Appendix 1, Section 4). In the
latter case, assuming linear pooling with (ii.a) uniform weighting of
expert estimates (red bars, Fig. 1) and (ii.b) �100% imprecision in
expert weights (green bars), we calculate lower bounds on the
probability of triggering ONE of 0.10 (ii.a) and 0 (ii.b) for low
(�2 °C, corridor C1), 0.36 (ii.a) and 0.16 (ii.b) for medium (2–4 °C,
corridor C2), and 0.69 (ii.a) and 0.56 (ii.b) for high GMT change
(�4 °C, corridor C3). The upper probability bounds are uninfor-
mative (�1 for all cases and corridors, except of 0.86 for case ii.a and

corridor C1). As shown in Fig. S3, we find that the probability
intervals for ONE derived in case (ii.b) encompass the probability
intervals for at least 96% of expert combinations investigated in
case (i) and therefore can be considered a very conservative
estimate. These results are reported in the abstract.

Conclusion
Our results indicate that the large uncertainty among experts about
the prospect of triggering major changes in the climate system (Fig.
1) does not necessarily imply that such events are considered to be
remote. We have presented subjective probability estimates, elicited
from 43 experts in the field, that do not support the notion of high
consequence, low probability events. Even when allowing experts to
express large ambiguity in their beliefs, and, using conservative
assumptions for aggregating their probability estimates, we find
significant lower probability bounds for triggering major changes in
the climate system. In many cases, they are considerably higher than
the probability allocated to catastrophic events in current climate
damage assessments, e.g., in ref. 36, Table 4.9 (25% loss of gross
world product with probability 0.012 for 2.5 °C and 0.068 for 6 °C
warming) and ref. 37 (5–20% loss with probability 0.1 (T � 5 °C)
for a warming T � 5 °C), although this comparison is limited by the
fact that the economic losses from the major climate changes
discussed here are uncertain.

It should be noted that expert beliefs are tied to the time of
elicitation, and may be updated in light of new information. With
regard to a possible self-selection bias mentioned in the intro-
duction, we note that spread and imprecision in expert responses
do not indicate an overly coherent cohort of experts, as reflected
by the list of participants (Table S2). With regard to our
hypothesis that the ‘‘availability bias’’ is mitigated by the use of
imprecise probabilities we note that experts registered a zero
lower probability for crossing a tipping point in 71% of cases for
low, 33% for medium, and 10% for high climate change. Face to
face interviews with carefully selected experts as used in ref. 17
remain the gold standard for expert elicitations (12), but become
increasingly infeasible if large numbers of experts are to be

Fig. 2. Sketch of the main interactions between tipping points as described by participating experts. Pairs of tipping events A, B are connected with a directed
arrow A3 B if (i) at least 4 experts judged that some effect of triggering A on the probability of triggering B exists and (ii) they outnumbered the experts who
saw no effect of A on B. Each arrow is accompanied by information about (i) whether the majority of experts identified an increase (�), decrease (�), or
uncertainty in the direction (�) of change in the probability of triggering B after A occurred (white circles), (ii) the number of experts supporting an
increase/decrease/uncertain direction/no effect (top line, gray boxes), (iii) the range of probability ratios PF by which the probability of triggering B is believed
to change after A occurred (union of PF intervals from only those experts that provided estimates in accordance with the type of effect attributed to each arrow;
bottom line, gray boxes), and (iv) the dominant physical mechanism(s) described by some of the experts (white rectangles). Verbal descriptions of mechanisms
for NINO3DAIS and CMOC3AMAZ could be obtained only from 1–2 experts, and therefore remain particularly speculative. For CMOC3NINO, the described
mechanism was identified only recently (35), and was hinted at, but not fully disclosed at the time of elicitation.
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included (38). It is reassuring that ref. 17 found a pattern of
expert beliefs about a shutdown of AMOC that is in qualitative
agreement to our results. Our questionnaire design with inter-
active consistency checks and a subsequent revision phase
involving extensive E-mail communication mitigated differences
in comprehension and commitment among participating experts.

Methods
Interpretation and Elicitation of Imprecise Probabilities. In the Bayesian tradi-
tion, the probability of some event B is identified with the certainty equivalent of
a bet on B assuming linear utility of payoffs (18). Consider a bet that pays $1 if B
occurs. An expected utility maximizer holding probability P(B) would buy the bet
for a price $p � $P(B), and sell the bet for a price $q � $P(B). Thus, P(B) constitutes
the certainty equivalent or fair betting rate of the bet on B. In the presence of
ambiguity about the probability P*(B) � P(B) � P*(B), the individual will become
more conservative and accept the bet only if the price is reduced below $p* �
$P*(B) (supremum buying price). Likewise, the individual may issue the bet only
for a price above $q* � $P*(B) (infimum selling price) (20). For p* � q*, the
Bayesian case of a fair betting rate is recovered. For p* � 0 and q* � 1, the
individual would not indulge in any type of betting on the event B, signaling a
state of complete ignorance. It is important to note that the concept of imprecise
probability is very different from the assumption of a second-order (meta)prob-
ability distribution F(pB): [0,1]3 [0,1] on the probability P(B). From an expected
utility point of view, second order probabilities are an ill-defined concept. Be-
cause the fair betting rate on the event B would then be described by the
expectation 	P
(B) � �0

1pBdF(pB), only the mean value of the distribution F(pB) is
relevant for the betting decision. Therefore, a decision maker holding a second-
order probability F(pB) on P(B) is indistinguishable from a decision maker holding
a first-order probability 	P
(B). The presence of imprecision indicates ambiguity
about the probability P(B) that cannot be resolved by some second-order
(meta)probability model.

Theelicitationof lowerandupperprobabilitieswasdesignedtoreducetypical
biases of overconfidence and anchoring (11). Participants were asked (i) which of
the 2 complementary events ‘‘Triggering’’ and ‘‘Not Triggering’’ they judge to be
more probable, and (ii) which in a set of linguistic probability labels based on the
IPCC categorization of uncertainty (39) they find incommensurate with their
belief.Theywerethenaskedto (iii)provideconservative lowerandupperbounds
on the probability of tipping taking into account their previous judgments in (i)
and (ii). The full information was subjected to interactive cross-checks for basic
consistency of expert statements. Compiled results were presented to partici-

pants, who were then given the opportunity to revise their individual submis-
sions. Further details on this method are provided in SI Appendix 1, Sections 1
and 2.

Aggregation of Expert Probabilities. Notwithstanding their theoretical limita-
tions, we have explored 2 prominent axiom-based aggregation rules, the linear
andlogarithmicopinionpool (22), togetherwithotherpoolingrules, inparticular
a proposal by Nau (40) based on the betting interpretation of lower and upper
probabilities (Fig. S4). A detailed discussion of our implementation and compar-
ison of various pooling rules is given in SI Appendix 1, Section 3. We found the
linear opinion pool to be most robust against outliers in expert estimates (Fig. S5).
For any rule, there remains the problem of specifying meaningful expert weights
(36). We compared a standard (but not particularly defensible) assumption of
uniform expert weights with weaker assumptions incorporating ambiguity
about the expert weights. In the latter case, expert weights were adjusted within
�50% or �100% of uniform weights so as to minimize (maximize) the pooled
lower (upper) probability (SI Appendix 1, Section 3).

Derivation of the Joint Probability of Triggering ONE. The probability of
triggering ONE is constrained by the marginal lower and upper probabilities of
triggering the individual tipping points, and the probability ratio PF � P(B�A
before B)/P(B) capturing the effect of preceding tipping point A on succeeding
tipping point B. PF will in general depend on the magnitude of the marginal
probability P(B), and hence on the conditioning GMT corridor. Nevertheless, we
only asked for a single generic interval capturing the range of PF to reduce the
complexity of the question. The consequences of this assumption are explored in
(Fig. S6). Because we asked for cause-effect relationships and not correlations to
elicit the probability ratios, their inclusion in the calculation required a careful
consideration of the sample space (SI Appendix 1, Section 4).
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