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Abstract. Global, spatially and temporally explicit estimates
of carbon and water fluxes derived from empirical up-scaling
eddy covariance measurements would constitute a new and
possibly powerful data stream to study the variability of the
global terrestrial carbon and water cycle. This paper intro-
duces and validates a machine learning approach dedicated
to the upscaling of observations from the current global net-
work of eddy covariance towers (FLUXNET). We present
a new model TRee Induction ALgorithm (TRIAL) that per-
forms hierarchical stratification of the data set into units
where particular multiple regressions for a target variable
hold. We propose an ensemble approach (Evolving tRees
with RandOm gRowth, ERROR) where the base learning al-
gorithm is perturbed in order to gain a diverse sequence of
different model trees which evolves over time.

We evaluate the efficiency of the model tree ensemble
(MTE) approach using an artificial data set derived from
the Lund-Potsdam-Jena managed Land (LPJmL) biosphere
model. We aim at reproducing global monthly gross primary
production as simulated by LPJmL from 1998–2005 using
only locations and months where high quality FLUXNET
data exist for the training of the model trees. The model trees
are trained with the LPJmL land cover and meteorological
input data, climate data, and the fraction of absorbed pho-
tosynthetic active radiation simulated by LPJmL. Given that
we know the “true result” in the form of global LPJmL simu-
lations we can effectively study the performance of the MTE
upscaling and associated problems of extrapolation capacity.

We show that MTE is able to explain 92% of the variabil-
ity of the global LPJmL GPP simulations. The mean spa-
tial pattern and the seasonal variability of GPP that consti-
tute the largest sources of variance are very well reproduced
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(96% and 94% of variance explained respectively) while the
monthly interannual anomalies which occupy much less vari-
ance are less well matched (41% of variance explained). We
demonstrate the substantially improved accuracy of MTE
over individual model trees in particular for the monthly
anomalies and for situations of extrapolation. We estimate
that roughly one fifth of the domain is subject to extrapola-
tion while MTE is still able to reproduce 73% of the LPJmL
GPP variability here.

This paper presents for the first time a benchmark for a
global FLUXNET upscaling approach that will be employed
in future studies. Although the real world FLUXNET up-
scaling is more complicated than for a noise free and re-
duced complexity biosphere model as presented here, our
results show that an empirical upscaling from the current
FLUXNET network with MTE is feasible and able to extract
global patterns of carbon flux variability.

1 Introduction

The establishment of a global database of eddy covariance
measurements of CO2, H2O and energy, the FLUXNET
database (www.fluxdata.org), offers unprecedented opportu-
nities to study the variability of the terrestrial carbon and
water cycles. However, this compilation does not provide a
complete picture; it has still the character of acupuncture and
is heavily biased to regions in the mid-latitudes of the north-
ern hemisphere. Therefore, one objective of the FLUXNET
initiative is to derive coherent, spatially and temporally ex-
plicit maps of biosphere-atmospherefluxes from the irregular
distributed data points. Here, we call this process of generat-
ing spatial fields from point data upscaling.

Upscaling exercises of eddy covariance based carbon
fluxes to large regions has been conducted for the US (Xiao
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et al., 2008, Yang et al., 2007) and Europe (Jung et al.,
2008; Papale and Valentini, 2003; Vetter et al., 2008), which
are both characterized by a comparatively dense network
of towers. The upscaling principle generally employs the
training of a machine learning algorithm to predict carbon
flux estimates based on measured meteorological data, re-
motely sensed vegetation properties, and vegetation type.
The trained model can then be applied spatially using grids
of the respective input data. Upscaling generally involves
both, interpolation and extrapolation. We refer to interpola-
tion when fluxes are predicted at locations whose environ-
mental characteristics are captured by the training data set.
Extrapolation occurs if fluxes are predicted for environments,
which are not present in the training data set. It is impor-
tant to note that it is not necessarily the geographical space
which determines if inter- or extrapolation takes place but the
environmental space. In our sense, an example for interpo-
lation would be where ecosystems from the northern hemi-
sphere may be used to predict carbon fluxes of structurally
similar ecosystems in the southern hemisphere. Extrapola-
tion may happen, if for example data from temperate conif-
erous forests are used to predict the response of temperate
grasslands which are geographically nearby but structurally
different. In practise, the distinction between inter- and ex-
trapolation can be more fuzzy if it is not exactly known what
determines structural similarity or if important characteris-
tics are not known. For example, let us assume that data
points from forests on shallow and acidic soils are used to
estimate the behaviour of forests on deep and fertile soils
which is different. If the soil information is present and if we
know that soil is important then we would call it extrapola-
tion, if not we would think of interpolation. This is an ex-
ample of “hidden extrapolation”, i.e. where predictions are
made for conditions that are not sampled by the training data
(here different soils) although the measured characteristics
are captured by the training data (e.g. same climate and veg-
etation type).

A comparison of different diagnostic approaches to up-
scale gross primary production (GPP) from eddy covariance
towers to Europe has suggested that (1) the method being
used for upscaling has a strong effect on the final result, (2)
that interannual anomaly patterns are comparatively poorly
matching between the upscaled fields (Jung et al., 2008). No
actual benchmarking has been carried out for upscaling algo-
rithms and the issue of extrapolation has not been studied yet,
which is crucial for large parts of the world with little or no
flux towers such as large regions in tundra, boreal and trop-
ical regions. In this paper we propose such a benchmarking
by using a biosphere model as surrogate truth. The advantage
of this approach is that we know the true result and that we
do not confound uncertainties other than the method of up-
scaling and the distribution of the samples that are available
for the training.

So called model trees are one example of a machine learn-
ing algorithm that can be trained to predict the fluxes and

have been employed for the US to predict NEE (Xiao et al.,
2008). Model trees are tree shaped structures that partition
the data space into units where a specific model (usually a re-
gression) is valid. This unsupervised stratification approach
thus identifies “response units” where particular controlling
factors and respective sensitivities govern the fluxes. There-
fore, an advantage of model trees is that they partly resolve
the problem of representativeness of the training data, by par-
titioning the data space into units of similar behaviour of the
target variable with respect to the explanatory variables. A
number of theoretical and empirical studies have shown that
ensemble methods where several diverse models are con-
structed and jointly applied have substantial larger predictive
capacity and have become common practise is many fore-
casting applications (Bates and Granger, 1969; Chandra et
al., 2009; Hansen and Salamon, 1990; Kocev et al., 2009;
Makridakis et al., 1982). However, we are not aware of any
study that developed ensemble model trees or used ensemble
methods for the upscaling of biogeochemical flux data.

We propose a new model tree algorithm with some innova-
tions called TRIAL (Tree Induction ALgorithm), and intro-
duce a new method to create model tree ensembles (MTEs),
called ERROR (Evolving tRees with RandOm gRowth).
Subsequently, we evaluate the efficiency of the proposed al-
gorithms to upscale carbon fluxes from FLUXNET locations.
A thorough testing is made possible by using simulations for
gross primary production (GPP) of the Lund-Potsdam-Jena
managed Land (LPJmL, Bondeau et al., 2007; Sitch et al.,
2003) biosphere model as truth that is aimed to be reproduced
by the model trees which are trained only at FLUXNET lo-
cations. We focus specifically on how well different com-
ponents of the variability are reproduced such as the mean
spatial pattern of GPP, the seasonal cycles, and the monthly
anomaly patterns. We dedicate particular emphasis on inves-
tigating the extrapolation capacity of the proposed approach,
and demonstrate the superiority of the ensemble method over
single individual model trees.

2 Materials and methods

2.1 Tree Induction Algorithm (TRIAL)

Model trees (Fig. 1) have been developed from regression
trees. Regression trees perform recursive stratification by
minimizing the variance within data subsets and the model
in the leaf nodes is a constant (the mean). Model trees con-
tain nontrivial models in the leaf nodes, usually a multi-
ple regression and their superiority over regression trees had
been demonstrated (e.g. Vens and Blockeel, 2006). Algo-
rithms that learn to generate a model tree are heuristic ma-
chine learning approaches, and data mining techniques for
knowledge discovery and generally referred to as Top Down
Induction of Model Trees (TDIMT). Several model tree in-
duction heuristics have been proposed in the literature that
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Fig. 1. Conceptual diagram of a model tree structure from TRIAL.
X variables denote explanatory variables. Letters “f” and “i” within
the split nodes indicate if the split node is a final split node (two
leaf children only) or an interior split node (> two leaf children).
The split along the categorical variable (X6) is specific for TRIAL
which allows moving several categories into left and right children
(see supplementary material for details).

share a common strategy (see Vens and Blockeel, 2006 for a
review): First, an overly large tree is grown based on recur-
sive partitioning, then the tree is pruned back. Differences
among TDIMT algorithms are mainly related to (1) the cost
function that is used to find the best split location for a vari-
able Xi , (2) the search algorithm to find the best split along
a split variable Xi , and (3) the model in the leaves. Since
model tree induction methods are computationally expensive
attention is given to keep computation time reasonable. The
next sections provide a brief outline of the functioning of
TRIAL. An illustration with pseudo-code is given as sup-
plementary material,http://www.biogeosciences.net/6/2001/
2009/bg-6-2001-2009-supplement.pdf.

2.1.1 General principle

In contrast to other model tree algorithms TRIAL allows to
specify whether the explanatory variables X are (1) only split
variables (Xsplit), (2) only regression variables (Xreg), or (3)
both. The model in the leaf nodes are multiple linear re-
gressions. The central cost function of TRIAL that is mini-
mized is the Schwarz criterion (Schwarz, 1978), also known
as Bayesian Information Criterion (BIC):

BIC = log(MSE)×n+log(n)×p (1)

where MSE is the mean squared error based on 10-fold
cross-validations, n the number of samples, and p the number
of parameters (in our case including intercepts). The cross-
validation operates in the leaves of the tree and thus provides
an assessment of the robustness of the multiple linear regres-
sions with selected regression variables (see below). The
MSE of the tree is calculated by adding up the sum of squared

Fig. 2. Map of FLUXNET stations with the number of site-months
that passed the quality control (n=3530, 178 sites). The colour
gives the number of site months; the colour scale is truncated at
24 months.

errors (SSE) from the cross-validation of all leaves and then
dividing by the total number of data points.

BIC contains a strong penalty for the complexity of the
model which ensures parsimony. In combination with the
MSE estimate from cross-validations, TRIAL is featured by
strong overfitting avoidance. Although there is debate in the
literature if the less penalizing Akaike’s Information Crite-
rion (AIC, Akaike, 1974) or BIC should be used for model
selection (see Burnham and Anderson, 2004 and references
therein) we favour simplicity of the model and chose BIC.
The BIC criterion is used to stop the growth of a tree, to
identify the node that should be split, as well as to select
the predictor variables of the multiple regressions in the leaf
nodes. Instead of a pruning phase after tree growth TRIAL
employs pre-pruning by controlling which current leaf node
is further partitioned to yield the largest information gain for
the entire model tree and stops if further splitting results in
an increase of BIC of the tree. Thus TRIAL is not based
on truly recursive partitioning but evaluates each time which
leaf node should be split. In practise this is facilitated by cal-
culating BIC of the full new model tree for each possible leaf
node that could be split and choosing the leaf where BIC of
the new model tree is smallest (see also pseudo code in the
supplementary material).

The key question of model tree algorithms is how the best
split is found for a given node. Since an exhaustive test
of all possible splits is often computationally impractical,
a smart subset of possible splits is evaluated by computing
multiple linear regressions for the left and right child for
each tested split location. Subsequently, the location where
the joint error of the model in the right and left child is
minimal is chosen as the best split of a node. The search
for the best spilt of a node is necessarily different for con-
tinuous and categorical variables and the next two sections
describe the individual strategies in more detail. We refer
the interested reader also to the pseudo code in the sup-
plementary material,http://www.biogeosciences.net/6/2001/
2009/bg-6-2001-2009-supplement.pdf.

www.biogeosciences.net/6/2001/2009/ Biogeosciences, 6, 2001–2013, 2009

http://www.biogeosciences.net/6/2001/2009/bg-6-2001-2009-supplement.pdf
http://www.biogeosciences.net/6/2001/2009/bg-6-2001-2009-supplement.pdf
http://www.biogeosciences.net/6/2001/2009/bg-6-2001-2009-supplement.pdf
http://www.biogeosciences.net/6/2001/2009/bg-6-2001-2009-supplement.pdf


2004 M. Jung et al.: Towards global empirical upscaling of FLUXNET

2.1.2 Splits along continuous variables

Splits along continuous variables are determined by finding
the split location li of each continuous explanatory variable
X where the joint sum of squared errors of the left (Xj<li)
and right child (Xj>=li) is minimal (cf. Karalic, 1992): min
(SSEleft +SSEright). Instead of evaluating each single pos-
sibility, the number of split locations being searched is re-
stricted to a predefined number (default 100) to be tractable
for larger datasets (cf. Potts and Sammut, 2005, Vogel et al.,
2007). Once the best split variable and corresponding value
is found a stepwise forward selection chooses the predictor
variables of the multiple regressions based on BIC. Variable
selection is a critical point to reduce the complexity of the
model and to avoid unwanted effects of colinearity resulting
in poorly constrained regression coefficients (Malerba et al.,
2004). After the identification of the predictor variables a 10-
fold cross-validation is used to estimate an unbiased estimate
of the error. Because 10-fold cross-validation may be sensi-
tive to the distribution of training and validation data points
due to the random initialization, several repetitions (default:
5) of the 10-fold cross-validation are performed and the mean
of the mean squared error over all cross-validations is stored.

2.1.3 Splits along categorical variables

In contrast to classic model and regression tree algorithms,
TRIAL does not use so called binary splits for categorical
variables where only one single category is separated from a
group (Breiman et al., 1984). Our principle is based on it-
eratively joining two categories into a new aggregated one,
which is repeated until only two categories are left which
consist of several original categories. Starting from the initial
variable with ncat categories, there are 0.5×ncat2 – 0.5×ncat
possibilities which two groups can be joined. For each of
these possibilities SSE is computed if the two classes would
be joined. Subsequently, the two groups where SSE of the
joint multiple regression is minimal are aggregated into a
new category, i.e. where two different groups can be best
described using one regression. After each step of joining
two categories, the new classification contains one category
less. This procedure is repeated until only two major cat-
egories are left while each consists of several original cat-
egories. This approach is several orders of magnitude less
computationally expensive than testing each possible way of
splitting the categorical variable Xj into two subgroups.

2.1.4 Model tree ensembles (MTE): evolving tRees with
RandOm gRowth (ERROR)

Ensemble methods (e.g. Breiman, 1996, Ho, 1998, Freund
and Schapire, 1996, Breiman, 2001) where a set of different
tree structures are built and jointly applied have been devel-
oped for decision and regression trees, and have been shown
to outperform single trees (e.g. Dietterich, 2000) including

the reduction of extrapolation errors (Loh et al., 2007). The
effectiveness of ensembles relies on the accuracy and diver-
sity of the individual members which constitutes a trade-off
(Hansen and Salamon, 1990). Surprisingly, ensemble meth-
ods for model trees have not attracted attention so far.

The approach we propose follows the idea of Liu et al.,
2008 which uses both deterministic splits (by finding the lo-
cally best split) and truly random splits without searching
for the best split. Random splits are justified because the
base search algorithm for the best split operates locally (at
one node) only which has little meaning globally, i.e. for the
performance of the entire tree (Geurts et al., 2006). Ran-
dom splits allow also exploiting a substantially larger space
of possible tree structures with positive effects on the diver-
sity – accuracy trade-off of ensemble members. However,
random splits may result in poor performance of the tree in
particular if they occur at final split nodes. Liu et al., 2008
has shown that a combination of random and deterministic
splits outcompetes classical ensemble methods based on re-
sampling (e.g. bagging (Breiman, 1996)) and those based on
random splits only (Geurts et al., 2006; Liu et al., 2005).

Common practice is to grow a large number of trees start-
ing from the root. We use an evolutionary motivated ap-
proach where an existing tree is chosen, a branch is pruned
and a new branch is grown with partly random and partly de-
terministic splits. The tree being selected for modification
is partly random but the selection probability scales with the
square root of the rank of its performance: for each tree a
uniformly distributed random number is generated and mul-
tiplied by the square root of the rank of the BIC (best tree has
rank 1, worst tree has rank “number of trees”) and the tree as-
sociated with the minimum product is selected. This succes-
sive modification of existing trees allows that already “good”
trees can be more easily improved further than growing in-
dependent trees from the root where the chances are small to
achieve comparable good results again. If a large number of
trees are evolved using this approach (e.g. 1000) there will
be a sequence of trees that exhibit good performance and are
finally independent of each other, i.e. they do not share any
part of their structure. A certain fraction (e.g. 25 trees) of
these “best-independent” trees is selected for the model tree
ensemble.

The starting point of the “evolution” is the deterministic
tree that is grown using TRIAL. Subsequently, the tree is
pruned at a randomly chosen interior node and truly random
splits are used to develop the tree further starting from this
node until stopping criteria terminate the tree growth, most
likely because inappropriate random splits were tried. Thus
we can now use deterministic splits to continue the growth of
the tree from the new leaf nodes until it stops again. While
for interior split nodes the deterministic split is likely not the
“best”, the deterministic split is always the best split for final
split nodes. Therefore, we impose that all final split nodes
must be deterministic and only interior split nodes are al-
lowed to be random.
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2.2 Experimental design

The principle idea is to mimic the challenge of upscaling
GPP from eddy-covariance sites to the globe by using a pro-
cess model as “truth”. This allows a thorough assessment of
the efficiency of the proposed upscaling algorithms (TRIAL
and TRIAL+ERROR) given the actual availability of rele-
vant FLUXNET data at site level for training. We use simu-
lations of GPP from the LPJmL biosphere model on monthly
time scale from 1998–2005 and with a spatial resolution of
0.5◦. We train the model trees to predict the simulated GPP
at the respective locations and months where FLUXNET data
of sufficient quality are available. We run three realizations
to evaluate the relative performances of (1) the determinis-
tic model tree using TRIAL, (2) the best model tree from
the TRIAL+ERROR model tree ensemble consisting of 1000
trees, (3) a model tree ensemble consisting of the 25 “best in-
dependent” model trees from the 1000 model trees (MTE).

2.2.1 LPJmL simulations

LPJ is a dynamic global vegetation model (DGVM) and orig-
inates from the BIOME model family (Haxeltine and Pren-
tice, 1996; Prentice et al., 1992). It simulates the distribution
of plant functional types, and cycling of water and carbon
on a quasi-daily time-step. LPJ has been used in numerous
studies on responses and feedbacks of the biosphere in the
Earth System (e.g. Brovkin et al., 2004; Lucht et al., 2002;
Schaphoff et al., 2006; Sitch et al., 2005), and is probably the
most extensively evaluated biosphere model to date. The ver-
sion of LPJ used here has been adapted to account for a real-
istic treatment of croplands and grasslands using a crop func-
tional type (CFT) approach (LPJmL, Bondeau et al., 2007).

The model runs at a spatial resolution of 0.5◦, using global
data sets of climate, soil type, and land use. The enhanced
CRU TS2.1 climate database (CRU-PIK,Österle et al., 2003)
provides the historical monthly climatology for the period
1901–2005. The anthropogenic land use information con-
sists of annual cover fractions of 12 CFTs and one managed
grassland, while all these are further distinguished according
to rainfed and irrigated following (Fader et al., in review).
The distribution of natural plant functional types (PFTs) is
simulated by the model. A spinup run of 1000 years is first
performed by recycling the first 30 years of the climate data
in order to generate equilibrium of carbon pools and distribu-
tion of the natural plant functional types (PFTs).The model is
then run dynamically for the period 1901–2005, responding
to CO2, climate, and land use change.

2.2.2 Explanatory variables for model tree training and
upscaling

The explanatory variables being chosen for training
and upscaling are those that are also available for
the real FLUXNET upscaling endeavour, i.e. cli-

matic/meteorological variables, biophysical state of the
vegetation (FAPAR), and vegetation type (Table 1). We
include variables that were used to drive LPJmL except
for soil properties and atmospheric CO2, and also include
variables not used directly in LPJmL, since we do not
always have relevant soil data and also do not know exactly
which variables are needed for predicting carbon fluxes in
the real FLUXNET upscaling initiative. Climate variables
from the Climatic Research Unit (CRU, New et al., 2002)
that provide mean annual characteristics and landuse data
are only used as split variables for partitioning; they are
not predictor variables that could appear in the regression
equations. The FAPAR simulated by LPJmL is used as an
input for the model tree training because remotely sensed
FAPAR constitutes one of the most important information
when upscaling carbon fluxes from eddy covariance sites
(Jung et al., 2008; Sims et al., 2006). The 9 different natural,
and 13 different crop functional types were aggregated into
9 classes (evergreen broadleaf trees, evergreen needleleaf
trees, deciduous trees, C3 grass, C4 grass, C3 crop, C4 crop,
C3 pasture, C4 pasture) which is compatible with the vegeta-
tion classification used in FLUXNET. Consistently with the
real FLUXNET data availability, the dominant vegetation
type within the gridcell and year was used as categorical
explanatory variable for model tree training although LPJmL
uses a fractional representation of vegetation types.

In total 21 explanatory variables are provided for model
tree training of which 16 operate only as potential split vari-
ables. Please note that not all variables are necessarily in-
cluded in the final model trees since some may not be se-
lected.

2.2.3 Data selection for training at FLUXNET sites

In order to be consistent with the analogue FLUXNET up-
scaling exercise we extract explanatory variables and LPJmL
simulations only exactly for the respective locations, years
and months of FLUXNET data, which pass various quality
controls. Uncertainty estimates of eddy covariance data is
crucial since machine learning algorithms fit the data includ-
ing their possible biases. We filter the eddy covariance data
according to the degree of gap filling and using the data from
the latest studies on systematic uncertainties of FLUXNET.
This procedure yields a realistic number and distribution of
data points that should also be used for the actual upscal-
ing. There is clearly a trade-off between the strictness of the
quality control and number of data points available for us-
ing in the upscaling. For the eddy covariance measurements
and meteorological data (air temperature, global radiation,
vapour pressure deficit, precipitation) measured at the sites
we allow a maximum of 20% of gap filling within a calen-
dar month. We estimated the u* associated uncertainty for
all FLUXNET data using a bootstrapping approach as in Re-
ichstein et al., 2005 and Papale et al., 2006. We reject all
data where the 95% confidence interval of this uncertainty
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Table 1. List of explanatory variables used for model tree training. Mean climatic variables from CRU are 1961-1990 means. Monthly
meteorological data from CRU-PIK are from 1998–2005. Land cover is on annual time step.

Variable Type Source/reference Is LPJmL driver?
Mean annual temperature Split (continuous) CRU No
Mean Annual precipitation
sum

Split (continuous) CRU No

Mean annual climatic water
balance

Split (continuous) Hargreaves and Samani 1985, Droogers and
Allen 2002, CRU

No

Mean annual Potential evapo-
ration

Split (continuous) Hargreaves and Samani 1985, Droogers and
Allen 2002, CRU

No

Mean annual sunshine hours Split (continuous) CRU No
Mean annual number of wet
days

Split (continuous) CRU No

Mean annual relative humidity Split (continuous) CRU No
Mean monthly temperature Split (continuous) CRU No
Mean monthly precipitation
sum

Split (continuous) CRU No

Mean monthly climatic water
balance

Split (continuous) Hargreaves and Samani 1985, Droogers and
Allen 2002, CRU

No

Mean monthly Potential evap-
oration

Split (continuous) CRU No

Mean monthly sunshine hours Split (continuous) CRU No
Mean monthly number of wet
days

Split (continuous) CRU No

Mean monthly relative humid-
ity

Split (continuous) CRU No

Potential radiation Split (continuous) − (Yes)
Temperature Split & regression (continuous) CRU-PIK Yes
Cloudiness Split & regression (continuous) CRU-PIK Yes
Precipitation Split & regression (continuous) CRU-PIK Yes
fraction of absorbed photo-
synthetic active radiation (FA-
PAR)

Split & regression (continuous) LPJmL −

Potentially absorbed photo-
synthetic active radiation (Po-
tential Radiation x FAPAR)

Split & regression (continuous) (LPJmL) −

Land Cover Split (categorical) PFTs: LPJmL
CFTs: Fader et al. in review

−

Yes

for GPP exceeds 1 gC/m2/day on average per month. Re-
cently, Lasslop et al., in review applied an extended light re-
sponse curve method for separating measured NEE into GPP
and TER using primarily day time NEE data, which comple-
ments the standard FLUXNET GPP data from the Reichstein
et al., 2005 algorithm that is based on estimating TER us-
ing night-time NEE data. We exclude (monthly) data points
where the absolute difference of GPP from the two indepen-
dent algorithms exceeds 1 gC/m2/day. Moreover, we exclude
entire sites if the absolute mean difference (“bias”) between
the two GPP estimates is larger than 120 gC/m2/year. Such
a systematic difference between the daytime and night-time
based flux separation methods indicates possible problems
with low turbulence and advection losses.

2.2.4 Model tree application to the domain

The model trees are applied to the spatial domain using grids
of the explanatory variables. The computation is carried out
separately for each vegetation type (i.e. assuming the entire
grid would be covered by the same vegetation) and subse-
quently aggregated based on the fractional land use repre-
sentation by calculating the weighted mean. Although the
land use may change annually in LPJmL we use the mean
fraction over the eight years (1998–2005) in order to be con-
sistent with real FLUXNET upscaling.

The model tree ensemble is given as the median of the 25
independent values from each ensemble member. We calcu-
late the uncertainty of the model tree ensemble using a robust
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estimate of the standard deviation over the 25 ensemble trees,
which is given as the median absolute deviation (MAD)×

1.4826. Multiplying the MAD with 1.4826 yields the stan-
dard deviation of a normal distribution.

2.2.5 Extrapolation detection

Detecting extrapolation in the upscaling is relevant for fur-
ther analysis because the results may not be trustable, and is
in any case interesting in terms of representativeness and fu-
ture measurement network design of FLUXNET. Intuitively,
extrapolation occurs when conditions are present that are not
captured by the training dataset and this may be quantified
by distance measures of environmental conditions. However,
the shortcoming with this approach is that not all variables
are equally important and that the importance of these vari-
ables (controlling factors) change in space and time, which
is not known a priori. This problem can be circumvented
by using our proposed ensemble method and we propose a
new and simple way of detecting extrapolation which is also
computationally inexpensive. Each model tree of the ensem-
ble has learned a different way to predict the target variable
from the same training dataset with roughly similar perfor-
mance. We exploit this equifinality feature and argue that the
different model tree estimates are similar if these conditions
are known to them due to the training and that the estimates
diverge if unknown conditions occur. We use a simple heuris-
tics to flag extrapolation by testing if the uncertainty of the
ensemble estimate is larger than the 99th percentile of the
uncertainty of the ensemble from the training sequence. This
binary flag can be further converted into an index of extrapo-
lation that can be mapped spatially by computing the relative
frequency of the extrapolation flag in the time domain for
each pixel.

2.2.6 Statistical analysis

We report two standard statistical measures to assess the
quality of the upscaling: the root mean squared error
(RMSE), and the coefficient of determination. For the latter
we do not compute the squared Pearson correlation coeffi-
cient but follow the definition that is also known as modelling
efficiency to measure the deviation from the 1:1 line.

RMSE=(SSE/n)0.5 (2)

R2
=1 − SSE/SS (3)

where SSE denotes the sum of squared errors, n the number
of data points, and SS the sum of squares of the target vari-
able (GPP from LPJmL). Please note that with this definition
of R2 negative values are possible if SSE exceeds SS. When-
ever we refer to the “true” RMSE orR2 we calculate the mea-
sures between the model tree based GPP and LPJmL GPP
(truth) over the full modelling domain. We refer to training
RMSE orR2 when both measures are derived from the train-
ing data points only using 10 fold crossvalidations.

We decompose the spatio-temporal data of GPP into three
components that help to understand uncertainties of different
aspects: (1) between site or spatial variability, (2) mean sea-
sonal variation, (3) between year variability of the monthly
fluxes. We define (1) as the spatial field of the mean value
computed over the time domain. Seasonal variation is given
as the mean seasonal cycle minus its mean. Anomalies are
calculated by subtracting the mean seasonal cycle. This de-
composition allows quantifying global measures of the ex-
plained variance of the mean spatial pattern, mean seasonal
variation, and monthly anomalies by the model tree results.

In addition to these global measures of model performance
we extract the dominant modes of variability of the seasonal
and interannual variability using principal component anal-
ysis (PCA). PCA is effective in reducing the dimensionality
of a data set and to extract dominant patterns of variability.
We use PCA to reduce the dimensionality in the time domain
which yields spatial patterns of variability. The first principal
component is used to map the dominant pattern of the sea-
sonal and interannual variability. For the latter, interannual
anomalies are computed by the difference of annual GPP and
mean annual GPP for each pixel.

3 Results and discussion

3.1 Performance of individual trees and the model tree
ensemble

Performance statistics of the deterministic tree, best tree, and
ensemble of 5% of the best trees in Table 2 shows that (1) the
model tree(s) are able to accurately reproduce (R2>0.96) the
LPJmL GPP in the training data set and (2) that the ERROR
algorithm was able to generate a number of hybrid model
trees that are superior over the deterministic tree in terms of
the fit of the training samples. However, statistics of the true
model tree performances (Table 3) which is computed over
the full LPJml model domain after upscaling reveals that per-
formance statistics from the training are not directly transfer-
able to the actual upscaling product. For example, the best
tree of the training exhibits poorer description of the global
spatio-temporal variability of LPJmL than the deterministic
tree, essentially because a substantial degree of extrapolation
is necessary. The model tree ensemble yields the best perfor-
mance for the full modelling domain.

The very high accuracy of 92% of explained variance of
the global multi-year GPP of LPJmL by the model tree en-
semble is surprising given that with the training data set less
than 0.1% of the domain was sampled, and even in a geo-
graphically clumped way. The superiority of the model tree
ensemble over individual trees is further illustrated in Fig. 3.
The model tree ensemble shows always better performance
than any of the individual trees overall, for the mean spatial
pattern, seasonal variation, and anomalies of LPJmL GPP.
While the mean spatial pattern and seasonal variation that
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Table 2. Performance statistics of model trees from the training
procedure (n=3530). MTE refers to the model tree ensemble (mean
of 5% of the best hybrid trees (=25) with standard deviations given
in brackets). Number of parameters includes intercepts of the re-
gression models. Please note that all measures originate from five
repetitions of a 10fold cross-validation within the leaf nodes.

Deterministic tree Best tree MTE

R2 0.963 0.97 0.966 [0.002]
RMSE 0.638 0.572 0.606 [0.02]
BIC −2470 −3016 −2560 [205]
# strata 20 29 30.9 [4.9]
# parameters 86 114 119.4 [18]

Fig. 3. Gain of trueR2 of the model tree ensemble over the 25
individual trees in the ensemble.

contribute large variance in the LPJmL GPP are already well
captured by single trees, the GPP anomalies which consti-
tute by far the lowest variance component is poorly repro-
duced by all individual trees but substantially improved by
the model tree ensemble.

Having illustrated the improved efficiency of the ensem-
bling method we next focus on a more detailed evaluation of
the model tree ensemble upscaling. As indicated by the sta-
tistical measures above, Fig. 4 shows that the mean spatial
pattern, and dominant mode of the seasonal variability are
very well reproduced by the model tree ensemble and dif-
ferences to LPJmL are hardly detectable visually. Although
interannual variability is the component with least accuracy,
its dominant pattern is consistently extracted by the MTE as
seen by the first principal component (Fig. 4). This dominant
pattern of interannual variability seems to largely represent
the carbon cycle response to the El Nino Southern Oscilla-
tion (ENSO) climate phenomenon (Jones et al., 2001; Knorr
et al., 2007; Qian et al., 2008). Also when aggregated to lati-
tudinal bands the anomaly time series derived from the MTE

Table 3. Statistics of the true performance of the deterministic tree,
best tree from the training, and model tree ensemble (MTE). Statis-
tics were computed over the full modelling domain and against the
“truth” (LPJmL). The decomposition into the components mean
spatial pattern, seasonal variation, and monthly anomalies is de-
scribed in Sect. 2.2.6. Please note the small fraction of variance
of the anomalies, and the improved performance of the model tree
ensemble in particular for the anomalies.

Total Spatial Seasonal Anomalies

Variance Det Tree 9.79 3.99 5.49 0.32
[gC/m2/day] Best Tree 10.93 4.24 6.09 0.58

MTE 9.32 3.98 5.1 0.24
LPJmL 8.98 3.44 5.15 0.39

TrueR2 Det Tree 0.86 0.93 0.87 0.09
Best Tree 0.78 0.89 0.8 −0.4
MTE 0.92 0.96 0.94 0.41

True RMSE Det Tree 1.13 0.49 0.82 0.6
[gC/m2/day] Best Tree 1.4 0.6 1.02 0.74

MTE 0.83 0.37 0.57 0.48

compares much more favourably to the original LPJmL dy-
namics than might be thought from Table 3, where individual
pixels were compared (Fig. 5).

There are several reasons why the interannual variability
is less well reproduced by MTE. Firstly, the signal is small
in comparison to the spatial and seasonal variability as in-
dicated by the variances in table 3, which also implies that
comparatively little emphasis is given to that small fraction
of variance during model tree training. Secondly, the control-
ling factors for the spatial GPP gradients and between year
variability may differ (Reichstein et al., 2007), which might
cause a conflict. Thirdly, we used mean annual fractions of
vegetation types for MTE while the land use in LPJmL may
show some variations over the year, for instance in conse-
quence of fires. Fourthly, in many regions the GPP inter-
annual variability as simulated by LPJmL is controlled by
variations of soil moisture (e.g. Jung et al., 2007; Weber et
al., 2009). Soil moisture is a storage term and causes mem-
ory effects of the system, which is not taken into account
by MTE. Given that all these factors are not considered by
MTE the results are still rather encouraging. However, if
the interannual variability is of particular interest it may be
possible to further improve the performance of MTE for in-
terannual variability by training directly on the anomalies,
i.e. using temperature, precipitation, and FAPAR anomalies
etc. to predict carbon flux anomalies. This approach would
solve the first two problems that the factors controlling in-
terannual variability can differ from those determining the
spatial and seasonal gradients, and that only little empha-
sis is normally given to reproducing the interannual variabil-
ity due to its small contribution to the total variance. Fur-
ther improvements may include the addition of variables with
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Fig. 4. Comparison of the mean annual, dominant seasonal, and dominant interannual patterns between the ensemble (left) and LPJmL
(right). Dominant mode of the seasonal variation is given as the first principal component (PC) of the mean seasonal variation which explains
70% and 76% for LPJmL and MTE respectively. Dominant mode of interannual variability is given as the first PC of interannual anomalies
which explains 27% and 29% of the variance for LPJmL and MTE respectively.

lag (e.g. precipitation anomaly of the previous one, two, or
three months) or cumulated variables such as temperature
sums or cumulative water balance indicators as proxy for soil
moisture as additional explanatory variables. Such additions
would enable to describe memory effects, i.e. effects of past
conditions on the current fluxes.

3.2 Uncertainty estimates and extrapolation capacity of
the model tree ensemble

Providing realistic uncertainty estimates of the upscaling
products is essential for their scientific use. The uncertainty
of the upscaling from ensemble methods described by a ro-
bust estimate of the standard deviation is weakly correlated
with the true absolute error between the MTE and LPJmL
(r=0.37 (Pearson) over the full spatio-temporal domain) indi-
cating that between-tree variability does not necessarily im-
ply a large prediction error also. As described in Sect. 2.2.5
we can flag situations when extrapolation is likely which are
characterized by a prediction variability among individual
trees that goes beyond those present for the training data.
We estimate that about one fifth (21.5%) of the pixel-months
are subject to extrapolation. An index of extrapolation de-
fined as the fraction of months per pixel flagged and extrap-
olated is mapped in Fig. 6. On the one hand it is evident that
in particular tropical areas are subject to extrapolation, but
that even the few flux towers effectively constrain the MTEs

Fig. 5. Comparison of the monthly anomalies between LPJmL and
MTE for latitudinal bands and global.
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Fig. 6. Index of extrapolation derived from the model tree ensem-
ble. See text for details.

for a considerable part (e.g. northern Amazon forest areas,
parts of Indonesia). Moreover, the lack a towers over boreal
Siberia seems to introduce less extrapolation problems than
expected, since environmental conditions seem to be sam-
pled well by Canadian and European flux towers. Here the
strength of the model tree approach is illustrated because data
from ecosystems that function similarly are identified via the
stratification and can be used to predict similar ecosystems
that are geographically far away. However, the good perfor-
mance in Siberia will be also related to simplifications made
in LPJmL to some extent, such as one general parameter set
for boreal forests.

By using this extrapolation flag we can demonstrate the
substantially improved extrapolation capacity of the ensem-
ble relative to individual trees by computing the true per-
formance separately for non-extrapolation and extrapolation
conditions (Fig. 7). While the individual trees show high and
only a small spread of performance for interpolation, the in-
dividual trees give poor results and diverge in performance
for extrapolation. However, the ensemble as a combined es-
timate over the individual trees gives substantially improved
results for conditions of extrapolation (TrueR2 =0.74) and
also a small gain for non-extrapolation situations (TrueR2

=0.95). Thus, even when the estimates of different trees di-
verge the median value appears to be a robust approximation
of the true value in many cases which underlines once more
the advantages of ensemble methods.

The (robust) standard deviation of the predictions between
the trees of MTE can be interpreted as a measure of predic-
tion uncertainty. Taking advantage of the fact that we know
the true values we can evaluate if this measure of uncertainty
is sensible. From a theoretical statistical point of view, for
example 95% of the true observations should lie within +-2
standard deviations of the mean MTE estimate assuming nor-
mal distribution of the error. Hence, Fig. 8 summarizes the
percentage of true observations being within a certain mul-
titude of standard deviations. The true value is within one
or two standard deviations in 73% or 90% of the cases re-
spectively. Given that the error distribution is not necessarily
Gaussian this result indicates that the estimation of uncer-
tainty is reasonable. Interestingly, under extrapolation condi-
tions always a larger percentage of true observations is within

Fig. 7. True R2 for interpolation and extrapolation conditions of
the individual trees of the ensemble (box plot) and the model tree
ensemble (star).

Fig. 8. Cumulative distribution of the number of standard deviations
that are needed to capture the true value, stratified for extrapolation
and no extrapolation conditions.

the estimated uncertainty range than under non-extrapolation
conditions. This illustrates that the uncertainty estimate tends
to be conservative and is also valid when extrapolating.

3.3 Remarks regarding FLUXNET upscaling

In this section we discuss briefly the meaning of our synthetic
test case for real FLUXNET upscaling projects and propose
additional steps that can be taken to further study and im-
prove FLUXNET upscaling. The primary objective of this
paper was to introduce the method of model tree ensembles
and an evaluation of its efficiency to derive spatial and tem-
poral fields from highly clumped and irregularly spaced data
like FLUXNET. The presented test case using a biosphere
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model as surrogate truth is a necessary first step to gain
confidence in the technique. If MTE would have failed to
adequately reproduce the LPJmL simulations from the flux
tower locations, it would not be worth applying it using real
world flux data. We suggest that our approach of testing the
method of empirical upscaling flux tower data to continents
and the globe should become a required standard.

The fact that MTE could reproduce the global LPJmL sim-
ulations very well does not proof that the real FLUXNET up-
scaling products using MTE will generate global carbon flux
fields of comparable accuracy. Most importantly, the bio-
sphere is more complex than LPJmL, which uses a relatively
small number of plant functional types associated with con-
stant sets of parameters to discretize global ecosystems, uses
necessary simplifications of physical and physiological pro-
cesses, and lacks other processes that can be important such
as nutrient cycles. The artificial experiment using the bio-
sphere model also represents a “perfect world” without any
uncertainties in the data while data uncertainties are present
(and an issue) in both, the flux tower data, and driver data
such as grids of meteorological fields and satellite based es-
timates of fAPAR. The current study is also simpler in the
sense that we use training data at 0.5◦ resolution to predict at
0.5◦ resolution globally. In reality, the training data (meteo-
rology and fluxes) are measured at the towers plus time series
of satellite fAPAR products of 1 or 2 km resolution. On top
of the uncertainty of all these measurements there is addi-
tional uncertainty originating from a mismatch between the
footprints of the individual instruments at the tower and of
the satellite. This footprint mismatch introduces additional
noise.

The role of the data uncertainties could be assessed for ex-
ample by adding noise and bias to the (simulated) training
data that are comparable to those inferred from studying the
uncertainties of eddy covariance data (Lasslop et al., 2008;
Richardson et al., 2006). This approach would be effective
to evaluate how well the machine learning tools are capa-
ble of extracting general relationships from the noisy data or
tend to overfit. If successful, machine learning tools could
be used to assess the information content and signal to noise
ratios of real world data. Clearly, additional confidence of
FLUXNET derived upscaling products is required by corrob-
oration against independent data.

4 Summary and conclusion

We have presented a new model tree ensemble machine
learning algorithm and provided empirical evidence for
its efficiency. We performed an upscaling of simulated
GPP from LPJmL from the highly clumped distribution of
FLUXNET sites to the globe and evaluated this product
against the actual LPJmL simulations which here constitutes
the truth. The model tree ensemble result explains overall
92% of the variance of the global LPJmL GPP simulations,

96% of the mean spatial pattern, 94% of the seasonal vari-
ability, and 41% of the monthly anomalies. The uncertainty
estimates of the model tree ensemble, given as the robust
standard deviation of the individual tree estimates, was con-
firmed to be a useful indicator of the true uncertainty. The
true value was within one standard deviation for 73% of the
cases. We developed an indicator for extrapolation based on
the spread of the model tree estimates which yields plausi-
ble results showing that overall about one fifth of the global
spatio-temporal domain was subject to extrapolation, primar-
ily large parts of the tropics, which, however, does not neces-
sarily imply poor performance of the ensemble estimate. We
demonstrate that the ensemble method is particularly power-
ful in enhancing extrapolation capacity yielding a trueR2 of
73% when extrapolating (95% when interpolating).

This study constitutes a benchmark for the method of
upscaling carbon and water fluxes from FLUXNET sites to
the globe which is enabled by using a biosphere model as
surrogate truth. We can conclude that the proposed method
is highly efficient to perform this upscaling and is able to
generate good and substantially better results than single
trees also in situations of extrapolation. The retrieved per-
formance statistics can certainly not be directly transferred
to the real FLUXNET upscaling exercise where a more
complex world than LPJmL, noise of explanatory variables,
and possible systematic biases in the flux measurements
must be expected and taken into account. Nevertheless,
we have now improved confidence that future FLUXNET
upscaling products using our method will be a new and
useful information stream derived from observations that
will help to better understand the variability of the global
terrestrial carbon cycle.

The service charges for this open access publication
have been covered by the Max Planck Society.

Edited by: E. Falge
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