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The lack of long enough data sets is a major problem in the study of many real world systems.
As it has been recently shown [8], this problem can be overcome in the case of ergodic systems if
an ensemble of short trajectories is available, from which Dynamically Reconstructed Trajectories
(DRTs) can be generated. However, this method has some disadvantages which hinder its appli-
cability, such as the need for estimation of optimal parameters. Here, we propose a substantially
improved algorithm that overcomes the problems encountered by the former one, allowing its auto-
matic application. Furthermore, we show that the new algorithm not only reproduces the short term
but also the long term dynamics of the system under study, in contrast to the former algorithm. To
exemplify the potential of the new algorithm, we apply it to experimental data from electrochemical
oscillators and also to analyse the well known problem of transient chaotic trajectories.

PACS numbers: 05.45.Tp; 05.45.Pq

Many data sets that are measured in laborato-
ries or that are observed by monitoring natural
systems are either short or contain gaps. In such
cases, deciphering the characteristics of the un-
derlying system by conventional time series anal-
ysis techniques might not be possible, as many
of these techniques require temporally continu-
ous long data sets. An algorithm, based on the
concept of recurrence, has been proposed to over-
come the problem of short data sets or missing
values. The original method generates long artifi-
cial phase space trajectories - called Dynamically
Reconstructed Trajectories (DRTs) - from a col-
lection of short data sets that have been observed
at different instances of time. In this paper, we
present a substantially improved algorithm that
operates with a single parameter. The new algo-
rithm not only performs better than the former
one, but also reproduces the short and the long
term dynamics of the underlying system closely.
Furthermore, we demonstrate how to automate
the algorithm. The applicability of the newly au-
tomated algorithm is validated with experimental
chemical oscillator data. Moreover, we apply it to
numerically characterise the properties of chaotic
saddles by generating an artificial long trajectory
from an ensemble of transient chaotic trajecto-
ries.
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I. INTRODUCTION

Many natural systems are difficult to monitor in a con-
tinuous way. Here restrictions mainly arise due to ex-
isting physical or experimental limitations, technical or
data storage problems and the cost factor [1, 2]. On the
other hand, there are systems which exhibit interesting
behaviour for a very brief period of time. A good exam-
ple of the latter case is transient chaos, where the tra-
jectories starting from different initial conditions stay in
the vicinity of a non attracting chaotic saddle for a short
time, before escaping to a final attractor [3–7]. Nev-
ertheless, it is often possible to observe an ensemble of
short trajectories by starting the experiments or the sim-
ulations at different, usually random, initial conditions
or by recording observations discontinuously. However,
many conventional time series analysis techniques are not
suitable for these cases as they usually work only if long
and continuous sets of data are available.

We have recently shown [8] that it is in fact possible to
circumvent this problem by utilising the basic concepts
of chaos, Poincaré recurrences and ergodic theory [9–11].
The key idea is to piece together the short trajectories of
the ensemble in a dynamically appropriate way to over-
come the discontinuities or the gaps present in the data.
The process results in a long trajectory, which by con-
struction replicates the dynamics of the underlying sys-
tem, and is hence called Dynamically Reconstructed Tra-
jectory (DRT). Any time series analysis method can then
be applied to this synthetic long continuous trajectory in
order to extract the required information about the un-
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derlying system. This solves a highly relevant problem
in data analysis.

In order to apply the algorithm proposed in [8], we
have to find optimal values for two parameters (thresh-
old ε and jumping probability p), so that the dynamics
of the underlying systems is correctly reproduced. This
can be a rather tedious and computationally expensive
task. In this paper, we present an optimised algorithm
that overcomes this problem. The new approach has only
one parameter and as a result, the computational effort
is significantly reduced. This allows us, moreover, to au-
tomate the algorithm, making it even more useful for the
analysis of real world data. Furthermore, we show that
the long term dynamics is considerably better reproduced
than with the former algorithm.

The organisation of this paper is as follows. In Sec. II
we present the improved algorithm that generates the
long dynamical replicants. In Sec. III we list the mea-
sures that are used to assess the quality of the gener-
ated DRTs. In Sec. IV we perform sensitivity studies
with respect to the original and the new algorithms de-
pending on (i) the single algorithmic parameter, (ii) the
characteristics of the given ensemble of short trajectories
and (iii) observational noise. We then show how to com-
pletely automate the algorithm in Sec. V. The validity
of the new algorithm is demonstrated by applying it to
experimental data, as well as to a problem of transient
chaos in Secs. VI and VII, respectively. The results are
summarised in Sec. VIII.

II. DYNAMICS AND DISCONTINUITIES - DRT
ALGORITHM

Assume that we have an ensemble of M d-dimensional
short trajectories from an ergodic system, each of length
N , i. e., ~̃xj

i ∈ R
d, where i = 1, . . . , N and j = 1, . . . ,M .

If the number of short trajectories M is large enough,
then the ensemble as a whole will embody, though dis-
continuously, the complete attracting set of the underly-
ing system. From this ensemble, it is possible to com-
pute reasonable estimates of fractal measures, such as
the correlation dimension [12, 13]. However, an accu-
rate estimation of dynamically invariant measures like
Lyapunov exponents, entropies [10, 14] or other recently
proposed measures of complexity [15] is in general not
possible with this temporally discontinuous data.

Therefore, we introduced an algorithm to reconstruct
a long synthetic trajectory, called dynamically recon-
structed trajectory (DRT), from a given ensemble of
short trajectories [8]. A DRT imitates the dynamical
properties of a long trajectory (LT) of the underlying
system and thus it can be used to estimate dynamical
measures of an underlying system. The main idea of this
algorithm is based on the fundamental recurrence prop-
erty of the ergodic systems. Recurring states are used
to bridge the gaps between different sections to gener-
ate a long synthetic trajectory. The algorithm builds a

DRT by jumping with probability p from a point within
a short trajectory to the future of one of its neighbours
in the phase space, which is present on the same or
a different short trajectory.

The proposed algorithm, thus, requires two parame-
ters to generate a DRT: (i) a threshold ε that deter-
mines the recurring system states and (ii) a parameter
p, called jumping probability, that triggers the algorithm
to jump at appropriate points. Generally, ε should be
small enough to avoid large errors due to the jumps and
large enough to avoid recursive use of certain segments of
short trajectories. The parameter p should be, on the one
hand, small enough to avoid frequent jumps and utilise
as much information as possible from a single short tra-
jectory and, on the other hand, large enough to prevent
redundant use of certain parts of short trajectories. To
determine the optimal values of ε and p, it is necessary
to study the errors intrinsic to DRTs depending on both
ε and p. However, this is a tedious task when the data
set under investigation is rather large or when one has
many ensembles of short data sets from different systems
for comparative studies.

Therefore, it is desirable to reduce the number of algo-
rithmic parameters. In order to do this, we modify the
parameter p from being a constant throughout the short
trajectory to a function p(i), where i denotes the position
within a short trajectory, i. e., i = 1, . . . , N . The function
p(i) is called jumping probability function (JPF). The
JPF p(i) is chosen to increase monotonously between 0
and 1 within a short segment, i. e., limi→1 p(i) = 0 and
limi→N p(i) = 1. This reduces the errors in the gen-
erated DRTs that arise due to too frequent jumps. In
other words, rather than jumping from every point of a
single short trajectory with the same probability p, the
algorithm is made to jump with a low probability at the
beginning of the short trajectory, and with a higher prob-
ability towards the end of the short trajectory. Numeri-
cal studies conducted for three JPFs, namely, e−(N−i),

e−(N−i)2/N and l−(N−i)/N , show that the exponential
function of the type,

p(i) = e−(N−i)2/N i = 1, . . . , N (1)

is a good choice for the reconstruction process. In com-
parison to others, the above JPF (Eq. (1)) per-
formed better in terms of certain characteristic
measures (to be described in Sec. III) and, hence,
we will illustrate the results of the new algorithm
by using this p(i).

For a given ensemble of short trajectories, ~̃xj
i with i =

1, . . . , N and j = 1, . . . ,M , the new algorithm to generate
a DRT consists of the following steps (Fig. 1):

1. Concatenate the ensemble of short trajectories ~̃xj
i ,

with i = 1, . . . , N and j = 1, . . . ,M , to generate
~xk, where k = 1, . . . , L and L = N × M .

2. Determine the set of all neighbours of every point
of ~xk for a given threshold ε, i. e., compute the
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FIG. 1: The DRT algorithm: x1

50, x2

50 and x3

50 represent the
x-component of three short trajectories of length N = 50
that are assembled and concatenated one after another. In
this example, the point y1 is the randomly chosen first point
of the DRT belonging to the x1. Since limi→0p(i) ≈ 0 and
limi→Np(i) → 1, the algorithm stays in the same short tra-
jectory, till x1

48, before making a jump to the future of one of
the nearest neighbour of x1

48.

set of neighbours {~xq ∈ B(~xk)} where B(~xk) is the
neighbourhood of ~xk.

3. The first point ~y1 of the DRT is chosen randomly
from the ensemble, i. e., ~y1 = ~xl, with 1 ≤ l ≤ L.

4. The next point of the DRT is either ~xl+1, with
probability 1 − p(l), or the future ~xq+1 of a ran-
domly chosen neighbour of ~xl, with probability p(l).

5. The last step is repeated until we get a DRT of a
desired length LD.

If at some point of the DRT generation process, the al-
gorithm reaches the end point of a short trajectory that
does not have any neighbours, then the DRTs generation
process is restarted. However, if the number T of trials
necessary to generate a DRT of the desired length ex-
ceeds a critical value, say T = 2000, then the process is
aborted assuming that the chosen threshold ε is not ap-
propriate to generate a DRT from the given set of short
trajectories.

Note that the new algorithm has just one parameter.
Thus, with the modified algorithm it is enough to inves-
tigate only the effect of ε on the quality of the DRTs.
This is one of the crucial advantages of the new algo-
rithm over the former one. In the subsequent sections,
we show that the new algorithm not only generates better
DRTs, but is also successful in generating synthetic long
trajectories for a wide range of thresholds. Additionally,
we demonstrate that the new algorithm is more robust to
noise compared to the formerly published one. Results of
the numerical studies, which have been carried out with
respect to the algorithmic parameter ε and the experi-
mentally set values of the ensemble, namely, M and N ,
clearly illustrate these facts (Sec. IV).

Automatising the process of the DRTs generation is
now a rather straightforward procedure. Automatisation
can be achieved by systematically varying the thresh-
old ε within a certain range. A further better procedure
to automate the algorithm is to generate DRTs by first
defining the neighbourhood of every phase space point
in terms of a normalised measure called recurrence rate
RR (see Sec. V and also [15]), and then systematically
varying it between 0 and 1. Like this, we reduce the arbi-
trariness in defining the threshold range. Before present-
ing the results of the numerical analysis in the following
section, we first enlist and describe the measures that we
use in our subsequent studies to assess the quality of the
DRTs and the performance of the algorithm.

III. CHARACTERISING MEASURES

The quality of the DRTs is analysed in terms of their
dynamical properties, first by using some model systems.
The generated DRTs are compared to long trajectories
(LTs) of the underlying system, obtained by integrating
or iterating the system equations. The linear and the
nonlinear measures that are used to compare the qual-
ity of the DRTs with that of the LTs are: (i) the auto-
correlation function cτ [14], (ii) the mutual information
function Iτ [16], (iii) the mean diagonal line length of the
recurrence plot (RP) D̄ [15] and (iv) the Rényi entropy
of second order K2 [12, 17]. The autocorrelation func-
tion cτ reflects the linear correlations of a signal at lag τ .
Its nonlinear generalisation is the time delayed mutual
information Iτ . The mean diagonal line length D̄ is a
complexity measure estimated from the recurrence plot
[15] of a given signal; it measures the deterministic nature
of the underlying system. Unlike these measures, K2 is
a dynamically invariant measure. It is a lower bound of
the sum of all positive Lyapunov exponents and hence,
it quantifies the predictability of a given system.

The quality tests are performed by first generating 100
realisations of DRTs (each of length LD) from an ensem-
ble of M short trajectories, each of length N . The above
measures are then computed for each of these 100 DRTs
and are compared with that of 100 realisations of the LTs
(which are also of length LD) from the same underlying
system. In the case of cτ and Iτ , we estimate the mean
relative error as follows:

Rc/I =
1

τmax

τ=τmax
∑

τ=1

∣

∣µτ − µ′

τ

∣

∣

|µ′

τ |
, (2)

where µτ represents the mean of the absolute value of the
autocorrelation/mutual information function at lag τ for
the ensemble of DRTs and µ′

τ that for the LTs. In the
case of the mean diagonal line D̄ of the RP and the Rényi
entropy K2, we compute the relative error as follows

RD̄/K2
=

|µ − µ|

|µ′|
. (3)
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Here, µ and µ′ represent the mean value of D̄/K2 esti-
mated from the ensemble of DRTs and LTs, respectively.

There are two fundamental factors that might cause
deviations between the dynamics of the DRTs and the
LTs: (i) the error due to jumping, in other words, the
impact of ε and (ii) the redundancy problem that arises
due to the repeated use of certain parts of short trajecto-
ries. To properly quantify the deviations in the dynamics
of the DRTs originating from (ii) we define a new mea-

sure called redundancy factor (rF ). Let ~̃yj ∈ {~yi|i =
1, . . . , LD} be the subset of redundantly used (used more
than once) points of a DRT, with j = 1, . . . , L′

D and
L′

D < LD. Then rF is defined as follows

rF =

L′

D
∑

j=1

ν(~̃yj), (4)

where ν(~̃yj) denotes the total number of times the point
~̃yj has been used in the reconstructed DRT. When the

DRT has no redundantly used points, then ν(~̃yj) = 0 ∀j
and hence, rF = 0. On the other hand, if the DRT is
generated by repeatedly using a few phase space points,
then rF → LD. The mean redundancy factor 〈rF 〉 es-
timated from an ensemble of DRTs generated for a par-
ticular threshold will serve as a coarse estimator of the
redundancy in the generated realisations of DRTs.

The DRTs algorithm relies on the chance that a
point with at least few neighbours will or will not
be chosen as a jumping point. The successful re-
construction of a DRT will also depend upon the
probability that - how many of the existing neigh-
bours of the chosen jumping point have suitable
future to jump to. These issues become critical,
when we are dealing with a smaller ensemble of
short trajectories or while using smaller thresh-
olds. Thus, often for smaller ensembles and for
certain (usually smaller) thresholds ε, the algo-
rithm either fails to generate the desired 100 re-
alisations of DRTs or generate DRTs with higher
values of redundancy (i. e., a crucial short trajec-
tory is missing, and hence the algorithm tends to
repetitively use certain available information).

Latter of the two problems can be rather eas-
ily identified with the help of the redundancy
measure 〈rF 〉. In order to take the former ef-
fect into account, we introduce another measure,
called the DRTs generation factor gF . It is de-
fined as the total number of DRTs generated from
a given ensemble of short trajectories at a partic-
ular threshold ε. If ε is chosen appropriately for
the given ensemble, then gF = 100. Otherwise,
the generation of DRTs is not always successful
and we obtain gF < 100. Thus, the DRTs genera-
tion factor gF establishes the performance of the
algorithm for a given threshold.

IV. SENSITIVITY STUDIES

Based on the measures established in the previous sec-
tion, we now evaluate the performance of the former and
the improved algorithm. Note that the previous algo-
rithm corresponds to the following JPF:

p(i) =

{

p, if 1 ≤ i ≤ N − 1

1, if i = N.
(5)

In contrast to Eq. (1), the jumping probability in Eq. (5)
is set to be a constant for all but the last point of the short
segment. In the following sections, we show the results
of the former algorithm with p = 0.05, since this value
has been shown to generate rather good quality DRTs
[8]. It is worth mentioning that we have also compared
the original algorithm to the new one for other values of
p. However, since the outcome of the comparison was
qualitatively the same, only the results for p = 0.05 are
presented in this paper.

The sensitivity studies are performed by considering
the chaotic Rössler oscillator [18]

ẋ = −y − z

ẏ = x + 0.2y

ż = 0.2 + (x − 5.7)z (6)

and systematically varying the threshold ε, the length N
and the number M of short trajectories. We also inves-
tigate the robustness of the two algorithms with respect
to noise. We carried out similar investigations by us-
ing some other prototypical dynamical systems like the
Hénon map [19] the Rössler oscillator in the non-phase
coherent chaotic funnel regime [20], or the Lorenz oscil-
lator [21]. In spite of the substantial topological differ-
ences of the attractors of these systems [22], the results
obtained from the sensitivity studies are qualitatively the
same.

A. Sensitivity studies with respect to ε, N and M

Integrating the Rössler system (Eqs. (6)) with an in-
tegration step of 0.01 and a sampling rate of 20, we pro-
duce three ensembles of short trajectories: (i) N = 50
and M = 200, (ii) N = 50 and M = 1000 and (iii)
N = 10 and M = 1000. While the first ensemble is used
to investigate the influence of the threshold ε, the second
and the third ensembles are utilised to study the influ-
ence of the number M and the length N of the short
trajectories. We generate ensembles of DRTs (each of
length LD = 5, 000), corresponding to the original and
the improved algorithm, from all the three ensembles for
a range of different thresholds (0.01 ≤ ε ≤ 3.0).

In all three cases, the new algorithm generates
100 realisations of the DRTs ahead of the origi-
nal algorithm (see Fig. 2). This indicates that the
new algorithm has a better jumping criteria when
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FIG. 2: The DRTs generation factor gF in dependence of the threshold ε, corresponding to the ensembles (a1)
N = 50, M = 200 (a2) N = 50, M = 1000 and (c1) N = 10, M = 1000. The black lines (with plus signs) and
the grey lines (with cross signs) correspond to the DRTs that are obtained using the modified algorithm and
the formerly published algorithm respectively. The minimum thresholds (ε) from which the former algorithm
generates the desired 100 realisations of DRTs (i. e. gF = 100) are: 0.220 (a1), 0.090 (a2) and 0.370 (a3)
respectively. The same values for the new algorithm are as follows: 0.160 (a1) 0.070 (a2) and 0.350 (a3).

FIG. 3: The DRTs generation factor gF and the error in the the mutual information function (RI) in dependence of the
threshold ε. The plots correspond to the DRTs generated from ensembles N = 50; M = 200 (a1,a2), N = 50; M = 1000
(b1,b2) and N = 10; M = 1000 (c1,c2) respectively. The black and the grey lines represents the DRTs obtained using the new
algorithm and the former algorithm respectively.

compared to the original one, and hence promotes
the reconstruction process at smaller values of
the threshold. Note that, when the number of
short trajectories of the ensemble is rather small,
the new algorithm generates 100 realisations of
DRTs for much smaller values of the threshold
as compared to the former one. As we will see

later in Sec. IVB, this helps substantially to re-
produce the long term dynamics of the system.
The new algorithm will therefore be of great use
for practical applications, as in practice, obtain-
ing sufficient number of short trajectories from
experiments is almost always impossible.
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The mean redundancy factor 〈rF 〉 calculated
for both algorithms is shown in Figs. 3(a1)-(c1).
The values of 〈rF 〉 are generally higher at smaller
thresholds, for both algorithms, because for very
small values of the threshold ε the number of
neighbours to which the algorithm can jump is
very low. As a result, the algorithm tends to use
certain parts of the short trajectories recursively
for the reconstruction process. The mean redun-
dancy factor 〈rF 〉 also depends on the ensemble
size L. The larger the ensemble, the larger is the
number of neighbours for a fixed ε, and, hence the
smaller is the mean redundancy factor (compare
Fig. 3(b1) to Figs. 3(a1) and (c1)).

If the length N of the short trajectories is large,
then the mean redundancy factor of the trajecto-
ries generated with the new algorithm is higher
compared to the former one (Figs. 3(a1) and
(b1)). This is because with the modified algo-
rithm, the average time spent in a single short
trajectory is higher than with the original algo-
rithm. If N is small, both algorithms are forced to
jump often and as a result, both algorithms spend
less time on a single short trajectory (Figs. 3(c1)).
Hence, when N is small, the estimates of 〈rF 〉 are
rather similar. However, according to the non-
linear measures, e. g., mutual information Iτ , the
opposite is true. Numerical studies show that,
in general, higher values of redundancy is corre-
lated with smaller errors in the nonlinear mea-
sures like Iτ (Figs. 3(a2)-(c2)). To conclude, we
can say that the performance of the algorithms,
in term of redundancy factor and error measures,
depends upon the short trajectory length N

From the results of relative error in Iτ

(Figs. 3(a2)-(c2)) we can also conclude that: (i)
regardless of the algorithm used, the general ten-
dency is that the error measures RI increase with
ε, due to the larger jumps made by the algorithm
for higher values of ε (this trend was also observed
for the error measures Rc and RD̄); (ii) there ex-
ists, however, an intermediate value of ε for which
the error RI in the mutual information is minimal.
This is because the DRTs generated for very low
values of ε deviate from their original LTs due to
the effect of redundancy (see Figs. 3 (a1)-(c1)).
Thus, in terms of Iτ , both the algorithms tend to
generate better DRTs for intermediate values of
the threshold ε.

B. Reproduction of short and long term dynamics

In the preceding subsection we have discussed
the performance of the DRT algorithm in terms
of the measure Iτ . However, for rigorous the-
oretical applications, invariant measures, such as
Lyapunov exponents or entropies, are usually pre-

FIG. 4: Error in the short (a) and the long (b) time scale dy-
namics of the Rössler oscillator, in dependence of the thresh-
old ε and with respect to the modified (black line) and the
original algorithm (grey line).

ferred. Estimation of these measures require an
extensive amount of continuous data sets which
are often not available. In order to critically com-
pare the performance of the original and new al-
gorithm, we now analyse the dynamically invari-
ant measure - Rényi entropy of second order K2.
Here we investigate how well the DRTs gener-
ated by both algorithms reproduce the short and
the long term dynamics of the Rössler oscillator
by estimating two different K2 values, K1

2 and K2
2

respectively [17] [40].
We consider DRTs generated using both the improved

and the previously published algorithm from an ensemble
of short trajectories with N = 50 and M = 200. Figure 4
shows the error estimates in the short (RK1

2

) and the

long (RK2

2

) term dynamics of the two algorithms and for

various values of ε (Eq. (3)). For both K1
2 and K2

2 , the
modified algorithm performs better than the former algo-
rithm for almost all values of the threshold ε. Moreover,
similarly to the error in the mutual information function
(Fig. 3 (a2)), the error in the short term dynamics has
a minimum, in both algorithms, at a threshold of about
ε = 0.25 (Fig. 4(a)). Again, the cause for the occurrence
of this minimum is the redundant use of certain parts of
short trajectories for very low values of ε. In contrast, the
error in the long term dynamics of the DRTs increases
monotonously with the threshold ε (Fig. 4(b)), indicat-
ing that moderately higher values of redundancy do not
affect the reproduction of the long term dynamics.

C. Robustness with respect to noise

In this section we investigate the influence of observa-
tional noise on the DRT algorithm, since data contamina-
tion by noise is inevitable in most real world systems. We
expect that noise will have an effect on the process of re-
construction of DRTs, as noise may considerably change
the neighbourhood of a phase space point [24]. Hence,
we analyse the robustness of the algorithm by applying
it to ensembles of noisy short trajectories.
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FIG. 5: Estimates of the error RI in the mutual information
function, calculated with respect to the JPFs (a) modified
algorithm and (b) original algorithm, in the σ − ε parameter
space. The blue regions of the plots represent the parameter
values corresponds to the lower error and the yellow regions to
that having higher error in RI . The white regions of the
plots correspond to the parameter values for which
gF = 0.

In order to demonstrate the performance of the original
and the new algorithm in the presence of noise, we con-
sider an ensemble of short trajectories from the Rössler
oscillator (Eqs. (6)) with N = 50 and M = 1000. Gaus-
sian white noise with standard deviation Snoise = σSj

is added to each of the three components of the Rössler
short trajectories. Here, Sj is the standard deviation
of the jth component of the concatenated trajectory
and σ is the noise level. Ensembles of DRTs, each of
length LD = 5, 000, were generated from this noise cor-
rupted ensemble by using both algorithms for a range
of thresholds (0.06 < ε < 1.0). The measures described
in Sec. III were estimated from the ensembles of DRTs.
Note that the relative errors were computed by compar-
ing the DRTs with an ensemble of noisy, but long tra-
jectories of the Rössler oscillator (i. e., long trajectories
contaminated with the same level of noise σ). The above
steps were repeated for different noise levels by varying
σ between 0.01 and 1.0.

Figure 5 shows the estimates of RI with respect to
the original (Fig. 5(a)) and the improved algorithm
(Fig. 5(b)) in the σ vs ε parameter space. The white
regions of the plots correspond to the parameter values
for which the algorithm did not manage to generate any
DRTs, i. e., where gF = 0. Generally, as the level of
noise in the signal increases, the range of the thresholds
for which the algorithm can generate DRTs decreases.
As we can see from Fig. 5, the white region is signifi-
cantly smaller for the modified algorithm when compared
to the formerly published one, indicating that the new al-

FIG. 6: (a) Phase space projection of a DRT constructed us-
ing the new algorithm from an ensemble (N = 50, M = 1000)
of Rössler oscillator for RR = 0.001. (b) Error in autocorrela-
tion (solid line), mutual information (dashed line) and mean
diagonal line of RP (dot-dash line) in dependence of RR.

gorithm performs better in the presence of noise.
To summarise this section, we can state that

with the proposed changes, we achieve a mod-
est improvement in the performance of the algo-
rithm at least in terms of the relative error mea-
sures (e. g., with respect to RI , RK1

2

and RK2

2

).
The improved algorithm promotes generation of
DRTs at smaller thresholds than the original al-
gorithm, especially when the number of short tra-
jectories constituting the ensemble is rather low.
Although, the DRTs generated with the improved
algorithm have in general a higher redundancy
when compared to the original algorithm, their
dynamics are closer to the original LTs. Fur-
thermore, analysis with respect to noise suggests
that the modified algorithm performs substan-
tially better. Taking also into consideration that
by means of the improved algorithm we also can
reduce the number of parameters to just one, we
can state that the modified algorithm is superior
to the former one.

In the next step, we utilise a method, that is widely
used in the field of synchronisation analysis [15], to au-
tomate the process of DRTs generation and thereby sim-
plify its application.

V. AUTOMATION OF THE ALGORITHM BY
USING FIXED AMOUNT OF NEAREST

NEIGHBOURS (FAN)

In the improved algorithm, the only parameter that
has to be determined is the threshold ε. Practically it
is necessary to vary ε in a certain range and study then
its influence on a dynamical measure, such as the mean
diagonal line D̄, in order to determine an optimal value
of ε for the reconstruction. The interval of ε over which
the study can be conducted might obviously differ from
one system to another, due to the different phase space
diameter of the attractor under investigation. Therefore,
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the range of thresholds that needs to be analysed is usu-
ally estimated by some ”rules of thumb” given in the
literature [15, 25].

This arbitrariness in determining the threshold range
can be avoided by fixing the number of nearest neigh-
bours in the 2nd step of the modified algorithm (see
Sec. II), rather than by fixing the threshold ε. By fix-
ing the number of nearest neighbours of each state space
point to be Nr, we fix the recurrence rate RR of every
single point and, hence, that of the whole ensemble as
RR = Nr/N . Since the recurrence rate RR is a nor-
malised measure that varies from 0 to 1, the algorithm
can be automated to generate DRTs by varying the RR
in a certain range that is the same for all systems. For
example, for an ensemble of size L = 50, 000, we
suggest to use a range of about 0.0001 to 0.03. In
this case, a recurrence rate of RR = 0.0001 would
mean that the number of nearest number is fixed
to 5 and that of RR = 0.03 will correspond to
fixing the number of nearest neighbour as 1,500.
As we can anticipate, choosing a further lower
recurrence rate RR < 0.0001 might cause higher
redundancy in the resulting DRTs or failure of
the algorithm to generate a DRT. On the other
hand, opting for a further higher value of recur-
rence rate RR > 0.03 will increase the error due
to bigger jumps. Thus, one should choose the
suitable range of RR depending on the size of the
ensemble.

The phase space projection of a DRT obtained from
an ensemble of short trajectories of the Rössler oscillator
with N = 50 and M = 1000 using the new algorithm for
RR = 0.001 is shown in Fig. 6 (a). As we can see, the
phase portrait of the DRT clearly resembles that of an
original LT of the Rössler oscillator. Figure 6 (b) shows
the variations in the relative error measures depending on
RR. As expected, the relative error measures computed
with respect to the autocorrelation function, mutual in-
formation and mean diagonal line of the recurrence plot
increase rapidly for RR > 0.006. Such a response of
the relative error measures is similar to and is
also about the same order of magnitude as that
observed when ε is increased (Figs. 3 (a2), (b2)
and (c2)).

These results show that the using fixed number
of nearest neighbours, rather than fixed ε, does
not worsen the results. Thus, they clearly justify the
use of RR for generating DRTs instead of ε and thereby
allow the automation of the algorithm. The proposed au-
tomation process will strongly facilitate the application
of the new, improved algorithm to experimental data.

VI. APPLICATION TO ELECTROCHEMICAL
DATA

In this section we test the performance of the improved
algorithm reproducing both the short and the long time

FIG. 7: Phase portraits of the original long time series (a) of
the chemical oscillator and that of the DRTs (b) generated
using the new algorithm for a RR of 0.0001. The autocor-
relation (c) and the mutual information function (d) of the
original long time series (solid line) and that of the DRTs
(dashed line).

scale dynamics by applying it to univariate experimental
data from electrochemical oscillators. The data was ob-
tained by measuring the current from an electrode that
is immersed in sulfuric acid. This system, measured with
a sampling rate of 200 Hz, has been shown to display
chaotic dynamics [26–28]. The phase portrait of the long
time series (Fig. 7(a)) is obtained by using Taken’s time
delay embedding [29]. The embedding dimension, esti-
mated using the false nearest neighbour method, is 4;
and the embedding delay used for the reconstruction, es-
timated from the autocorrelation function, is 26 [8]. The
estimates of K2 corresponding to the short and long term
dynamics of the attractor, are K1

2 = 1.9092 ± 0.020 and
K2

2 = 0.2972 ± 0.016.

Next apply the new algorithm to an ensemble consist-
ing of M = 329 short trajectories, each of length 200
(corresponding to a duration of 1 s). Each of the short
trajectories is then embedded with dimension 4 and de-
lay 26 (corresponding to a duration of 0.13 s). Apply-
ing the new algorithm, a DRT of length 10,000 is gener-
ated using a fixed recurrence rate of RR = 0.0001. The
phase space of the DRT clearly resembles that of the
original long trajectory, as well as the estimates of the
autocorrelation function and mutual information func-
tions (Fig. 7(b), (c) and (d)). Since a mere eyeball
comparison of the phase portraits might some-
times be deceiving and is not really an evidence
that the algorithm indeed reconstructs the dy-
namical replicant, we further proceed to calculate
the entropy estimates from the generated DRT.
The estimates of K1

2 and K2
2 computed from the DRTs

are 1.8724± 0.025 and 0.4216± 0.023, respectively. Both
these values are rather close to the ones obtained us-
ing the long trajectories. It is worth noting that the
estimates of K1

2 and K2
2 obtained with the original algo-
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rithm were 1.6188±0.071 and 0.5416±0.137, respectively,
showing a higher discrepancy with respect to the values
obtained for the LTs.

These results clearly show the potential of the
improved algorithm in reproducing the dynamics
of an underlying system, when we have sufficient
amount of information available although discon-
tinuously. However note that in practice, some-
times short trajectories that are obtained exper-
imentally might not be sufficient enough to gen-
erate a DRTs that reflects the underlying system
dynamics. This issue needs to be resolved at some
point of time in future.

VII. APPLICATION TO TRANSIENT CHAOS

Now we exemplify the applicability of our algorithm to
a classical problem of transient chaos. Transient chaotic
dynamical systems have trajectories that exhibit chaotic
behaviour for a rather brief period of time, before setting
onto a final state. The primary reason for the occurrence
of such a phenomenon is the existence of chaotic saddles
in phase space, which have a fractal structure along their
stable and unstable manifolds. Chaotic saddles, which
typically arise during crisis, attract the trajectories start-
ing at nearby initial conditions, causing them to exhibit
chaotic behaviour before escaping through the unstable
direction to some other attractor [4–7]. Transient chaos
has been found to occur in a wide range of low and high
dimensional dynamical systems, playing a key role in nu-
merous physical phenomena, such as chaotic scattering
and particle transport in hydrodynamical flows [30–33].
Furthermore, chaotic transients are also observed in var-
ious experimental systems, such as chemical oscillators,
electric power systems and ecological systems [34].

The extensive occurrence of transient chaos has kin-
dled the investigation of the properties of chaotic saddles
by either generating long numerical trajectories on the
chaotic saddles [35–38] or by direct investigation of an
ensemble of short transient trajectories [13, 39]. While
the latter methods might not give all the necessary details
about the saddle, many of the former methods require an
explicit knowledge about the system equations to gener-
ate long trajectories. Janosi et al [36], however, have
adopted a purely numerical approach to the problem,
analogous to ours. However, their procedure involves loss
of valuable data to reconstruct a long trajectory.

We now apply our algorithm to an ensemble of short
transient chaotic trajectories obtained from a quadratic
map, to reconstruct a long trajectory on the chaotic sad-
dle.

The quadratic map [5, 6]

xn+1 = 1 − ax2
n (7)

is one of the simplest cases where transient chaos has
been observed [6]. For a = 1.7548, the trajectories start-
ing from random initial conditions behave chaotically for

a short time interval, before settling into a period-3 cycle
(Fig. 8(a)). Note that for a given system and random
initial conditions the duration of transients are exponen-
tially distributed [6]. Since, in general, it is possible to
apply our algorithm to an ensemble of short trajectories
which do not have the same length, we now generate a
DRT from the ensemble of transients, whose lengths are
exponentially distributed.

First, an ensemble of short transients was obtained by
iterating the map starting at random initial conditions
that were uniformly distributed in the interval 0 ≤ |x0| ≤
1.0. The iterations were stopped when the phase space
trajectories reached the 3 period cycle, and the first 15
and the last 75 points of transients were omitted from this
analysis. The ensemble consisted of M = 360 transients,
each of whose length was greater than 2. The average
length of the short trajectories in the ensemble was 31.98.
The semi-attractor corresponding to such an ensemble is
shown in the Fig. 8(b).

Applying the modified DRTs algorithm, a DRT of
length 5,000 was generated for RR = 0.0002. The phase
space projection of this DRT is shown in Fig. 8(c). As we
see, the phase portrait of the DRT closely resembles the
one of the logistic map. Moreover, the estimated auto-
correlation function and the mutual information function
reproduces the ones of the chaotic logistic map (Fig. 8(d)
and (e)). Furthermore, the value of the Rényi entropy K2

calculated from the DRTs is 0.472± 0.004, which is very
close to the estimated value of the Lyapunov exponent
of the semi-attractor, λ = 0.489 ± 0.0003 [6], validating
the obtained result.

VIII. CONCLUSION

In this paper we have addressed one crucial problem
of analysis of real world data, namely, the lack of long
enough data sets. Insufficient amount of continuous data
often hinders the application of many time series anal-
ysis techniques. Here we have presented a substantially
improved version of an earlier proposed algorithm to gen-
erate dynamically reconstructed trajectories (DRTs) that
imitate the underlying system dynamics. The modified
algorithm has only one parameter, allowing its complete
automation and reducing the computation time needed
for its application. We have extensively compared the im-
proved algorithm with the original one and have shown
that the new algorithm performs better when compared
to the formerly published approach with respect to linear
and nonlinear measures that characterise the dynamics of
the underlying system. Furthermore, the improved algo-
rithm reproduces both the short term and the long term
dynamics of the system under investigation better than
the original algorithm.

We have shown the applicability of the improved DRT
algorithm to experimental data from chemical oscilla-
tors and to the problem of transient chaotic trajectories,
thereby exemplifying the potential of our algorithm.
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FIG. 8: (a) A short segment of the x-component of the quadratic map displaying a clear transition to a 3 period cycle. The
phase projection of: (b) the ensemble of transiently chaotic trajectories (c) the DRT generated with the new algorithm at a
RR = 0.0002. The autocorrelation function (d) and the mutual information function (e) of the DRT (solid line) and a long
time series of the chaotic logistic map (dashed line).
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