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Abstract

Recently, different approaches have been proposed for studying basic properties of time series

from a complex network perspective. In this work, the corresponding potentials and limitations of

networks based on recurrences in phase space are investigated in some detail. We discuss the main

requirements that permit a feasible system-theoretic interpretation of network topology in terms

of dynamically invariant phase space properties. Possible artifacts induced by disregarding these

requirements are pointed out and systematically studied. Finally, a rigorous interpretation of the

clustering coefficient and the betweenness centrality in terms of invariant objects is proposed.
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During the last decade, increasing interest has arisen in structural and dynamical prop-

erties of complex networks [1]. Particular efforts have been spent on reconstructing network

topologies from experimental data, e.g., in ecology [2], social systems [3], neuroscience [4],

or atmospheric dynamics [5]. The latter example yields a complex network representation

of a continuous system, which suggests that applying a similar spatial discretization to the

phase space of dynamical systems and using complex network methods as a novel tool for

time series analysis could be feasible, too [6, 7]. For this purpose, different methods have

been proposed (for a comparative review, see [8]) and successfully applied to real-world as

well as model systems.

Many existing methods for transforming time series into complex network representa-

tions have in common that they define the connectivity of a complex network – similar

to the spatio-temporal case – by the mutual proximity of different parts (e.g., individual

states, state vectors, or cycles) of a single trajectory. In this work, we particularly consider

recurrence networks, which are based on the concept of recurrences in phase space [9, 10]

and provide a generic way for analyzing phase space properties in terms of network topology

[7, 8, 11, 12]. Here, the basic idea is to interpret the recurrence matrix

Ri,j(ε) = Θ(ε − ‖xi − xj‖) (1)

associated with a dynamical system’s trajectory, i.e., a binary matrix that encodes whether

or not the phase space distance between two observed “states” xi and xj is smaller than a

certain recurrence threshold ε, as the adjacency matrix of an undirected complex network.

Since a single finite-time trajectory may however not necessarily represent the typical long-

term behavior of the underlying system, the resulting network properties may depend –

among others – on the length N of the considered time series (i.e., the network size), the

probability distribution of the data, embedding, sampling, etc. In the following, we present

a critical discussion of the basic requirements for the application of recurrence networks and

show that their insufficient application leads to pitfalls in the system-theoretic interpretation

of complex network measures.

Threshold selection. The crucial algorithmic parameter of recurrence-based time series

analysis is ε. Several invariants of a dynamical system (e.g., the 2nd-order Rényi entropy

K2) can be estimated by taking its recurrence properties for ε → 0 [10], which suggests that

for a feasible analysis of recurrence networks, a low ε is preferable as well. This is supported
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by the analogy to complex networks based on spatially extended systems, where attention is

usually restricted to the strongest links between individual vertices (i.e., observations from

different spatial coordinates) for retrieving meaningful information about relevant aspects

of the systems’ dynamics [4, 5]. In contrast, a high edge density

ρ(ε) =
2E(ε)

N(N − 1)
(2)

(with E(ε) being the total number of edges for a chosen ε) does not yield feasible information

about the actually relevant structures, because these are hidden in a large set of mainly less

important edges.

As a consequence, only those states should be connected in a recurrence network that

are closely neighbored in phase space, leading to rather sparse networks. Following a cor-

responding rule of thumb recently confirmed for recurrence quantification analysis [13], we

suggest choosing ε as corresponding to an edge density ρ . 0.05 [7, 8], which yields neighbor-

hoods covering appropriately small regions of phase space. Note that since many topological

features of recurrence networks are closely related to the local phase space properties of the

underlying attractor [8], the corresponding information is best preserved for such low ε unless

the presence of noise requires higher ε [13].

Recently, a heuristic criterion has been proposed by Gao and Jin, which selects ε as the

(supposedly unique) turning point εcrit in the ρ(ε) relationship of certain dynamical systems

[12], formally reading
dρ

dε

∣

∣

∣

∣

ε=εcrit

= max!,
d2ρ

dε2

∣

∣

∣

∣

ε=εcrit

= 0. (3)

In contrast to our above considerations, for different realizations of the Lorenz system,

this turning point criterion yields link densities of ρcrit = ρ(ε = εcrit) ∼ 0.15 . . . 0.3 [12],

implying that considerably large regions of the attractor are covered by the corresponding

neighborhoods. In such cases, it is however not possible to attribute certain network features

to specific small-scale attractor properties in phase space. More generally, ε should be

chosen in such a way that small variations in ε do not induce large variations in the results

of the analysis. In contrast, the turning point criterion (3) explicitly selects ε such that

small perturbations in its value will result in a maximum variation of the results. Moreover,

besides our general considerations supporting low ε, application of the turning point criterion

leads to serious pitfalls:
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FIG. 1: (Color online) Effects of different metrics and embeddings on the ρ(ε) relation-

ship, expressed in terms of the corresponding first derivative. (A,B,C,D): Manhattan dis-

tance; (E,F,G,H): Euclidean distance; (I,J,K,L): maximum distance. (A,E,I): Lorenz system
(

ẋ = 10(y − x), ẏ = x(28 − z), ż = xy − 8
3
z
)

with original components at three different randomly

chosen initial conditions. (B,F,J): Same Lorenz system embedded from the x component with em-

bedding delays τ1 = 5, τ2 = 15, and τ3 = 20. (C,G,K): same as (A,E,I) for the Rössler system

(ẋ = −y − z, ẏ = x + 0.2y, ż = z(x − 5.7)). (D,H,L): same as (B,F,J) for the Rössler system with

τ1 = 10, τ2 = 15 and τ3 = 20. Circles indicate the respective maxima. In all cases, time series of

N = 1, 000 points with a sampling time of ∆t = 0.05 have been used, obtained with a 4th-order

Runge-Kutta integrator with fixed step width h = 0.01. The values of τ2 are guided by the first

zeros of the corresponding auto-correlation functions.

(i) εcrit and, hence, ρcrit depend on the specific metric used for defining distances in

phase space (Fig. 1). Moreover, experimental time series often contain only a single scalar

variable, so that embedding might be necessary. Since the detailed shape of the attractor

in phase space is affected by the embedding parameters, changing the embedding delay has

a substantial effect on εcrit, which is particularly visible in the Rössler system (see Fig. 1

(D,H,L)). In a similar way, depending on the choice of the other parameters the sampling
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FIG. 2: Mean values (squares) and range (shaded areas) of turning points εcrit in 200 independent

realizations of the Lorenz (A) and the Rössler system (B) in dependence on the network size N

(Euclidean distance, ∆t = 0.05). The insets show the corresponding link densities ρcrit for the

same range of N .

time of the time series may also influence the recurrence properties [14] (and, hence, εcrit),

since temporal coarse-graining can cause a loss of detections of recurrences.

(ii) The ε-selection should be as independent as possible of the particular realization

of the studied system, especially from the initial conditions and the length N of the time

series. The turning point εcrit after conditions (3) is however not independent of the specific

initial conditions (Fig. 1 (A,E,I) and (C,G,K)): while its average value does not change much

with changing N , there is a large variance among the individual trajectories that converges

only slowly with increasing N (Fig. 2). Hence, for the same system and the same network

size, already slightly different initial conditions may yield strong differences in εcrit and ρcrit

(Fig. 2, inset) and, hence, the topological features of the resulting networks.

(iii) One has to emphasize that the turning point criterion is not generally applicable,

since there are various typical examples for both discrete and continuous dynamical systems

that are characterized by several maxima of dρ(ε)/dε (Fig. 3).

The above considerations are mainly of concern when studying properties of (known)

dynamical systems. In applications to real-world time series with typically a small number

of data or even non-stationarities, it is still possible to derive meaningful qualitative results

from small time series networks. However, for a detailed system-theoretic interpretation the

use of smaller recurrence thresholds is recommended [7].
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FIG. 3: Examples for multiple turning points of dρ/dε: (A) quasiperiodic trajectory of a continuous

system (torus) and (B) a weakly chaotic orbit of the standard map (xn+1 = xn + 5 sin(yn) mod 1,

yn+1 = yn + xn+1 mod 1, see [15]).

Topology of recurrence networks. The topological features of recurrence networks are

closely related to invariant properties of the observed dynamical system [7, 8, 12]. However,

a system-theoretic interpretation of the resulting network characteristics is feasible only

based on a careful choice of ε, avoiding the pitfalls outlined above. For example, many

paradigmatic network models as well as real-world systems have been reported to possess

small-world properties (i.e., a high clustering coefficient C and low average path length L).

However, it can be shown that C and L are both functions of ε. In particular, L ∼ 1/ε

(for given N), since spatial distances are approximately conserved in recurrence networks,

whereas the specific ε-dependence of C varies between different systems.

In addition to the aforementioned global network characteristics, specific vertex properties

characterize the local attractor geometry in phase space in some more detail, where the

spatial resolution is determined by ε. In particular, the local clustering coefficient Cv, which

quantifies the relative amount of triangles centered at a given vertex v, gives important

information about the geometric structure of the attractor within the ε-neighborhood of v

in phase space. Specifically, if the neighboring states form a lower-dimensional subset than

the attractor, it is more likely that closed triangles emerge than for a neighborhood being

more uniformly filled with states [16]. Hence, high values of Cv indicate lower-dimensional

structures that may correspond to laminar regimes [7] or dynamically invariant objects like

unstable periodic orbits (UPOs) [8]. The relationship with UPOs follows from the fact that
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trajectories tend to stay in the vicinity of such orbits for a finite time [17], which leads to a

certain amount of states being accumulated along the UPO with a distinct spatial geometry

that differs from that in other parts of a chaotic attractor. However, since there are infinitely

many UPOs embedded in chaotic attractors, such objects (even of a low order) can hardly

be detected using large ε (where the resulting neighborhoods cover different UPOs) and

short time series as recently suggested [12]. In contrast, they may be well identified using

low ε and long time series [8].

Another intensively studied vertex property is betweenness centrality bv, which quantifies

the relative number of shortest paths in a network that include a given vertex v [3]. In a

recurrence network, vertices with high bv correspond to regions with low phase space density

that are located between higher density regions. Hence, bv yields information about the local

fragmentation of an attractor. In particular, since phase space regions close to the outer

boundaries of the corresponding attractors do not contribute to many shortest paths, the

vertices located in these regions are characterized by low bv, which is (at least for the Lorenz

oscillator) even enhanced by a lower state density. For the sharp inner boundary of the

Rössler oscillator, one may observe the opposite behavior. For phase space regions close to

low-period UPOs, one also finds lower values of bv due to the accumulation of states along

these structures (many alternative paths). As the distribution of bv (Fig. 4 (A,B)) suggests,

these features are robust for low ε, but may significantly change if ε gets too large (i.e.,

ρ = 0.2).

We conclude that in a recurrence network, both Cv and bv are sensitive to the presence of

UPOs, but resolve complementary aspects (see Fig. 4). For the Rössler system, we find two

distinct maxima in the betweenness distribution, which are related to the inner and outer

parts of the attractor, respectively. In particular, the abundance of low values is promoted

by a high state density at the outer boundary of the attractor near the x-y plane, which

coincides with a period-3 UPO [18]. In contrast, for the Lorenz system there is no second

maximum of p(bv), since the outer parts of the attractor are more diffuse and characterized

by a considerably lower phase space density than in the Rössler attractor. In both cases,

vertices with a high clustering coefficient Cv are characterized by a broad continuum of

betweenness values, which suggests that bv is no universal indicator for the presence of

UPOs, whereas Cv allows an approximate detection of at least low-periodic UPOs in phase

space.
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FIG. 4: (Color online) Probability distribution function of betweenness centrality bv (in logarithmic

scale) for different edge densities (ρ1 = 0.005, ρ2 = 0.01, ρ3 = 0.015, ρ4 = 0.2) for the Lorenz (A,

N = 20, 000) and Rössler system (B, N = 10, 000), and corresponding relationships between local

clustering coefficient Cv and betweenness centrality bv (C: Lorenz, D: Rössler, ρ = 0.01) obtained

from the original data using the Euclidean distance (∆t = 0.05).

In summary, transforming time series into complex networks yields complementary mea-

sures for characterizing phase space properties of dynamical systems. This work has provided

empirical arguments that the recently suggested approach based on the recurrence properties

in phase space allows a detailed characterization of dynamically relevant aspects of phase

space properties of the attractor, given that (i) the considered time series is long enough

to be representative for the system’s dynamics and (ii) the threshold distance ε in phase

space for defining a recurrence is chosen small enough to resolve the scales of interest. In

particular, using the network-theoretic measures discussed here, the turning point criterion
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for threshold selection [12] often does not allow feasible conclusions about dynamically rel-

evant structures in phase space. In contrast, for sufficiently low recurrence thresholds (we

suggest ρ . 0.05 as a rule of thumb), small-scale structure may be resolved appropriately

by complex network measures, which allow identification of invariant objects such as UPOs

by purely geometric means. In this spirit, note that there are already examples for the

successful application of recurrence networks and related concepts in the literature [7, 19].
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