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ABSTRACT

We describe a statistical analogue resampling scheme, similar to the “inten-

tionally biased bootstrap”, for future climate projections whose only constraint

is a prescribed linear temperature trend. It provides a large ensemble of day-

to-day time series of single-station weather variables and other climatological

observations at low computational cost. Time series are generated by mapping

time sequences from the observed past into the future. The Yangtze river basin,

comprising all climatological sub-regions of Central China, is used as a testbed.

Based on daily station data (1961 to 2000), the bootstrap scheme is assessed

in a cross validation experiment which confirms its applicability. Results ob-

tained for the projected future climates (2001 to 2040) include climatological

profiles along the Yangtze, annual cycles and other weather-related phenomena

(e.g. floods, droughts, monsoons, typhoons): (i) The annual mean temperature

and, associated with that, precipitation increase. (ii) The annual cycle shows an

extension of the Asian summer monsoon season with increasing rainfall, linked

to a small summer temperature reduction in the Yangtze lower reaches. (iii)

Coupling between monsoon circulation and monsoon rainfall strengthens. (iv)

While drought occurrence is reduced, Yangtze floods do not change considerably.

(v) The number of typhoon days in the East China Sea shows a reduction of

about 25%; the proportion of intense typhoons with landfall increases. GCM
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scenario simulations produce similar results.
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1. Introduction

For future climate projections at a regional scale, a hierarchy of dynamical models is

commonly used to simulate the physical processes of the climate system at different spatio-

temporal scales and resolutions. In this hierarchy, the coarse resolution global scale is covered

by coupled ocean-atmosphere general circulation models (GCMs). For the regional scale,

thanks to an increasing understanding of fine-scale processes such as cloud formation and

growing computer power, the nesting of Regional Climate Models (RCMs) into GCMs has

become a standard approach, despite the large computational costs involved. Regional cli-

mate simulations obtained from such a model hierarchy have improved considerably over the

last 15 years ( IPCC 2007, Chapter 11; Wang et al. 2004; Giorgi 2006; Laprise 2008). Such

a progress is essential for the study of climate impacts which concern single regions rather

than the entire globe. Since RCMs simulate the physical processes entailing regional climate

change, they allow for insights into the interplay between causes and consequences. This is

of particular importance for simulations of the distant future when climate is expected to be

fundamentally different from present day conditions (IPCC 2007, Chapter 10).

However, for certain regions, boundary conditions such as topography or fine-scale physi-

cal processes like convection still have too coarse a representation in the RCMs. In these cases

control simulations from RCMs are biased against observations (Giorgi et al. 2004; Kotlarski

et al. 2005), which limits their use for near-future regional climate impact studies requiring

reliable predictive skills. To address this problem, statistical schemes complementing the

RCMs are used, which are less affected by the aforementioned bias problems.

Examples of such statistical schemes are regression models (not unlike the classical Model
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Output Statistics from the 60ies), analogue methods (Wilby et al. 1998; Zorita and von Storch

1999) or stochastic weather generators (Wilks 1999). Regression models exploit statistically

derived relations between GCM output and regional weather. Analogue methods typically

search the past circulation pattern which is most similar to the pattern of a future date

(simulated by a GCM) and assign the regional weather concurrent of that past pattern to

the future pattern date. The thus obtained future combinations of regional weather variables

are physically consistent at each time step. Both regression and analogue methods downscale

GCM output at individual time steps. This makes the skill of their projections dependent

on the skill of single GCM runs, which is known to be low for certain regions and variables

(see van Oldenborgh et al. 2009; Vautard et al. 2009, for studies revealing underestimated

temperature trends over Western Europe in GCM simulations).

Stochastic weather generators generate time series of single climate variables conditioned

on prescribed general time series statistics. They are less dependent on GCM skills but

can generate physically inconsistent combinations of regional weather variables, since they

usually generate time series for different variables individually. In general, the application

of statistical schemes is confined to projections of similar climates which do not over-strain

the stationarity assumption implicit in statistical schemes. This explains their frequent

application in regional climate impact studies since these typically deal with near-future

climate projections only.

Here we use a resampling approach based on weather analogues. Our statistical analogue

resampling (STAR) scheme generates ensembles of daily time series which optimally fit a

prescribed linear temperature trend (mean and long-term linear increase, see Orlowsky et al.

2008). This temperature trend is the only constraint for the resampling, which is why STAR
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is located somewhere in-between classical downscaling techniques and stand-alone climate

modelling approaches. We thus try to combine the advantages of the analogue approaches

(consistency between different variables) and the weather generators (independence on GCM

simulations). From the ensemble projections, future climate statistics like long-term aver-

ages or extreme events are estimated. Since these projections are obtained by resampling

from past observations, STAR can be seen as an extended bootstrap approach (Efron and

Tibshirani 1993) where the resampling is conditioned on the prescribed temperature trend.

For demonstration purposes, we select the Yangtze river basin in Central China. The

climate of this region is complex and includes temperate inland, plateau and monsoonal

climatic regions. They are all transected by the Yangtze river which thus provides a natural

cross-section through Central China. Since it is one of the most important waterways of the

world, reliable projections of its future climate are an important challenge.

In the following, Section 2 introduces our bootstrap extension, the statistical analogue

resampling scheme. Observational and GCM data are described in Section 3, together with

a cross-validation experiment which demonstrates the applicability of our bootstrapping to

the Yangtze river basin. Section 4 analyzes the observed present-day climate (training period

1961 to 2000) along the Yangtze river at single stations and the adjacent future projections

(2001 to 2040). Both the training period climate and the future projections are compared

with GCM simulations. Section 5 draws some conclusions on the applicability of STAR for

future regional climate projections.
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2. Bootstrapping for climate projections

Estimating distributions of sample parameters (e.g. confidence intervals for sample mean,

return periods etc.) by resampling – “bootstrapping” – from a given sample or time series

(Efron 1979, 1981) has become a standard approach. Bootstrapping involves time-consuming

computations and is therefore intended for situations where distributions cannot be derived

from theoretical considerations (Efron and Tibshirani 1993). In climate science, bootstrap-

ping has been used for example to estimate the uncertainty of flood return levels (Mudelsee

et al. 2003; Rust et al. 2009) and of statistically downscaled meteorological variables (Dibike

et al. 2008).

Here we want to obtain ensembles of future climate projections by bootstrapping from a

training period sample of past daily observations. Typically, the future climate is expected

to be warmer than the training period climate. Since the warming in observations and

GCM simulations is one of the most robust climate signals, and in order to reduce the

dependency on single GCM runs, our bootstrap ensemble shall be constrained by a prescribed

temperature trend (average and long-term linear increase) only. For reference, Figure 2 a

shows that the linear trend in our case gives a good approximation to the temperature

evolution.

If we were interested in temperature alone, the “intentionally biased bootstrap” (Hall

and Presnell 1999b) would be useful, where the probabilities for the resampling are adapted

to given constraints. For example, if a sample of daily temperature observations was to

be drawn from the training period sample, with a warmer average than the training pe-

riod average, the intentionally biased bootstrap would preferably select warm temperature
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observations (Hall and Presnell 1999a). However, since we are interested not only in the

future temperature average but in any kind of climate statistics (variability, annual cycles,

extremes, persistence etc.) for any climate variable, the formulation of all such constraints in

the context of an intentionally biased bootstrap (Davison and Hinkley 1997) is not straight-

forward. Therefore, instead of directly prescribing probabilities for the resampling of the

training period observations like in the intentionally biased bootstrap, we bootstrap accord-

ing to a set of heuristic rules. This set ensures that the bootstrapped series comply with

the prescribed trend, and, in addition, are physically realistic. This, like in the intentionally

biased bootstrap, results in adapted probabilities for the resampling, which, in our case, are

defined indirectly by the set of heuristic rules.

a. Bootstrapped weather ensembles conditioned on a future temperature trend

Since our only constraint is a temperature trend, we start by a bootstrap ensemble of daily

temperature observations resampled from the training period. A set of heuristic rules for

the resampling ensures that the ensemble members reproduce the prescribed temperature

trend and realistic annual cycles (see Figure 1). Inspired by the moving block bootstrap

(Efron and Tibshirani 1993; Lahiri 2003), we bootstrap blocks of temperature observations

(of 12 days length) rather than single-day observations (like, e. g., Werner and Gerstengarbe

1997). Experiments with different block lengths suggest that 12 days blocks yield bootstrap

series with realistic persistence behavior (physically associated to large scale circulation

patterns).

Since the bootstrapped temperature observations belong to dates from the training pe-
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riod, the temperature series ensemble can be extended to a bootstrap ensemble of calendar

dates (assume a single-station setting for now, for regional projections see below). Each

ensemble member therefore consists of a date-to-date-mapping,

f : FuturePeriod→ TrainingPeriod,

assigning each date of the future period to a date (and its concurrent weather observations)

from the training period, which may be selected more than once. A future temperature

series generated by applying f reproduces the prescribed temperature trend, which means

that

LinearRegression
[(

Tempf(t)

)

, t← FuturePeriod
]

= PrescribedTrend

holds within a chosen tolerance, which, for this paper, is set to 0.25 K. Note that trends

other than linear ones are feasible, although this may lead to convergence problems. For

details about how f is constructed, the reader is referred to Orlowsky et al. (2008).

By applying f , future series for any kind of observations available at the dates of the

training period can be obtained, for example, station observations, monsoon indices, river

runoffs and typhoon occurrences. Thus conserving past weather information in the future

bootstrap series is equivalent to the analogue approaches.

For regional multi-station projections, a preparatory step identifies climatological sub-

regions by a hierarchical cluster analysis based on temperature and precipitation. Individual

temperature trends are prescribed to one representative station of each sub-region. This

reduces the complexity and allows for the representation of spatial patterns of future climate

variables in the constraints. Here, five sub-regions and representative stations are identified

(see Fig. 3). Note that besides determining the representative stations and their trends, no
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adaptation or calibration specific to the region of interest is necessary.

b. Properties of the bootstrapped weather ensembles

The bootstrap/analogue approach ensures that at each time step spatial fields and com-

binations of variables are physically consistent, since they were once concurrent real-world

observations (no trend-elimination or any other alteration is applied prior to resampling).

Due to its design, our approach produces conservative projections in the sense that, if

the prescribed future trend continues the training period trend, any systematic change in

the set of observables linked to the temperature trend of the training period will continue in

the future period. For example, if during the training period a warming is observed and for

the future a further warming is prescribed, then any trends linked to the observed warming

will be likely to continue in the future projections. This agrees with the intuition that, on

the near future time scale (which we are dealing with here), changes of the physical and

statistical relationships within the climate system are small.

Bootstrapping schemes in general tend to reduce variability and persistence. Although

sometimes detectable, these effects are weak in STAR projections (see the case study in

Orlowsky et al. 2008).

STAR is implicitly based on the important assumption that joint statistical properties of

the different meteorological observables are the same in the training and the future period.

This is almost certainly not the case for a changing climate, and in particular not for the

end of the future period with the strongest warming. However, cross validations like in

Orlowsky et al. (2008) or in this study show that the errors resulting from this short coming
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are acceptable, at least for the long term climatological statistics examined here.

In order to generate climates with warmer average temperatures than in the training

period, STAR has to preferably select warm blocks (like the intentionally biased bootstrap

would do), in particular for the end of the future period (with the most elevated tempera-

tures), which can reduce the size of the sample of blocks considerably. This effect is shown

for one representative station (Figure 2 b), displaying frequencies at which temperatures are

selected from the training period as a function of the future year. It is obvious that the use

of high summer temperatures becomes more and more frequent, and that low temperatures

are used less by the end of the future period. The bandwidth and the size of the sample from

which blocks can be chosen at the end of the future period is thus narrowed. This leads to a

decrease of the amplitude of the annual cycle and to a reduced variability at the end of the

future period.

Obviously, this limits the applicability of such schemes to projections of future climates

which are “within the variability of the training period”. This condition can be evaluated

a posteriori by an “internal variability conservation” criterion (see Orlowsky et al. 2008):

The variability of a training sample is large enough to bootstrap series with a given future

temperature trend, if the temperature anomalies (that is, the time series after removing long

term trend and annual cycle) of the training series and a future bootstrapped series can be

seen as originating from the same distribution. In this case the imposed trend does not lead

to a statistically visible reduction of variability. Experiments with different prescribed trends

suggest that according to this criterion the warming in the training period can continue to

the future period with the same strength (that is, if a warming of 1 K has been observed,

a further warming of 1 K is feasible). However, from our experience even larger prescribed
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future trends can yield satisfactory results, in particular compared to the performance of

dynamical models (Orlowsky et al. 2008), if long term statistics are considered and a reduced

variability, especially at the end of the future period, is less important.

3. Data and validation

STAR resamples observational station data to generate ensembles of future climate pro-

jections, which are constrained by a linear temperature trend. For the future projections

(2001 to 2040) of this paper, the trend is derived from a GCM scenario run (ECHAM5).

Both observational and GCM data are described (Section a). A cross-validation experiment

which studies the applicability of STAR for the Yangtze river basin is presented in Section b.

a. Data

Observational data. Daily time series of the following variables are analyzed for the

present-day (training) and subsequent future climate projection: temperature, precipitation,

Yangtze runoff, a monsoon-index and typhoons in the East China Sea.

(i) Temperature and precipitation are taken from Feng et al. (2004). The variables are

daily minimum, mean and maximum temperature, and precipitation. We use 172 stations

along the Yangtze (Fig. 3), where we have uninterrupted temperature and precipitation time

series available from 1961 to 2000. Since the training data set ends in 2000, the years 2001

to 2040 are chosen as the future period. Station density varies across China, with fewer

stations per area in the mountainous regions compared to the eastern plains (see Fig. 3).
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(ii) Runoff at the stations Cuntan (106◦36′E, 29◦37′N, 165 m a.s.l.) and Datong (117◦37′E,

30◦46′N, 9 m a.s.l.) along the Yangtze supplements the information about the water cycle

(see Wang et al. 2008).

(iii) Monsoon-index: The Western North Pacific Monsoon Index (WNPMI, see Wang

et al. 2001, daily data 1961 to 2000, available from the Meteorological Department of the

University of Hawaii) is chosen as it captures the circulation affecting inland rainfall in

the Yangtze river catchment. It is defined by the horizontal gradient of lower tropospheric

(850 hPa) zonal wind which characterizes the intensity of the north Pacific subtropical high

by its vorticity (WNPMI = U850(1) minus U850(2), averaged over two rectangular areas (1)

and (2), Fig. 3).

(iv) Typhoons: Tropical cyclone track data in the rectangular area (115◦ . . . 130◦E,

20◦ . . . 35◦N, see Fig. 3) provide information about typhoon occurrence and intensity (date,

position and wind speed). The data set is available from the Joint Typhoon Warning Center

(http://metocph.nmci.navy.mil/jtwc.php, compiled by Sielmann, personal communica-

tion). To study the typhoons with landfall, we further analyze the tropical cyclone tracks

which reach over land in the rectangular area. For this, the coast is approximated by the

polygon (116◦E/22◦N, 123◦E/30◦N, 120◦E/35◦N), and the region to its west is considered as

land.

Model data. Data from the GCM ECHAM5 (Roeckner et al. 2003), which, compared to

other GCMs, performs relatively well over China (Xu et al. 2007), are used twofoldly here:

(i) They are compared both with observations from the training period and with future

projections. Therefore, an ECHAM5 run covering the training period 1961 to 2000 (Roeckner

et al. 2006a) is analyzed jointly with an ECHAM5 simulation for the future period 2001 to
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2040 (Roeckner et al. 2006b) which is driven by the SRES-A1B emission scenario (Nakicen-

ovic and Swart 2001). Both runs come on a Gaussian grid with a resolution of approximately

1.875◦. The 20th-century run is forced by observed greenhouse gas concentrations; the last

year 2000 serves to initialize the subsequent A1B-run for the 21st-century scenario. Hence,

both ECHAM5-simulations represent a continuous climate evolution from 1961 to 2040.

(ii) The temperature trend, which is prescribed for the future projections, is determined

from the ECHAM5-A1B-run: The linear temperature increases of the annual mean temper-

atures from 2001 to 2040 are calculated for the grid cells which embed the representative

stations. They range from 0.7 to 1.7 K. These increases are much stronger than the ones

observed in the training period (ranging between 0.1 and 0.9 K) and are thus likely to yield

climates lying outside the training period variability (compare Section 2 b). Further note

that in GCM simulations, temperature averages often deviate from observations, while tem-

perature changes are more realistic. The GCM-simulated increases of temperature from

2001 to 2040 are therefore assumed to start from the temperature levels observed at the

representative stations, instead of the respective GCM simulated temperature levels, of the

year 2000. Underlying this procedure is the assumption that the temperature bias of the

GCM is time independent, which could be problematic since GCMs are known to have drifts.

However, these drifts are of a smaller order of magnitude over our 40 years period than the

bias itself and should, therefore, not compromise our results.
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b. Validation

The performance of STAR in the Yangtze river catchment is evaluated in a cross valida-

tion experiment which supplements a model-cross-validation for the North Atlantic European

sector (Orlowsky and Fraedrich 2009). It is set up to generate the climate of a validation

period (1981 to 2000) from the independent preceding time-span 1961 to 1980. The same five

representative stations are used as for the future projections (Fig. 3). The prescribed linear

temperature trend for the validation period is determined by a regression analysis of the

annual mean temperature series at the five representative stations 1981 to 2000; a hundred

ensemble members are created. Generally, these projections do not fulfill the a posteriori

variability conservation criterion from Section 2 b, which means that the climate of the val-

idation period lies outside of the training period variability. A successful cross validation in

spite of this demanding setting gives strong evidence of the robustness of the projections, at

least for the long term statistics considered here. The comparison of the ‘true’ (observed)

validation climate with the STAR projections shows the following results (Table 1):

(i) The agreement between validation period observations and projections is close for

all statistics analyzed: annual mean temperature and precipitation, monsoon/precipitation

correlation, lengths of dry spells, 90%-quantile of Yangtze runoffs as flood indicators, average

summer (JJA) monsoon strength and annual occurrences of typhoons.

(ii) The spread of the ensemble is narrow and always includes the observed validation

period statistics. This hints at the robustness of the results, despite the short length of 20

years of the projected time series. Note that in a similar cross validation for the Elbe river

catchment (Orlowsky et al. 2008) the ensemble spread is larger for several statistics, showing
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that the narrow spread found here is not a methodological artifact.

These results suggest that STAR is a suitable tool for future climate projections of the

Yangtze river catchment, even despite the variability conservation criterion (Section 2 b) not

being fully satisfied.

4. Application to the Yangtze: present and future cli-

mates

The Yangtze river runs approximately 6300 km from its origins in the eastern Tibetan

plateau at 4000 m to the East China Sea. It transects different climate types such as plateau,

temperate inland and monsoonal climates which are controlled by (i) topography, (ii) lati-

tude characterizing radiative forcing and seasonality, and (iii) monsoonal systems induced by

the land-sea contrast (e. g. Domrös and Peng 1988; for comparison, see the moisture based

climate classification, Wu et al. 2006 or the widely used Köppen classification, Fraedrich

et al. 2001). This climatological complexity is challenging for statistical climate projections.

Present-day and future Yangtze climates are analyzed in ECHAM5 simulations and in sta-

tion observations/future projections. For ECHAM5, the grid cells covering the upper reaches

(that is, 23◦ . . . 37◦N and 90◦ . . . 102◦E) and those covering the lower reaches (25◦ . . . 35◦N

and 101◦ . . . 120◦E) are averaged. For the analysis of the observations and bootstrap projec-

tions, the course of the Yangtze is approximated by two straight lines (see Fig. 3 a): One

characterizes the upper reaches ranging from the sources in the high elevations to the eastern

part of the Tibetan plateau (above about 2000 m); the other line describes the lower reaches
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continuing eastward. The two lines cross approximately at the main bend of the Yangtze

river near Panzhihua. Upper (lower) reaches are represented by 8 (19) stripes perpendicular

to the two lines; station data within each stripe is averaged, leading to a single time series

of daily meteorological observations per stripe; the double width of the first stripe is due to

station scarcity. Climate statistics of these averaged time series are presented as profiles (see

Fig. 3 b, where upper and lower reaches are separated by a vertical line).

The future bootstrap ensemble contains 100 projections. None of these comply with

the a posteriori variability conservation criterion from Section 2 b. Strictly speaking, the

climatological variability of the training period is therefore overstretched by the ECHAM5-

derived temperature trends. However, since our analysis is restricted to long-term statistics

and because of the encouraging cross validation experiment (which also does not satisfy the

a posteriori variability conservation criterion from Section 2 b), we assume that the results

presented now are not critically affected by this drawback. Before the future projections

along the Yangtze are discussed in detail, the averages of the upper and lower reaches are

summarized (Table 2):

a) The GCM simulation by ECHAM5 for the present-day period (1961 to 2000) and the

future A1B-scenario (2001 to 2040) show an overall temperature increase of about 0.7 K (the

weighted average of upper and lower reaches); the increase is larger in the upper reaches

of the Yangtze. Note that STAR projects a higher temperature increase from training to

future period than ECHAM5. This is because the prescribed temperature increase is taken

from ECHAM5, but the prescribed average is based on the training period observations (see

Section 3 a), which leads to different increases of the average temperatures from the training

to the future period in observations/STAR and ECHAM5, respectively.
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b) The bootstrap ensemble indicates a precipitation increase which is more pronounced

in the lower reaches. Climate model precipitation (ECHAM5, simulated for the training

period) is much higher than observed, and also its spatial distribution does not coincide

with station data: the upper reaches in the observations are significantly drier than the lower

reaches, whereas ECHAM5 data indicate slightly wetter upper reaches. This mismatch is

supported by Hagemann et al. (2006) who note that Yangtze river catchment precipitation

is overestimated by ECHAM5 due to excessive monsoon precipitation, reaching from the

southern slopes of the Himalaya into the Yangtze river basin. Thus, ECHAM5 precipitation

does not serve as a good reference in this region. Another GCM (Gao et al. 2006) shows

exaggerated precipitation east of the Tibetan plateau, at least in part due to the too coarse

horizontal resolution (see also Gao et al. 2001).

c) The influence of the daily monsoon (WNPMI) on precipitation is measured by a

rank based correlation coefficient. Significant correlations exist only in the lower reaches

(see Fig. 6 and the monsoon paragraph in Section b) which become stronger in the future

ensemble, while correlations in ECHAM5 hardly change. For the training period, ECHAM5

overestimates the correlation strength in the upper reaches.

a. Temperature and precipitation: annual cycles and profiles

The future temperature and precipitation climates (2001 to 2040) are compared with the

training period (1961 to 2000): First, the annual cycles averaged over the upper and lower

reaches are shown (Fig. 4 a and b), with annual cycles of Yangtze runoffs completing the

water cycle information (Fig. 4 c). Second, the annual mean profiles of temperature and
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precipitation following the Yangtze (Fig. 5 a and b) are analyzed.

Annual cycles

The bootstrapped future annual temperature cycle averaged over upper and lower Yangtze

reaches (Fig. 4 a) shows warming in winter, spring and autumn, while the summer season

experiences a moderate cooling. The summer ‘cooling’ is weaker in the upper reaches, where

the ensemble spread of the future summer temperature (that is the range of all summer

temperatures from the bootstrap ensemble) shows an overlap with the training period. The

lower reaches show a stronger summer cooling. This coincides with the projected 90%-

quantile of daily maximum temperatures in the lower Yangtze reaches (not shown), which

also decreases. This summer cooling has already been observed at the end of the past century

(1971 to 2000, Wu et al. 2006).

The bootstrapped future annual precipitation cycle (Fig. 4 b) of upper and lower reaches

precipitation shows an increase in summer. This coincides with the projected cooling from

June to August. The summer monsoon season is extended to autumn in both upper and,

even more pronounced, lower reaches; in the upper reaches, also the pre-monsoon rainfall

increases. The observed decrease of the rainfall amount in spring and autumn (from 1971 to

2000, Wu et al. 2006) is not continued in the future ensembles. The differences between the

training and the future periods are stronger for the summer months (compared to the winter

months), and the strongest differences occur in the lower reaches; if relative differences are

considered, the upper reaches reveal the strongest increase in late fall/winter, while the lower

reaches show increases mainly in late summer and autumn. This agrees with the observation
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that rainfall variability is greater in summer than in winter, and that this difference is more

pronounced for the eastern parts of China (Domrös and Peng 1988).

The bootstrapped future annual runoff cycle (Fig. 4 c) corresponds to the one of precipi-

tation: For example in the upper reaches, April and May precipitation increases in the future.

This increase is also found in the spring runoff of the upper reaches, and consequently in the

spring runoff of the lower reaches. The lower reaches precipitation has its most pronounced

rise in August and September, with thus increasing autumn and early winter runoff in the

lower reaches.

Comparing these observations and future projections to climate model simulations, the

following is noted: (i) The future (2001 to 2040) annual temperature cycle in ECHAM5

is not the same as in the STAR projections (not shown). Although winter and spring

experience a slightly stronger warming than the rest of the year in the ECHAM5 data, the

summer cooling from the bootstrap ensemble is not found. (ii) Analyzing East Asian summer

monsoon under climate change (for the 21st-century, see Kripalani et al. 2007) reveals that

many GCMs extend the summer monsoon season into spring and autumn, together with an

overall increase of monsoon precipitation. The bootstrap projections are in agreement with

this finding. However, neither the GCMs studied in Kripalani et al. (2007) nor the ECHAM5

data used here show the asymmetry of the extension towards the autumn months projected

by STAR.
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Profiles

The profile of average temperature shows a clear dependence on topography, decreasing

with increasing elevation (see Fig. 5 a). The future projections span a very narrow band of

warmer temperatures according to the prescribed temperature trend. Temperature increase

is most pronounced for the upper reaches of the Yangtze river basin.

The profile of annual precipitation also corresponds to the inverted elevation profile (see

Fig. 5 b). The future ensemble indicates higher annual mean precipitation, with particularly

pronounced increases in the lower reaches, where precipitation is also highest. Note that

observations (from 1971 to 2000, Wu et al. 2006) reveal a detectable positive trend in pre-

cipitation for most of the Yangtze. The only parts which show negative trends (although

statistically not significant) are the source region and stripes 10 to 13. In these parts, STAR

projects only very small changes, whereas the other parts see a continuation of the precip-

itation increases from the training period. Also for annual precipitation, the range of the

ensemble is narrow which hints at a robust projection. The 90%-quantile of daily precipi-

tation increases in the future ensemble, corresponding to episodes of higher precipitation in

the future (not shown).

As a note we add that these future trends do not lead to changing climate classes ac-

cording to the Köppen classification (Fraedrich et al. 2001, not shown).

b. Climate impacts and extremes

Central China and especially the Yangtze are regularly affected by droughts and floods.

Near the end of the training period (1961 to 2000), several big flood events occurred with
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devastating economic and human losses. Typhoons also frequently affect the shore of the

China Sea. This section analyzes the future STAR projections with respect to some climate

phenomena which have impacts on society, namely heat and cold waves, droughts/dryness,

floods, monsoon and typhoons.

Heat waves, frost and dry spells

Heat waves (average period lengths of consecutive days with Tmax ≥ 25◦C) at the Yangtze

estuary (stripes 20 to 27) increase from about 13.7 days (training) to 15.6 (ensemble mean,

ensemble spread: 13.6 to 17.9 days), while there is only little change in stripes 1 to 19 (not

shown). On the other hand, cold waves (average period lengths of days with Tmin ≤ 0◦C)

decrease, in the averaged upper reaches from 15.4 days (training) to 13.1 (ensemble mean,

ensemble spread: 12.5 to 14.1 days), in the lower reaches from 3.5 days (training) to 3.0

(ensemble mean, ensemble spread: 2.7 to 3.2 days).

In STAR projections, persistence statistics can differ from those of the training period.

Here, “warm” blocks are preferably selected for the prescribed warming, which leads to

increasing heat wave lengths and decreasing cold wave lengths.

Dry spells (average period lengths of consecutive days without precipitation) follow the

elevation profile, with lengths of more than 6 days in the Tibetan plateau and less than 4

days in the eastern lower plains (see Fig. 6 a). Consistent with the increasing precipitation,

averages of the projected dry spells decrease (compared to present-day climate) strongest in

the upper reaches. The ensemble spread of dry spells is also consistent with the ensemble

spread of precipitation (Fig. 5 b) and the reduced probability of moderate to extreme SPI-
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dry states (see the next paragraph and Fig. 7 b). According to the future projections, dry

spells become less relevant in the Yangtze river catchment.

Wetness and dryness

The Standardized Precipitation Index (SPI, McKee et al. 1993) is introduced to monitor

dryness and wetness using precipitation only. Based on an “equal probability transforma-

tion” (Bordi and Sutera 2001; Bordi et al. 2004), it gives a uniform measure for dryness

and wetness in climatically differing regions. The monthly SPI chosen here is represen-

tative for the meteorological drought time-scale. A gamma-distribution is fitted for the

precipitation time series of a given calendar month, its cumulation determined, and the SPI

appointed following the standard normal distribution by conserving the cumulative probabil-

ity. Dryness and wetness are then classified as follows: moderate to severe wetness (dryness):

1 ≤ SPI < 2 (−1 ≥ SPI > −2); extreme wet (dry) conditions SPI ≥ 2 (SPI ≤ −2).

Changes of wetness or dryness can be quantified in SPI-terms (Sienz et al. 2007) using

the same distribution for the present-day training period and the future ensembles. The

overall increase in precipitation leads to the following results:

(i) The number of moderate to extreme wet classes (SPI ≥ 1) increases by about

7.5 percentage-points (Fig. 7 a) in the lower reaches. Thus about 35 (out of 40 years× 12 =

480 months) more wet months (from moderate to extreme) are expected in the projected

future period compared to the training period. This increase is even more pronounced in

the upper reaches. Especially the extreme wet months occur more frequently in the up-

per reaches (not shown). In contrast, the 90%-quantile of daily precipitation (not shown)
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increases primarily in the lower reaches.

(ii) The number of moderate to extreme dry classes (SPI ≤ −1, Fig. 7 b) decreases by

about 3 percentage-points (corresponding to 14 dry months less), but the extreme drought

events (SPI ≤ −2, not shown) hardly change. Thus, the decrease in dry conditions is

over-balanced by a significantly larger number of wet events.

Floods

Ensembles of future daily runoff series are generated by rearranging runoffs from the

training period following the STAR date-to-date-mappings. As an indicator for floods,

the 90%-quantile is computed at the two gauges Cuntan and Datong which are repre-

sentative for the upper and the lower reaches, respectively. For the upper reaches, the

future ensemble gives an unchanged 90%-quantile: observed training period average of

24400 m3 s−1, future ensemble average of 24038 m3 s−1, future ensemble spread between

23100 and 24800 m3 s−1. For the lower reaches, a slight increase is noted: observed training

period average of 49100 m3 s−1, future ensemble average of 51538 m3 s−1, future ensemble

spread between 49700 and 54300 m3 s−1. The higher 90%-quantile is in agreement with the

larger runoffs in the future period of the lower reaches (Fig. 4 c).

Monsoon

The Yangtze summer monsoon depends on the summer easterlies emerging from the

North Pacific (Wang et al. 2001) and thus on the shape and position of the North Pacific

subtropical high (Kripalani et al. 2007), which is represented by the Western North Pacific

23



Monsoon Index (WNPMI). The future monsoon-index series are obtained adopting the date-

to-date-mapping. Table 3 summarizes the monsoon-index analysis for the present climate

and its future projection:

a) The annual averages hardly differ between training observations and the future en-

semble. However, the future ensemble shows a strong decrease of the WNPMI in summer

(JJA) thereby continuing the negative trend observed during the training period (derived

from Wang et al. 2001). The mean summer WNPMI in the ECHAM5 simulations remains

almost unchanged from the training to the future period. The annual mean, however, de-

creases. Note that for the training period, the positive annual mean WNPMI of ECHAM5

contrasts the observed negative one.

b) The variability, measured by the standard deviation of the annual and the summer

averages, decreases in the future ensemble. This, however, might partly be a model artifact,

since resampling procedures tend to underestimate variabilities. ECHAM5 variability of

both the annual and the summer averages increases from training to future period.

To analyze the influence of the monsoon on precipitation along the Yangtze, a rank-based

correlation coefficient (Spearman’s ρ) between daily WNPMI and daily rainfall, of which

long-term trend and annual cycle are removed (see Cleveland et al. 1990), is shown in Fig. 6 b.

It reveals a weak but significant negative correlation at the Yangtze estuary. In the upper

reaches, the correlation vanishes. Apparently, the distance from the sea and possibly the

barrier of the Tibetan plateau reduce the influence of the monsoon on precipitation. In spite

of the low absolute values of the correlation, the decrease of the correlation strength from

estuary to the Himalaya is systematic. The future ensemble indicates a stronger negative

correlation, that is, a stronger monsoon control on Yangtze precipitation for the future
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period.

The ECHAM5-simulations of training and future period do not show this trend in the

WNPMI/rainfall-correlation. The correlation contrast between upper and lower reaches in

the observations and the bootstrap ensemble is not reproduced in the ECHAM5 data either,

which may be a consequence of the overestimated upper reaches precipitation (see Table 2).

Typhoons

The frequency of typhoon days in the East China Sea (Fig. 3 a) decreases by approxi-

mately 25% in the future projections: in the observed training period, there is an average

of 33.1 typhoon days per year, in the future ensemble, an average of 25.3, and the ensemble

range is between 21.8 and 30.4. This corresponds to a decrease of approximately 3.3 ty-

phoons per year for the future period, since an average typhoon lasts for about 2.4 days (in

this area). For the subset of typhoon days with landfall (see observational data, Section 2),

a decrease of about 35% is noted: In the observed training period, there is an average of

5.3 typhoon days per year, in the future ensemble an average of 3.4, and the ensemble range

is between 2.7 and 4.4. Note that a negative trend of the same order of magnitude is ob-

served during the training period (Ho et al. 2004; Chan 2005; Webster et al. 2005) which

continues in the future ensemble. This is supported by some GCMs (like ECHAM5) which

also simulate a decreasing future typhoon activity in the NW-Pacific (Bengtsson et al. 2007),

while others simulate unchanging typhoon occurrences (Stowasser et al. 2007).

Many GCM scenarios show more intense typhoons for a future warmer climate (Bengtsson

et al. 2007; Stowasser et al. 2007) which is in agreement with an observed intensification of

25



typhoons in the past decades (Webster et al. 2005). The bootstrap projections show this

intensification for the typhoons with landfall, but not for the East China Sea in general

(Fig. 8 a and b): Frequencies of all wind speeds decrease by a similar proportion in Fig. 8 a.

For the landfall typhoons (Fig. 8 b), however, the frequencies of lower wind speeds decrease

more than the frequencies of higher speeds which tend to increase. This results in a higher

proportion of intense typhoons.

5. Conclusions

A statistical analogue resampling (STAR) is employed to obtain future climate profiles

along the course of the Yangtze, which transects all of the major climate zones of Central

China. A validation experiment confirms the applicability of STAR for future Yangtze cli-

mate projections. Based on the observed present-day climate along the Yangtze (training

period 1961 to 2000), an ensemble of future climate projections (2001 to 2040) is generated,

constrained by a linear temperature trend which, in our case, is taken from a GCM sce-

nario simulation (ECHAM5). The future climate projections are compared with ECHAM5-

simulations for both training and future periods. The following results are noted:

(i) Temperature shows a significant increase which is especially noticeable in the upper

reaches of the Yangtze and in the winter half-year. In summer, the projected temperature

reduces. This summer cooling may be related to enhanced precipitation.

(ii) Precipitation increases in the future projections which occurs in particular in summer

and in autumn; it is notable along the entire Yangtze profile with a more pronounced increase

closer to the estuary. This corresponds to the projected summer cooling which is physically
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plausible due to enhanced evaporation. It is supported by an increase (decrease) of SPI-

wetness (dryness) and decreasing lengths of dry spells. The overall precipitation increase is

partly due to an extension of the summer monsoon which, especially in the lower reaches, is

prolonged into autumn. For comparison, ECHAM5 precipitation shows hardly any change.

(iii) Monsoon: Summer (JJA) averages of the Western North Pacific Monsoon Index

(WNPMI) decrease in the future projections. Furthermore, a stronger negative correlation

between the WNPMI and precipitation in the lower reaches – that is, a stronger monsoon

control on the Yangtze basin precipitation – is found in the future bootstrap ensemble;

ECHAM5 simulates an almost unchanging WNPMI.

(iv) The annual runoff cycles of Yangtze stations follow precipitation. The projected

90%-quantile, which is a measure for floods, increases slightly in the lower reaches.

(v) Typhoon occurrence decreases by 25% in the future projections which is in agreement

with several GCM-studies. Intensification of typhoons is found in GCM scenarios and in the

ensemble of typhoons with landfall.

(vi) Many trends in the projections continue the trends already present in the training

period which supports the plausibility of STAR.

(vii) Profiles along the Yangtze from observations and projections are remarkably “par-

allel”. This is due to the fact that, at every station, the projected future series are assembled

from observations of that very station, thus taking all local characteristics like topography

into account. The spatial structure of the climate is therefore highly detailed in the pro-

jections and also meteorologically consistent. Due to their coarse spatial resolution, GCMs

cannot provide this detailed representation of local conditions. This accounts, for exam-

ple, for the misrepresentation of the annual precipitation contrast between upper and lower
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reaches of the Yangtze in ECHAM5, which overestimates the upper reaches precipitation.

The missing WNPMI/precipitation correlation contrast between upper and lower reaches in

the ECHAM5 simulations may be another consequence.

The systematic errors in GCM simulations of regional climates and their computational

costs (compared to STAR: the 100× 40 years projections analyzed in this paper have been

generated on a common PC in less than a day) recommend the application of statistical

analogue resampling for future regional climate projections as a complement to GCM sim-

ulations. Also, the possibility to obtain large ensembles of future projections is a feature

reserved to statistical approaches which allows uncertainty to be evaluated on a stronger

basis.

Station data becoming available from China (Xie et al. 2007; Xu et al. 2009) make future

climate projections by the STatistical Analogue Resampling feasible in this region. Both

further developments of STAR and future applications to other parts of China and Eurasia

– and their comparison to future RCM simulations – are envisaged.
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future temperature series (gray), constrained by a prescribed future temperature trend (black

line, w.r.t. the annual means, black dots). Temperatures of a suitable block i from the

training period and the associated calendar dates (taking all weather observations of block i

with them) are assigned to a block in the future period, conditioned on the temperatures of

block i. In this illustrative examples, the 12 future days starting at 2001-04-29 are mapped

onto the 12 days starting at 1997-04-26.
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Fig. 2. a) ECHAM5 annual temperatures, averaged over the five grid cells which contain

the representative stations (see Fig. 3 a), illustrating the linearity of the temperature increase

(the variance explained by the linear fit is 53%). b) Frequencies per future calendar year

(gray scale coded) of the bootstrapped temperatures from the representative station in the

middle (Fig. 3 a), averaged over the entire ensemble.
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Fig. 3. a) Stations of the Yangtze river catchment (gray points), Yangtze river (black) and

stripes by which the station data is grouped (gray parallel lines); topography (gray-scale

coded, the Tibetan plateau in white), representative stations (cluster centroids) for the boot-

strapped future projections (black circles), areas for calculating the Western North Pacific

Monsoon Index (WNPMI, solid rectangles) and for analyzing typhoons (dashed rectangle).

b) The elevation profile along the Yangtze represents an average altitude of the stripes; the

vertical line marks the boundary between upper and lower reaches of the Yangtze.
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Fig. 4. Annual cycles (monthly means/sums) of a) temperature, b) precipitation and c)

runoff (at Cuntan and Datong) for the upper (left) and lower (right) reaches of the Yangtze:

annual cycles from the observed station data 1961 to 2000 (full line); spread (light gray

shaded), inter-quartile range (dark gray shaded) and median (dashed black line) of the STAR

ensemble projections (2001 to 2040). Bottom panels: Differences of future projections minus

training period observations, shades and lines as in top panels.
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Fig. 5. Annual mean a) temperature and b) precipitation along the Yangtze: profiles from

the observed station data 1961 to 2000 (solid black line); spread (light gray shaded), inter-

quartile range (dark gray shaded) and median (dashed black line) of the STAR ensemble

projections (2001 to 2040). Averages are taken on stripes perpendicular to the two Yangtze

segments (see Fig. 3; upper and lower reaches are separated by a vertical line). The stripes are

numbered along the x-axis. Bottom panel: Differences of future projections minus training

period observations; shades and lines as in top panel.
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Fig. 6. a) Average dry spell lengths and b) correlation between monsoon strength (WNPMI)

and daily precipitation along the Yangtze: profiles from the observation period (solid black

line); spread (light gray shaded), inter-quartile range (dark gray shaded) and median (dashed

black line) of the STAR ensemble projections. The dashed-dotted lines in the upper right

panel indicate the 90%-confidence interval for the Null-hypothesis (Spearman’s correlation

coefficient equals 0, serial correlation taken into account). Bottom panel: Differences of

future projections minus training period observations; shades and lines as in top panel.
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Fig. 7. Changes of a) moderate to extreme wetness and b) dryness classes of the Standard-

ized Precipitation Index (SPI) given as differences (in percentage points) of STAR future

projections (2001 to 2040) minus training period observations (1961 to 2000) along the

Yangtze: spread (light gray shaded), inter-quartile range (dark gray shaded) and median

(dashed black line) of projected differences. The zero-line corresponds to the probability of

the training period SPI (16%).
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Fig. 8. a) Frequency distribution (typhoon days per year) of typhoon intensities (wind

speed m s−1) in the East China Sea and b): frequency distribution of the typhoon days

with landfall. Top: Distribution from the observation period 1961 to 2000 (solid black line);

spread (light gray shaded), inter-quartile range (dark gray shaded) and median (dashed

black line) of the STAR ensemble projections (2001 to 2040). Bottom: Relative differences

of future projections minus training period distribution.
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Table 1. STAR validation: Observations and projections, both for the validation period

1981 to 2000. For both upper and lower reaches (see Fig. 3 and Section 4 for their definition):

mean annual temperature and precipitation, monsoon/precipitation correlation, mean dry

spells and Yangtze runoffs (the Cuntan and Datong gauges for the upper and lower reaches,

respectively). Concerning the adjacent Pacific: Summer monsoon, measured by the average

JJA Western North Pacific Monsoon Index (WNPMI), and typhoon days per year (see

Fig. 3). Both the ensemble average and the ensemble spread are given.

Validation period Upper reaches Lower reaches

(1981 to 2000) Observ. STAR Observ. STAR

Mean temperature 5.85 5.88 15.55 15.55

[◦C] 5.84...5.95 15.49...15.60

Annual precipitation 712 696 1204 1199

[mm year−1] 680...714 1168...1243

Correlation 0.00 -0.03 -0.11 -0.09

monsoon/precipitation -0.06...0.01 -0.11...-0.04

Mean dry spell 5.65 5.97 3.36 3.25

[days] 5.54...6.38 3.04...3.42

90%-quantile runoff 24300 24517 50100 49403

[m3 s−1] 23700...25400 47900...51060

Monsoon (JJA) 4.24 4.97

[m s−1] 4.12...5.63

Annual typhoon 33.25 33.70

occurences 30.60...35.80
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Table 2. Annual means of a) temperature, b) annual precipitation and c) monsoon/pre-

cipitation correlation: Upper and lower Yangtze reaches during training (1961 to 2000)

and future (2001 to 2040) period based on observations, STAR projections and climate

model simulations (ECHAM5). The results of the future period are given as entire-ensemble

averages and, below, as spread of the ensemble.

a) Temperature [◦C]

Upper reaches Lower reaches

Period Obs./STAR EH5 Obs./STAR EH5

1961–2000 5.71 5.12 15.49 14.19

2001–2040 6.87 6.07 16.30 14.75

6.80. . .6.93 16.24. . .16.35

b) Precipitation [mm year−1]

Upper reaches Lower reaches

Period Obs./STAR EH5 Obs./STAR EH5

1961–2000 698.46 1576.81 1198.52 1374.99

2001–2040 767.56 1576.55 1307.70 1386.35

747.21. . .796.95 1264.78. . .1346.89

c) Correlation monsoon/precip.

Upper reaches Lower reaches

Period Obs./STAR EH5 Obs./STAR EH5

1961–2000 -0.01 -0.08 -0.09 -0.05

2001–2040 -0.04 -0.05 -0.16 -0.06

-0.07. . .-0.01 -0.19. . .-0.14
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Table 3. The monsoon-index WNPMI of the training and the future period in observations,

STAR projections (ensemble average and spread) and ECHAM5 simulations [m s−1]. a)

Annual means, summer (JJA) means and b) the respective standard deviations (StDev) are

shown.

a) Annual mean JJA-mean

Period Obs./STAR EH5 Obs./STAR EH5

1961–2000 -1.71 1.04 4.49 8.99

2001–2040 -1.79 0.79 2.44 8.96

-2.04..-1.43 1.93..3.48

b) Interann. StDev JJA-StDev

Period Obs./STAR EH5 Obs./STAR EH5

1961–2000 0.82 0.95 1.85 2.54

2001–2040 0.72 1.16 1.73 2.78

0.43..0.90 1.30..2.12
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