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Abstract We introduce the following basic voting method: Voters submit both a
“consensus” and a “fall-back” ballot. If all “consensus” ballots name the same op-
tion, it wins; otherwise a randomly drawn “fall-back” ballot decides. If there is one
potential consensus option that everyone prefers to the benchmark lottery which picks
the favourite of a randomly drawn voter, then naming that option on all “consensus”
ballots builds a very strong form of correlated equilibrium. Unlike common consen-
sus procedures, ours is not biased towards the status quo and removes incentives to
block consensus. Variants of the method allow for large groups, partial consensus,
and choosing from several potential consensus options.

Keywords consensus decision making · voting method · fall-back method ·
benchmark · lottery · random ballot · strong correlated equilibrium
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1 Introduction

A major issue with consensus decision making is the question of what happens when
no consensus can be reached, e. g. when someone (or, in case of partial consensus
decision-making, a sufficiently large part of the group) “blocks”. If in this case the
issue is “laid down” and the status quo prevails, then all who favour that option have
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incentives to block. If, as is done often in practice, some common form of voting is
used as a fall-back method when consensus cannot be reached within a given time
frame (e. g., Saint and Lawson 1994), then all who prefer the (expected) result of
the fall-back method over the potential consensus option have incentives to block.
From a game-theoretic point of view, the combined procedure (seeking consensus
and using the fall-back method as needed) then often becomes equivalent to using
only the fall-back method in the first place, making it unlikely for rational agents to
reach any consensus different from the status quo and from the majority’s favourite.

We begin this paper with suggesting a radically different type of fall-back method
which will give all agents the right incentives to cooperate rather than block in situ-
ations where a potential consensus option exists. The suggested fall-back method is
Random Ballot, that is, choosing the expressed favourite of a randomly chosen agent,
a method known mostly for its unique property of being strategy-free (Gibbard 1977).
Our notion of “potential consensus” is a pragmatic one: Each option qualifies which
is preferred by everyone to some “benchmark”. Obviously, we cannot use as this
benchmark any option that is favoured by any agent, including the status quo option.
Rather, our benchmark is the lottery whose result is the true favourite of a randomly
chosen agent. Before stating things more formally, let us look at an example:

Example 1 A body of ten must choose between options A (the status quo), B (some
“main” motion), and C (an “amended” motion), where six favour A, four favour B,
and all consider C almost as desirable as their favourite.

If either the status quo (A) or the majority’s favourite (also A) is known to be the
result when no consensus will be reached, the six have incentives to make sure this
happens indeed, and will block a proposed consensus C. But if the fall-back method
is Random Ballot, agents will face a choice not between C and A, but between getting
C for sure and getting A or B with 60% and 40% probability, respectively. If all prefer
C to this “benchmark lottery”, as assumed, they have incentives to agree when C is
proposed as consensus.

That is, in situations where a potential consensus option exists, the effect of us-
ing Random Ballot as a fall-back method is to help the consensus to be found and
realized. This is because Random Ballot “levels the playing field” by distributing the
decision power in a completely egalitarian way, rather than giving it to a majority or
to the proponents of the status quo, and hence all agents have an interest in taking into
account all other’s preferences. In addition, if agents have procedural preferences (as
in Hansson 1996) in addition to those concerning the options only, e. g. for belonging
to the “winning” coalition or against randomness, they will try to reach a consensus
even more when facing the suggested fall-back method.

The paper is organized as follows. In Sec. 2, we formally define this group deci-
sion procedure as a basic voting method and note some properties, before studying
its strategic implications in a certain game-theoretic framework in Sec. 3. We will as-
sume that voters can communicate before voting but cannot enter binding contracts,
so our framework is a non-cooperative game-theory with correlated strategies where
the voters use some correlation device or mediator to coordinate their actions, as first
introduced by Aumann (1974). We will see that in our situation, any solution con-
cept that considers only the possibility of deviations by individual voters will leave



3

us with far too large a number of equilibria, only some of which lead to consensus.
Therefore, we will then take into account that coalitions might plan for correlated de-
viations from the correlated strategy. There are a number of existing solution concepts
for that setting which can be classified according to (i) whether they allow coalitions
to plan any deviation strategies before the correlation device is applied (ex ante) or
after that (ex post), and (ii) whether they can use a new correlation device or mediator
for a planned deviation or not.

For simplicity’s sake, we will here utilize an ex ante version with new devices
from Moreno and Wooders (1996), which we feel fits a typical voting situation quite
well, but adapt it to a more general utility model than the usual von Neumann–
Morgenstern model.1 Our main result is that under this adapted solution concept of
very strong correlated equilibrium, the voting method introduced here singles out
only a small number of easily identified equilibria, each of which either realizes a
potential consensus option or, if none such exists, the benchmark lottery.

In Sec. 4, we then shortly present some variants of the method which work better
with large groups or allow for partial consensus and choosing from several potential
consensus options, before discussing the performance of our approach in simulations
in Sec. 5 and concluding with some outlook.

2 The basic method

Throughout, we assume that a finite set N = {1, . . . ,n} of n > 1 agents or voters
wants to choose exactly one out of a finite set X of k > 1 mutually exclusive options
or alternatives, including the status quo option x0 if such exists. We define two types
of ballots (which we will modify later): On a consensus ballot, a voter i ∈ N marks
exactly one option c(i) ∈ X as “consensus”, while on a fall-back ballot, she marks
exactly one option f (i) ∈ X as “favourite”. Let us define the fall-back lottery p f and
the sure-thing lottery px by putting for all x,y ∈ X , x 6= y:

p f (x) = |{i ∈ N : f (i) = x}|/n, px(x) = 1, px(y) = 0.

Our basic voting method then assigns each option x a winning probability pbasic(x)
as follows:

Voting method 1 (Full consensus or Random Ballot fall-back)
Each voter secretly submits a consensus ballot and a fall-back ballot. If some option
is marked on all consensus ballots, that option wins. Otherwise, the option marked
on a randomly drawn fall-back ballot wins. Formally: If c(i) = x for some x ∈ X and
all i ∈ N, then pbasic = px, otherwise pbasic = p f .

1 Alternatively, one could base the analysis on the ex ante version with new devices from Milgrom and
Roberts (1996), the ex ante version without new devices from Ray (1996) or one of the ex post versions
with new devices from Einy and Peleg (1995), Ray (1998), or Bloch and Dutta (2009). A discussion of the
differences is, however, beyond the scope of this paper.
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2.1 Properties

Despite being anonymous (treating all voters equally), the above method is also neu-
tral (it also treats all options equally). In particular, it is not biased towards or against
the status quo like other procedures for consensus decision-making are. Furthermore,
it is monotonic in the sense that if one voter i changes her choice of c(i) or f (i) to
c(i) = x or f (i) = x, respectively, then this cannot decrease x’s winning probability.
As we will see below, it is also partially strategy-free in the sense that if a voter
strictly prefers some option to all others, she has no incentives to mark a different
option as “favourite”.

Unlike most common voting methods, ours is non-deterministic in the sense that
it potentially uses randomness not only for rare tie-breaking purposes. And it is non-
majoritarian in the sense that a majority might not have a way of enforcing a specific
outcome. Instead, any coalition M of voters can make sure a specific option x gets a
winning probability at least as large as the coalition’s relative size, no matter what the
remaining voters do: By marking x on both ballots, they ensure that pbasic(x)> |M|/n.
That is, the method gives equal power of probability allocation since each individual
voter or coalition can control her or its proportional share of the winning probability.
Still, when a potential consensus option can be found, rational voters will usually
not exercise this power but will rather avoid the resulting lottery and support the
consensus, as we will see in the following section in more detail.

3 Game-theoretic analysis

3.1 First game, before eliminating dominated actions

For any non-empty set A, let ∆(A) = {p ∈ [0,1]A : ∑a∈A p(a) = 1} denote the set of
probability distributions or lotteries over A. We will first interpret the above voting
method as an n-player game G1 given in normal form, whose sets of players and
outcome lotteries are N and ∆(X), and whose set of player actions (or pure strate-
gies) is Ai = A0 = X ×X for each i ∈ N, where an element (x,y) ∈ A0 is interpreted
as marking x as “consensus” and y as “favourite”. Let ca and fa denote these two
components of a, i. e., a = (ca, fa) for all a ∈ A0. Note that, later in the analysis, we
will also study a second game G2 defined by smaller sets Ai where some dominated
actions have been eliminated.

3.2 Preference model and assumptions

Our analysis is not restricted to any particular kind of utility model for the players.
Rather, we explicitly formulate some conditions on the voters’ preferences over cer-
tain lotteries over X . Let `<i `

′ denote the fact that player i considers lottery `∈∆(X)
equivalent or preferable (aka weakly preferable) to lottery `′. Strict preference � is
defined by `�i `

′ iff `<i `
′ but not `′ <i `.

Unlike in the von Neumann–Morgenstern expected utility model (“vNM” in the
sequel), we only require a quite mild form of “rationality”: we firstly assume that (1)
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weak preference <i is reflexive and transitive (i. e., a quasi-order), but not necessarily
complete, which would require ` <i `

′ or `′ <i ` for all `,`′ (for possible justifica-
tions of incomplete preferences, see e. g. Mandler 2005). Thus we have to distinguish
equivalence (or indifference) ∼, defined by ` ∼i `

′ iff both ` <i `
′ and `′ <i `, from

incomparability (or indecisiveness) ‖, defined by ` ‖i `
′ iff neither `<i `

′ nor `′ <i `.
In particular, one has to be careful not to confuse `′ 6<i ` (a non-existing weak prefer-
ence) with `�i `

′ (an strong preference in the other direction).
To be able to define the benchmark lottery and a notion of potential consensus, we

assume in addition that (2) each voter i ∈ N has a true favourite f0(i) ∈ X such that
λ f0(i)+ (1−λ )` �i λx+(1−λ )` for all x ∈ X \ { f0(i)}, ` ∈ ∆(X) and λ ∈ (0,1].
The benchmark lottery p0 ∈ ∆(X) is then the fall-back lottery p f of our basic method
that arises if all voters mark their true favourites, that is,

p0(x) = |{i ∈ N : f0(i) = x}|/n.

A potential consensus option is then any option x ∈ X that everyone weakly and at
least one voter strictly prefers to this benchmark lottery, i. e., for which x�N p0.

Finally, let us assume two consistency conditions regarding comparisons of the
benchmark lottery with other lotteries: (3) a strict preference between some option
x and the benchmark lottery p0 is retained when both are mixed with some other
lottery, that is, p0 �i x implies λ p0 +(1−λ )`�i λx+(1−λ )`, and x�i p0 implies
λx+(1−λ )`�i λ p0 +(1−λ )`, for all i ∈ N, x ∈ X , ` ∈ ∆(X) and λ ∈ (0,1].

And (4): when a voter prefers to replace in a mixed lottery some amount of some
lottery p′ ∈ ∆(X) by the same amount of p0, she must also prefer p0 to at least one
of the possible outcomes of p′; formally: for all i ∈ N, p′, ` ∈ ∆(X) and λ ∈ (0,1], if
λ p0 +(1−λ )`�i λ p′+(1−λ )`, then p0 �i x for some x ∈ X with p′(x)> 0.

Note that in the vNM model, all these assumptions (1)–(4) are implied by the simple
condition that each voter has a unique utility-maximizing option f0(i), whereas in
non-expected utility models, e. g. rank-dependent utility, this need not be the case
(for an overview of non-expected utility, see e. g. Machina 1987).

Later on, we will need the notion of a (proper) coalition, which is any non-empty
(proper) subset M of N. The relations <, �, ∼, ‖ are extended to coalitions in the
canonical way by writing ` <M `′ or ` ∼M `′ iff ` <i `

′ or ` ∼i `
′ for all i ∈ M,

respectively, and writing ` �M `′ or ` ‖M `′ iff ` <M `′ but not `′ <M `, or neither
` <M `′ nor `′ <M `, respectively. In particular, ` �N `′ denotes the fact that `′ is
weakly Pareto-dominated by `, i. e., all voters prefer ` to `′ weakly and at least one
voter strictly.

3.3 Solutions when only individuals can plan deviations

Let us shortly look at some classical solution concepts, suitably adapted for the above
preference model, that consider possible deviations by individual voters only.

A pure strategy equilibrium (PSE) is a tuple a ∈ ∏i∈N Ai, prescribing a specific
voting action of all players, such that no player i strictly prefers to vote differently.
Formally: a is a PSE iff there is no i ∈ N and bi ∈ Ai such that pbasic,b <i pbasic,a,
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where b = (a1, . . . ,ai−1,bi,ai+1, . . . ,aN), and pbasic,a is the outcome lottery of the
basic method (as defined above) when the voters vote according to a.

It is easy to see that for the basic method, there are three types of PSE: if n > 2, a
is a PSE if and only if one of the following holds:

1. All voters mark the same x on the consensus ballot and no-one strictly prefers the
fall-back lottery to x, i. e., for some x ∈ X and all i ∈ N, cai = x and p f ,a 6<i x.

2. All mark their true favourite, all but one voter j mark the same x on the consensus
ballot, and j does not strictly prefer x to p f ,a, i. e., fai = f0(i) for all i ∈ N, and
for some x ∈ X and some j ∈ N, x 6< j p f ,a and cai = x for all i ∈ N \{ j}.

3. All mark their true favourite, and each x is marked by at most n−2 voters on the
consensus ballot.

When there is a potential consensus option, the corresponding PSE of the first above
type elects it, but the quite numerous PSEs of the other types fail to elect a consensus,
hence we need a more restrictive solution concept. In the vNM model, both the so-
lution concepts of Nash equilibrium and of correlated equilibrium (Aumann, 1974)
are even more general than PSE, and adapting them for our more general preference
model would also only enlarge the set of equilibria instead of reducing it. So, the
unwanted equilibria of type 2 and 3 above only disappear when we strengthen the so-
lution concept by not only allowing for correlated strategies but also for coordinated
deviations by coalitions.

3.4 Correlated strategies and deviations

Our framework of correlated strategies for coalitions can be formalized like this. For
a coalition M, we call AM = ∏i∈M Ai the set of coalition actions for M, with a(i) ∈ Ai
for each a ∈ AM and i ∈M, and SM = ∆(AM) is the set of coalition strategies for M.
Each a ∈ Si = S{i} is called a mixed strategy for player i.

A coalition action a ∈ AN for the grand coalition N prescribes a specific voting
behaviour of all players, while a coalition strategy s ∈ SN for N encodes a possibly
correlated random process by which voters may choose these actions. One way to
achieve the correlation is that some trusted mediator (acting as a special form of
“correlation device”) draws an action profile a from the distribution s and privately
tells each player i to take action ai. If each player follows this advice, we say the grand
coalition strategy s ∈ SN is adopted. The voting method then produces an outcome
lottery ps ∈ ∆(X) defined by

ps(x) = ∑
a∈AN

s(a)pbasic,a(x) = ∑
a∈Ax

s(a)+ ∑
a∈A f

s(a)nx(a)/n,

where the subsets Ax = {a ∈ AN : ca(i) = x for all i ∈ N} and A f = AN \
⋃

x∈X Ax
contain the grand coalition’s consensus-x actions and non-consensus actions, re-
spectively, and nx(a) = |{i ∈ N : fa(i) = x}| is the number of voters marking x as
“favourite” under a.

Following Moreno and Wooders (1996), we assume that before the mediator rec-
ommends an action (ex ante), any coalition M may plan to deviate from his advice by
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agreeing on a deviation scheme2 δ that uses a new mediator (a “new device”). This
deviation scheme will be formalized here as a function which assigns to each coali-
tion action a ∈ AM a new, possibly correlated, coalition strategy δ (·|a) ∈ SM which
they plan to use instead of a should the mediator tell them to use a. To apply the
deviation scheme, each i ∈ M would send the advice ai received from the mediator
privately to the new mediator who then draws a new coalition action b according to
δ (·|a) and privately sends back bi to i, who finally uses bi instead of ai. If all i ∈M
follow the advice of the new mediator, the original strategy s∈ SN for the grand coali-
tion is transformed into a new, effective strategy that we denote by s/δ ∈ SN . It can be
written as (s/δ )(b?a′) = ∑a∈AM δ (b|a)s(a?a′) for all b ∈ AM and a′ ∈ AN\M , where
a?a′ denotes the grand coalition action that is the combination of the coalition action
a and the action a′ of the coalition’s complement.

3.5 Dominated actions, partial strategy-freeness, and the second game

Before stating our solution concept, we first eliminate some dominated actions from
the game G1 to get a simplified game G2. We call a coalition action a dominated if the
coalition has incentives to replace a by some other action no matter what the grand
coalition strategy is. Formally: a ∈ AM is dominated by b ∈ AM iff ps/δa→b

<M ps for
all s ∈ SN , and ps/δa→b

�M ps for at least one s ∈ SN , where δa→b is the deviation
scheme defined by δa→b(b|a) = δa→b(c|c) = 1 and δa→b(b′|a) = δa→b(c′|c) = 0 for
all c ∈ AM \{a}, b′ ∈ AM \{b}, and c′ ∈ AM \{c}.

Our first result is that the voting method is strategy-free on the fall-back ballot:

Lemma 1 The following holds in the game G1 under the above assumptions:
(a) Each individual voter has incentives to mark their true favourite no matter

what the grand coalition strategy is. Formally: Let i ∈N, x,y ∈ X and y 6= f0(i). Then
(x,y) is dominated by (x, f0(i)).

(b) If a deviation scheme δ makes a difference for some coalition M but requires
that some voter sometimes marks a different option as “favourite”, then each such
voter has incentives to deviate further from δ by marking her true favourite anyway.
Formally: If s ∈ SN , M ⊆ N, a ∈ A f , i ∈M, and δ is a deviation scheme for M such
that ps/δ 6∼M ps, (s/δ )(a) > 0, and fa(i) 6= f0(i), then ps/δ/δ ′ �i ps/δ , where δ ′ is
the deviation scheme for {i} defined by δ ′

(
(x, f0(i))|(x,y)

)
= 1 for all x ∈ X.

Proof Let a = (x,y), a′ = (x, f0(i)), and s′ = s/δaa′ . By definition, for all s ∈ SN we
have ps′( f0(i))> ps( f0(i)), ps′(y)6 ps(y), and ps′(z)= ps(z) for all z∈X \{y, f0(i)},
hence ps′ <i ps because of (2). Also, if s(b) > 0 for some b ∈ A f , then ps′( f0(i)) >
ps( f0(i)) and ps′(y)< ps(y), and thus ps′ �i ps because of (2). Since such an s exists
because of n > 1, a is dominated by a′. The second claim follows analogously. ut

In other words, under mild rationality assumptions, one can expect that the fall-
back lottery p f equals the benchmark lottery p0. Because of this result, we restrict
our further analysis to the case where all voters indeed mark their true favourite. That

2 This concept was called a “feasible deviation” in Moreno and Wooders (1996).
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is, we study a second game G2 where player i’s action set is now reduced to the set
Ai = {(x, f0(i)) : x ∈ X} ⊂ A0 of sincere actions. Consequently, all sets Ax are now
singletons containing only one consensus-x action which we will now denote by ax.

3.6 Solution concept and main result

We call a grand coalition strategy s ∈ SN a very strong correlated equilibrium if no
coalition has incentives to deviate from it, that is, if no M ⊆ N has any deviation
scheme δ with ps/δ �M ps. Note that a very strong correlated equilibrium does not
even allow for deviations in which only one member of the coalition has a strict
preference, whereas most common concepts of equilibrium, including that in Moreno
and Wooders (1996), only care about improving deviations in which all members of
the coalition strictly prefer the new outcome lottery. Also, we will see that we do not
have to weaken this concept to a “coalition-proof correlated equilibrium” in order to
get nice existence results, as was done in Moreno and Wooders (1996) by considering
only self-enforcing deviation schemes in which no sub-coalition has incentives to
further deviate. In other words, our solution concept singles out equilibria that are
stable even when coalitions can plan for deviations that are not self-enforcing but are
somehow else made “binding”.3

Our main result makes use of the fact that for all ` ∈ ∆(X) there is a strategy
s` ∈ SN such that ps` = `, defined by s`(ax) = `(x) for x ∈ X and s`(a) = 0 for all
a ∈ A f . In other words, the grand coalition can bring about any outcome lottery by
using a totally correlated strategy which consists of the corresponding mixture of
consensus actions. Nicely, it turns out that all very strong correlated equilibria are of
this form:

Theorem 1 Assume that agents are restricted to sincere actions and at least one po-
tential consensus option exists, i. e. y�N p0 for some y ∈ X. Then an s ∈ SN is a very
strong correlated equilibrium if and only if it is a weakly Pareto-undominated mix-
ture of consensus-x actions with options x that no-one strictly prefers the benchmark
lottery to.

Formally: s ∈ SN is a very strong correlated equilibrium of the second game G2
iff ` �N ps for no ` ∈ ∆(X), and, for all a ∈ AN with s(a) > 0, there is some x ∈ X
with a = ax and such that p0 �i x for no i ∈ N.

Proof For the grand coalition, there is a deviation scheme δ with ps/δ �N ps iff
` �N ps for any ` ∈ ∆(X), because for all b ∈ AN we can put δ (ax|b) = `(x) for all
x ∈ X and δ (a|b) = 0 for all a ∈ A f , so that ps/δ = `.

For a proper coalition M ⊂ N, we first assume that s is of the given form and
that there is a deviation scheme δ with ps/δ �M ps, and choose some i ∈ M with
ps/δ �i ps. Since M is proper, δ can only shift probability from some consensus-x
actions to some fall-back actions, where, for all such x, we have p0 �i x for no i ∈ N.

3 A deviating coalition will often be smaller, more homogeneous, and/or close-knit than the grand
coalition, so that socially binding agreements can not be ruled out in deviating coalitions even when legally
binding voting agreements are impossible. This is a situation somewhat similar to that in Moulin and Vial
(1978).
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Consequently, δ shifts outcome probability from a mixture p′ of such options x to the
fall-back lottery p0, that is, s = λ p′+(1−λ )` and s/δ = λ p0 +(1−λ )` for some
` ∈ ∆(X) and λ ∈ (0,1]. But then ps/δ �i ps and (4) imply that p0 �i x for one of
those x, a contradiction. Hence s is a very strong correlated equilibrium after all.

On the other hand, assume that s is a very strong correlated equilibrium and let
a ∈ AN with s(a) > 0. If a were in A f , we could choose some y ∈ X with y �N p0,
and put δ (ay|a) = δ (b|b) = 1 for all b ∈ AN \{a}, so that ps/δ �N p0 because of (3),
in contradiction to the equilibrium assumption. In other words, the grand coalition
would deviate from a by replacing it with the consensus-y action. Hence a = ax for
some x ∈ X . Assume p0 �i x for some i ∈ N, choose some x′ ∈ X \ {x} and put
b = (x, f0(i)),b′ = (x′, f0(i))∈ Ai. Then δb→b′ shifts probability from the consensus-x
action a to a fall-back action. Consequently, it shifts outcome probability from x to the
fall-back lottery p0, that is, s = λx+(1−λ )` and s/δb→b′ = λ p0+(1−λ )` for some
` ∈ ∆(X) and λ ∈ (0,1]. Hence ps/δb→b′

�i ps because of (3), again a contradiction
to the equilibrium assumption. In other words, i would deviate from a by blocking.
Thus p0 �i x for no i ∈ N after all. ut

Note that Lemma 1 and Theorem 1 imply that in case of vNM utilities, those
strategies characterised here are strong correlated equilibria (in the sense of Moreno
and Wooders 1996). In particular, the pure consensus-x actions with x �N p0 are
strong Nash equilibria of game G2 (in the sense of Aumann 1959), and, by virtue of
Lemma 1 (b), they are coalition-proof Nash equilibria of game G1 (in the sense of
Bernheim et al. 1987).

If there is a “natural” consensus option x which is not weakly Pareto-dominated
and which everyone prefers to the benchmark lottery, then it seems quite likely that
all agents will indeed support this consensus. For example, in situations where we
have at least partially transferable utility, the majority option can often be combined
with side-payments ensuring that also the minorities prefer this combined option to
the benchmark.4

4 Variants

Despite these positive theoretical results, our basic method has a lot of room for prac-
tical improvements. We will sketch some suggestive examples of practical improve-
ment, without attempting to exhaust the possibilities. First we will see how to modify
the basic method to improve its efficiency in choosing from among several potential
consensus options. Then we will consider the possibility of partial consensus in the
case when there is no realistic possibility of full consensus, i. e., when it is obvious

4 If one assumes linearly transferable von Neumann–Morgenstern utilities ui(`) for all i ∈ N and ` ∈
∆(X) and analyses the second game as a coalitional game in minimax, defensive-equilibrium, or rational-
threats representation (following Myerson 1991 again), its characteristic function v is v(M) = uM(p0) for
M ⊂ N and v(N) = maxx∈X uN(x) with uM(x) = ∑i∈M ui(x), its core is {a ∈ [0,∞)N : ∑i∈N a(i) = v(N) and
a(i)> ui(p0)}, and its Shapley value and nucleolus is φi(v) = ui(p0)+

(
v(N)−uN(p0)

)
/n. In other words,

the core allocations are those which adopt the option that maximizes total utility and redistribute the latter
so that all are no worse off than with the benchmark, and the focal allocation distributes this excess utility
equally.
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from the outset that there is not even one alternative that is preferred unanimously
over the fall-back option, but there still might be a near unanimous consensus option.

One way to automatically (i. e., without negotiations on the side) decide on a
unanimous consensus from among several viable alternatives is to supplement the
consensus and fall-back ballot with a third, ratings ballot on which each voter i as-
signs each option x a real-valued rating ri(x). This is then used as follows:

Voting method 2 Each voter submits a consensus, a fall-back, and a ratings ballot.
Let x be the marked option on a randomly drawn consensus ballot. If on each ratings
ballot, x is rated at or above the expected rating of the fall-back lottery, ∑y p f (y)ri(y),
then x wins. Otherwise, a fall-back ballot is drawn to decide the outcome.

This method has two nice strategic properties. First of all, for each voter with vNM
utilities it is optimal to specify these as her ratings, i. e., ri(x) = ui(x). This is because
the ratings do not influence the choice of x or the probabilities in p f but are only
used to decide between a given x and p f . Most other known methods with such a
“revelation” property (e. g. the famous one in Tideman and Tullock (1976) based on
the demand-revealing process by Vickrey, Clarke, and Groves) involve some kind of
side payments.

Second, for each voter knowing the set C of options preferred by everyone to p f ,
it is also optimal to mark the most preferred member of C on the consensus ballot. In
particular, with full information and non-empty C, the result will be a lottery among
the members of C with winning probabilities proportional to the number of voters
preferring the respective option.5

In the next subsection, we will also present an alternative that avoids the some-
what cumbersome ratings ballots, in which voters may mark a set of ”agreeable con-
sensuses”.

Another simple but iterative variant that could be used in assemblies was sug-
gested by one anonymous referee: going through all options in random order, ask
voters for their agreement to each option. The first option all voters agree to wins;
when no such option exists, Random Ballot is used. Assuming rational vNM voters,
an analysis of this stage game considering subgame-perfect pure strategies reveals
that when a potential consensus exists, the outcome of the whole process including
the initial random ordering is a certain mixture of all weakly Pareto-undominated
potential consensus options. If the random initial ordering is determined by drawing
fall-back ballots, this variant even becomes clone-proof (see the next subsection).

Next, consider the case where there may be a good possibility for a near consensus
option, but where unanimous consensus appears unlikely. No doubt the alert reader
has already anticipated some of the possibilities of using thresholds to cope with
this difficulty. For example, one can slightly relax the requirement of unanimity on

5 However, the method is not fully strategy-free since the fall-back ballot is now strategic, e. g., incen-
tives can arise to exaggerate and report more extreme favourites than the true favourites in order to raise the
approval for a wanted potential consensus. Still, such strategic behaviour would at least be detectable by
comparing the reported “favourite” with the reported ratings if both are required to be submitted together
on a combined ballot.
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the above methods. Similarly, a low threshold of support can be applied to the fall-
back method to filter out options considered to be dangerous, if there is no other
precautionary filter up front.

Below, we suggest a method that allows each voter to specify an individual thresh-
old for how much partial consensus an option must have before they are willing to
support that option as a potential consensus. This method avoids the potential conflict
engendered by the arbitrariness of a choice of threshold for the whole electorate and
retains the property of equal power of probability allocation.

4.1 TAPF voting

The following is a method designed to be applicable in situations where none, one,
or several potential consensus options of varyingly broad appeal exist:

On a TAPF ballot, a voter i ∈ N specifies a percentage t(i) ∈ (50,100] as her
“threshold for consensus”, marks one or more options as “agreeable consensus”
(which we code as a subset C(i) ⊆ X), marks one of these options as “preferred
consensus” (coded as c(i) ∈C(i)), and marks one option f (i) ∈ X as “favourite”.

Given a coalition M ⊆ N and some member i ∈ M, M is called feasible for i iff
the number of members j ∈M whose “preferred consensus” is among those marked
as “agreeable” by voter i is at least t(i) percent of all n voters, that is, if |{ j ∈ M :
c( j) ∈ C(i)}| > t(i)n/100. Denoting this condition by ϕ(M, i), coalition M is then
called feasible iff it is feasible for each of its members, i. e., if ϕ(M, i) for all i ∈M.
Note that since any union of feasible coalitions again fulfils this requirement, there is
a unique (but maybe empty) largest feasible coalition Mmax which contains all others:
Mmax =

⋃
{M ⊆ N : ϕ(M, i) for all i ∈M}.

Voting method 3 (TAPF voting) Each voter submits a TAPF ballot, and one of them
is drawn at random. If it belongs to the largest feasible coalition Mmax, its “preferred
consensus” wins, otherwise its “favourite” wins. Formally, the winning probabilities
are pTAPF(x) =

(
|{i ∈Mmax : c(i) = x}|+ |{i ∈ N \Mmax : f (i) = x}|

)
/n.

Example 2 A body of ten must choose between options A (the status quo), B (the
motion), C (an amended motion), and D (the status quo plus some monetary com-
pensation), where the first six have a ranking of A� D�C � B, the other four have
B � C � D � A, and all but the last voter prefer both C and D to the benchmark
lottery of 60% A and 40% B. With TAPF voting, in order to make sure their preferred
potential consensus gets a fair winning chance, the first nine specify a threshold of
90%, and mark D or C as their “preferred consensus” and both as “agreeable con-
sensuses”, while marking A or B as “favourite”,respectively. In this way, the result
is 60% D, 30% C, and 10% B.

Let us finally remark that the last method is not only anonymous, neutral, (in
a suitable sense) monotonic, and gives equal power of probability allocation, but is
also clone-proof in the following sense: Suppose some option x is replaced by a set
of nearly indistinguishable options x1, . . . ,xm, and all ballots are changed so that (i)
when x was marked as “agreeable consensus”, all xi are now thus marked, and (ii)
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when x was marked “preferred consensus” or “favourite”, then one of the xi is now
thus marked. Then these alterations leave the winning probabilities of all options
except x unchanged (a similar property called “composition consistency” is studied
in Laffond et al. 1996).

5 Performance in simulations

To assess the typical performance of the suggested kind of voting method both from
a more egalitarian and a more utilitarian perspective, we performed Monte Carlo
simulations using several common spatial models of utility (see, e. g., Enelow and
Hinich (1984) for the underlying theory).

A varying number k of options x were assumed to occupy points x̂ in some metric
space (X ,d) (the policy space), and a varying number n of voters i to possess ideal
points ı̂ ∈ X and to assign vNM utilities ui(x) equaling either the negative distance
−d(ı̂, x̂) (“linear”, risk-neutral model), or the negative quadratic distance −d(ı̂, x̂)2

(“quadratic”, risk-averse model), or the reciprocal distance 1/d(ı̂, x̂) (risk-acceptant
model). Points x̂, ı̂ were drawn independently at random from several distributions:
the one-dimensional standard uniform, standard Cauchy, standard normal, or standard
log-normal distribution, a three-dimensional standard normal (“multi-normal”), and a
symmetric one-dimensional normal mixture with density ϕ(y) ∝ exp(−(y−2)2/2)+
exp(−(y+2)2/2).

In each simulated situation, the benchmark lottery p0 and two options were deter-
mined: the utilitarian solution xu that maximized total utility t(x) = ∑i ui(x), and the
broadest potential consensus option xc which the largest subset of voters preferred
to p0: xc = argmaxx |Mx| with Mx = {i ∈ N : ui(x) > ui(p0)}. It was then assumed
that the share of the winning probability of this cooperating coalition Mxc was as-
signed to xc while the share of the remaining voters i was assigned to their respec-
tive favourites f (i). This results in the partial consensus lottery psim.(xc) = |Mxc |/n,
psim.(x) = |{i ∈ N \Mxc : f (i) = x}|/n for x 6= xc. This would for example arise under
TAPF voting when all voters in Mxc mark xc as their sole “agreeable consensus” and
specify 100|Mxc |/n as their threshold.

Overall, in about 57 percent of all situations, xc and xu were the same, i. e., the
utilitarian solution also was the broadest potential consensus option. Also, in only
about 44 percent of all situations, the Condorcet winner, i. e., the option that was
preferred to each other option by some majority, was equal to xc, while in more than
half of all cases, a different option turned out to be a broader potential consensus.
Moreover, in about three out of four situations, the value N− |Mx2 | for the second
broadest potential consensus option x2 was at most twice as larges as for xc, meaning
that very often more than one good consensus option existed.

In Table 1, we report several performance measures for different combinations of
k options, n voters, spatial distribution, and utility model, each from 1000 indepen-
dent simulations: (i) the average relative size C = |Mxc |/n of the cooperating coali-
tion; (ii) the average proportions Pc = |{i ∈ N : ui(psim.) > ui(p0)}|/n, Pu = |{i ∈
N : ui(xu)> ui(p0)}|/n of voters “profiting” from the partial consensus lottery or the
utilitarian solution, respectively, as compared to the benchmark lottery; and (iii) the
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distribution standard multi- mixed standard multi- mixed
normal normal normal normal normal normal

utility model lin. qu. lin. qu. lin. qu. lin. qu. lin. qu. lin. qu.

relative size S utilitarian efficiency E
k n of the cooperating coaltion of the partial consensus lottery
3 10 69 76 70 72 58 64 21 33 25 29 16 29

100 71 77 70 73 58 64 25 40 37 43 28 37
1000 71 77 70 73 58 64 27 40 36 44 30 39

6 10 77 90 74 80 65 79 45 73 52 60 34 63
100 78 92 75 81 64 78 52 80 62 70 50 68

1000 79 92 75 81 65 79 53 80 62 71 52 70
12 10 83 98 81 88 71 92 54 92 66 77 48 84

100 86 98 83 89 71 91 65 94 76 83 57 86
1000 86 98 83 90 72 91 67 95 76 85 58 86

24 10 88 100 87 95 78 98 61 96 73 86 56 94
100 92 100 90 95 79 98 75 99 85 92 63 95

1000 92 100 91 96 79 98 76 99 86 93 64 96

proportion Pc of voters profiting proportion Pu of voters profiting
k n from the partial consensus lottery from the utilitarian solution
3 10 41 53 46 47 33 46 68 73 69 70 58 63

100 64 78 73 76 60 73 70 75 70 73 58 64
1000 69 84 72 76 67 81 70 75 70 73 58 63

6 10 71 92 75 80 66 90 74 87 73 78 63 79
100 76 98 79 85 75 99 76 90 74 81 64 78

1000 77 98 79 85 75 99 77 89 74 81 65 79
12 10 78 99 84 90 70 98 77 96 78 85 65 92

100 82 100 88 92 75 100 84 97 82 89 70 91
1000 84 100 88 93 74 100 86 98 83 90 72 91

24 10 81 100 89 96 72 100 80 99 83 92 68 98
100 87 100 94 97 76 100 89 100 90 95 77 98

1000 88 100 94 97 77 100 91 100 91 95 79 98

Table 1 Performance measures from simulations, as defined in the text (rounded average percentages).
Values below 50 are in italics, proportions Pc or Pu at least 10 percent larger than their respective compar-
ison value Pu or Pc are in boldface.

average utilitarian efficiency E = (t(psim.)−t(p0))/(t(xu)−t(p0)) of the partial con-
sensus lottery, i. e., the ratio between the total utility of the consensus lottery and the
utilitarian solution after subtracting that of the benchmark lottery.

If the number of options is very small, the cooperating coalition size S is only
around two thirds on average, and the partial consensus lottery does not perform
much better than the benchmark lottery when judging by our utilitarian efficiency
measure E. For larger k, however, both S and E grow and seem to approach one for
most spatial distributions, and also did not change substantially for n > 10,000. From
the more egalitarian perspective, we see that, on the other hand, even for small n, the
proportion of voters profiting from the partial consensus lottery is larger than that
profiting from the utilitarian solution (or, likewise, from the Condorcet solution) on
average. The overall picture is basically the same for all studied spatial distributions
(the uniform, Cauchy, and log-normal have been omitted in the table since the results
were quite similar to those for the standard normal) and all three utility models (the
reciprocal being omitted in the table). Both the partial consensus lottery and the util-
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itarian solution perform worst in the model using reciprocal distances and best in the
model using quadratic distances, which can be expected because in the latter model,
for large k and n, it can easily be seen that the option nearest to the mean voter po-
sition not only maximizes total utility but must also be preferred to the benchmark
lottery by most voters.

6 Conclusion

This paper’s title succinctly summarizes our main idea: Some opportunities for con-
sensus can be exploited by methods that make essential, judicious use of randomness.
Random Ballot, as a benchmark of minimal fairness, provides a means of conceptual
definition (if not outright detection) of potential consensus options, namely those op-
tions that are preferred by all members of the consensus seeking community over
choice by Random Ballot lottery. Its use as a fall-back method provides rational in-
centive for the community members to adhere unanimously to a consensus option
without essential reliance on appeals to community spirit, guilt, exhaustion of pa-
tience, or other psychological manipulations.

For the domain of applicability of the basic method, we demonstrated formally
that no strategy, whether pure, mixed, or correlated, individual or factional, can de-
ter a set of rational voters from electing the consensus option with certainty under
conditions of perfect information about all preferences.

Moreover we hope to have convinced the reader that sufficiently careful use of
chance in the design of a voting method makes it possible for voters to choose a
consensus option from among several possibilities by secret, sincere ballot without
agreeing ahead of time which of the options is to be “the” consensus option. In this
context, “sincere” means that voters specify their true favourites as “favourite” and
they specify as “agreeable consensus” only those options that they genuinely prefer
to the benchmark lottery.

We have also endeavored to demonstrate how to adapt the basic method to set-
tings where there is little potential for full consensus, while preserving the essential
properties of anonymity, neutrality, monotonicity, and the newly introduced property
of equal power of probability allocation.

It may offend the sensibilities of some voters that we resort to a potentially high
entropy lottery like Random Ballot for more than a tie breaking role in these meth-
ods. However, when there is a real chance for consensus, the sure result of the method
will be the zero entropy lottery that elects a consensus candidate with certainty. On
the other hand, when there is no potential even for partial consensus, one can argue
that Random Ballot may well be the fairest alternative. In any case, we cannot usu-
ally rely on deterministic methods to choose “consensus candidates” except through
intimidation or other external incentives.

In a subsequent paper we intend to further examine the theme of low entropy
lotteries that give equal power of probability allocation like our basic method does.
The goal will then be to maximally exploit partial consensus among sub-factions of
voters to choose a lottery that maximizes an appropriate, natural amalgamation of
their expected ratings of the lottery winner.
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