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Abstract 

Weather data are essential inputs for crop growth models, which are primarily 

developed for field level applications using site-specific daily weather data. 

Daily weather data are often not available, especially when models are 

applied to large regions and/or for future projections. It is possible to generate 

daily weather data from aggregated weather data, such as average monthly 

weather data, e.g. through a linear interpolation method. But, due to the 
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nonlinearity of many weather-crop relationships, results of simulations using 

linearly interpolated data will deviate from those with actual (daily) data. The 

objective of this study was to analyse the sensitivity of different modelling 

approaches to the temporal resolution of weather input data. We used spring 

wheat as an example and considered three combinations of summarized and 

detailed approaches to model leaf area index development and associated 

radiation interception and biomass productivity, reflecting the typical range of 

detail in the structure of most models. Models were run with actual weather 

data and with aggregated weather data from which day-to-day variation had 

been removed by linear interpolation between monthly averages. 

Results from different climatic regions in Europe show that simulated biomass 

differs between model simulations using actual or aggregated temperature 

and/or radiation data. In addition, we find a relationship between the sensitivity 

of an approach to interpolation of input data and the degree of detail in that 

modelling approach: increasing detail results in higher sensitivity. Moreover, 

the magnitude of the day-to-day variability in weather conditions affects the 

results: increasing variability results in stronger differences between model 

results. Our results have implications for the choice of a specific approach to 

model a certain process depending on the available temporal resolution of 

input data. 

 

Keywords: Spring wheat; Weather generation; Temperature; Radiation; Crop 

growth model; Climate change 
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1. Introduction 

In recent years, crop productivity assessments have extended from the plot and 

field scale to the regional or even global scale including much longer time 

horizons (100 years or more), e.g. to study the effects of global climate change 

on global crop productivity (Ewert, 2004; Leemans, 1997). The only suitable 

tools for quantitative assessment of future global crop productivity are crop 

growth models. Early crop growth models mainly concentrated on plot and field 

scale (Hansen et al., 2006; Monteith, 2000; Van Ittersum et al., 2003) for 

assessments covering time-horizons of a season or a year. Due to the change 

in the scale of crop productivity assessments, crop growth models, with varying 

degree of detail, are increasingly applied at the continental or global scale, for 

example: LPJmL (Lund Potsdam Jena managed Land; Bondeau et al., 2007), 

DAYCENT (Stehfest et al., 2007), GEPIC (Liu et al., 2007), GLAM (Challinor et 

al., 2004), GAEZ (Tubiello and Fischer, 2007), and WOFOST (Reidsma et al., 

2009). 

If crop growth models are applied at large scales, problems arise with respect 

to missing input data (Nonhebel, 1994) and lack of parameter values for 

different regions with regard to e.g. specific cultivar characteristics. Applying 

models in regions with missing input data or in regions beyond the domain for 

which they were developed and validated, may lead to unreliable results (Ewert 

et al., 2005; Irmak et al., 2005). 

 

Field-scale crop growth models are typically based and validated on site-

specific daily weather input data. Historical global daily weather data sets are 

available, see e.g. Sheffield et al. (2006) and Hirabayashi et al. (2008), with 
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spatial scales of 1°  1° and 0.5°  0.5° grid cells, respectively. For climate 

change scenarios, some global circulation models (GCMs) provide daily 

weather data (LLNL, 1989), however, GCM performance at this level of 

temporal detail has hardly been evaluated; posing considerable limitations on 

the use of daily weather data from GCMs in climate change impact studies. 

Alternatively, monthly weather data aggregates for climate change scenarios 

are available from large-scale climate data sets. Missing daily weather data, 

such as radiation and temperature, can then be generated on the basis of 

these average monthly weather data (Nonhebel, 1994; Soltani et al., 2004). 

Conversion from aggregated, monthly data to daily data can be achieved by 

(a) simple linear interpolation between monthly averages, as e.g. applied in 

the LPJmL model (Bondeau et al., 2007; Sitch et al., 2003) and the GLAM 

model (Challinor et al., 2004) or (b) assuming that weather conditions for all 

days within one month are identical to the monthly averages, as e.g. applied 

in a global application of DAYCENT (Stehfest et al., 2007). In addition, 

monthly averages can be disaggregated to daily values using weather 

generators, such as stochastic weather generators (e.g. applied by Semenov, 

2009), parametric weather generators (e.g. applied by Liu et al., 2009), or 

semi-parametric weather generators (e.g. applied by Apipattanavis et al., 

2010). 

 

Crop growth is the result of nonlinear, dynamic relations between weather, soil 

water and nutrients, management, and specific crop characteristics (Hammer 

et al., 2002; Hansen et al., 2006; Semenov and Porter, 1995). Some 

processes, e.g. photosynthesis, show continuous and mainly nonlinear 
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changes in their rates if temperature changes. Other processes, such as 

phenological development, show a much more linear change with variation in 

temperature. Finally, crops also respond to absolute changes in temperature, 

i.e. if a crop experiences temperatures outside the range of those typically 

experienced, significant yield losses may be the result (Porter and Semenov, 

2005), e.g. a short period of extremely high temperatures near anthesis in 

wheat can result in a high number of sterile florets (Ferris et al., 1998; Mitchell 

et al., 1993). These relationships are implemented in crop growth models in 

various ways, with different levels of abstraction being used. 

 

Generated weather data, based on linear interpolation or on the assumption of 

identical weather conditions within one month, lack day-to-day variability in 

weather patterns, e.g. extreme temperatures are eliminated, in contrast to 

weather data generated by a weather generator. However, weather 

generators suffer from various shortcomings, such as lack of available 

observed site-specific daily weather data in order to calibrate the weather 

generator (stochastic and semi-parametric weather generators) or normal-

distributed data (parametric weather generators) (Apipattanavis et al., 2010). 

Moreover, so far, weather generators have only been tested for specific 

regions or sites, which leaves doubt about their applicability at the global 

scale. 

Although linear interpolation is a pragmatic method to generate daily weather 

data at the global scale, its applicability needs to be carefully examined, 

because of the nonlinear relationships implemented in crop growth models, 

which can bias model results considerably (Hansen et al., 2006; Nonhebel, 
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1994; Semenov and Porter, 1995). Especially in regions with high day-to-day 

weather variability, linearly generated weather data will show substantial 

deviations from actual weather. Consequently, differences in model results 

are likely to be largest in regions with high day-to-day variability. As extreme 

weather events have been projected to occur more frequently in the future 

(Beniston et al., 2007; Easterling et al., 2000; Salinger et al., 2005), the use of 

interpolated data will exclude this aspect of climate change from impact 

studies. 

Temporal aggregation of temperature and radiation data will have different 

effects on different processes considered in crop growth models, as these 

differ in their sensitivity to temperature and radiation. Moreover, the degree of 

detail taken into account in modelling specific processes may determine their 

sensitivity to temporally aggregated data. Our hypothesis is that a detailed 

model is more sensitive to the use of aggregated data than a more 

summarized model. A detailed model is defined in this study as a more 

explanatory model, i.e. a model that contains most of the interactions and 

elements important for the system. In contrast, a summarized model is in 

general more descriptive, it often contains simplified representations of the 

complicated interactions and processes in the system. The difference in 

sensitivity between detailed and summarized models is expected due to 

differences in their characteristic times (or reaction rates) and in their number 

of nonlinear relationships considered. Crop growth models applied at the 

continental or global scale differ in their level of detail to simulate the various 

processes of crop growth. Consequently, the use of temporally aggregated 
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weather data may have different effects on simulation results among global 

crop growth models. 

Therefore, the objective of this study is to examine the sensitivity of crop 

models with different modelling detail to the temporal resolution of weather 

input data. This should provide more insight in the up-scaling of important 

crop growth processes from field to regional level for global applications. We 

use spring wheat (Triticum aestivum) as an example and analyse two 

important processes, leaf area development, to simulate radiation 

interception, and biomass productivity. For each process a summarized and a 

more detailed modelling approach is used. None of the models used here 

covers damage due to extreme weather events such as heat stress. These 

impacts on crop yields are of increasing concern due to expected future 

climate changes (Battisti and Naylor, 2009; Long and Ort, 2010; Soussana et 

al., 2010) and are likely to be very sensitive to the temporal resolution of input 

data if included in crop growth models.. To examine the possible impacts, we 

have tested a simple threshold model with daily observed and monthly 

aggregated data sets, and discuss the implications for modelling. 

Consequently, the effects of temporal resolution of input data on results of 

crop growth models have to be studied, as data aggregation leads to 

information losses. 

 

Results are presented for nine locations across Europe, to analyse the effects 

under different climatic conditions. For each location, both fully irrigated and 

rainfed conditions were considered.  
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2. Material and Methods 

In crop growth models, two processes play an important role in determining 

biomass dynamics: radiation interception by leaves and utilization of the 

intercepted radiation to produce biomass via the photosynthesis process 

(Gabrielle et al., 1998; Monteith, 1977; Van Delden et al., 2001; Yin et al., 

2000). In this study we applied three combinations of summarized and 

detailed approaches to model radiation interception and biomass productivity, 

reflecting a range of detail in model structure: a summarized biomass 

productivity approach was combined with a summarized and a detailed leaf 

area index approach (Figs. 1a and 1b, respectively) and a detailed biomass 

productivity approach was combined with a summarized leaf area index 

approach (Fig. 1c). For each biomass productivity approach, a specific water 

balance was used to simulate effects of water stress. Details of the 

approaches and water balances used are given below and in the Appendix.  

Adam et al. (in press) evaluated the different model combinations against 

observed data for a wide range of climatic conditions under potential growing 

conditions, using observed daily weather data. They concluded that, after 

calibration, all three model combinations were able to reproduce observed 

yields within reasonable limits. 

 

The three model combinations to calculate crop productivity were driven by 

both actual and interpolated weather data. To quantify the sensitivity, the 

average relative differences ( , %) between total standing biomass at the 

end of the growing season with interpolated weather data ( , g C m−2) and 

with actual weather data ( , g C m−2) over the nine stations were calculated: 



 9 

 

       (1) 

absolute values were used to avoid cancelling out of results. 
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Figure 1: Schematic overview of the different model combinations: a) summarized leaf area index with 

radiation use efficiency, b) detailed leaf area index with radiation use efficiency, and c) summarized leaf 

area index with Farquhar photosynthesis. 
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A relatively detailed approach to model leaf area index ( , m2 m−2) 

dynamics is described by Spitters and Schapendonk (1990) and was applied 

in the light interception and utilization model (LINTUL) in several case studies 

of maize (Farré et al., 2000) and potatoes (Spitters and Schapendonk, 1990). 

Adapted versions of LINTUL (with the same  approach, but different 

assimilation approaches) were used for spring wheat (Ewert et al., 1999; Van 

Oijen and Ewert, 1999). 

Growth of  is divided into two phases. During the juvenile stage, or until a 

certain  threshold is reached ( , m2 m−2), expansion of  is 

exponential. It is governed by temperature through its effect on cell division 

and extension. If water stress occurs, increase in  is reduced by a water 

stress factor: the ratio between actual and potential transpiration. 

Beyond the juvenile stage,  expansion is restricted by the supply of 

assimilates and is calculated using the simulated rate of increase in leaf 

weight, which is based on the total biomass increment multiplied with a 

partitioning coefficient, defining the fraction of biomass allocated to the leaves, 

and with a constant specific leaf area of new leaves ( , m2 g C−1). To 

account for the effect of water stress on  beyond the juvenile stage, the 

increase in leaf weight is reduced through the water stress factor. Leaves die 

proportionally to their weight with a relative death rate, as a result of self-

shading ( , d−1) and, in the post-anthesis stage, from aging ( , d−1), 

which is affected by temperature (Fig. 2). 
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Figure 2: The relative death rate of leaves (d−1) as a function of temperature (°C), as used in the 

detailed leaf area index approach. 

 

2.1.2. Summarized leaf area index approach 

A more summarized approach to model  dynamics is based on the 

concept of the SWAT (Soil and Water Assessment Tool, Neitsch et al., 2005) 

model and is applied in the LPJmL model.  at any point in time is 

calculated as a fraction of a predefined maximum leaf area index ( , m2 

m−2). This fraction is calculated by a forcing function, defined in terms of 

sigmoidal and quadratic functions. Potential  is reduced if the required 

biomass to support the calculated  is not available. 

To account for water stress, in the pre-anthesis phase a water stress factor is 

included in the rate equation for  growth. The water stress factor is either 

based on the ratio of actual and potential transpiration (in combination with the 

radiation use efficiency approach), or based on the maximum transpiration 

rate that can be sustained under optimum soil moisture conditions, soil 

moisture content, potential canopy conductance, potential evapotranspiration, 

and a scaling factor (in combination with the Farquhar photosynthesis 

approach) as described in Sub-section 2.2.1. 
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The main difference between the two  approaches is the strong feedback 

between biomass production and  growth in the detailed  approach, 

while this feedback is weaker in the summarized  approach. Growth of 

 in the detailed approach is dependent on so-called allocation factors, i.e. 

the daily produced biomass is allocated to the different organs in dependence 

of development stage. Biomass allocated to the leaves is used to calculate 

 using . This implies that, in the detailed approach, unfavourable 

growing conditions in the beginning of the growing period may have strong 

effects on final yield levels. A negative feedback may occur: unfavourable 

growing conditions result in low biomass production, therefore little biomass is 

allocated to the leaves and this results in low radiation interception, which 

implies again low biomass production. The effect of unfavourable growing 

conditions is less strong in the summarized  approach, as leaf area is only 

reduced if water stress occurs or if biomass production is insufficient to 

sustain the root and leaf biomass (Eq. (A.12)). 

 

2.2. Biomass productivity 

2.2.1. Detailed biomass productivity approach 

A detailed approach to model biomass productivity is the biochemical 

photosynthesis model of Farquhar et al. (1980) with simplifications by Collatz 

et al. (1991). In the process of photosynthesis, CO2 is converted into 

carbohydrates through activation of plant enzymes by light. Photosynthesis is 

either limited by intercepted radiation ( , g C m−2 h−1) or by the availability of 

the enzyme Rubisco ( , g C m−2 h−1). Intercepted radiation is computed from 
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current  and a constant light extinction coefficient ( , −), using Beer’s law. 

Daily gross photosynthesis is the gradual transition between the two limiting 

rates and is influenced by ambient temperature, CO2 concentration, and 

radiation intensities. Daily net photosynthesis ( , g C m−2 d−1) is calculated 

as daily gross photosynthesis minus the “dark” respiration ( , g C m−2 d−1); 

Figure 3 shows the effect of temperature on daily net photosynthesis for a 

number of (constant) radiation intensities and a (constant) CO2 concentration 

of 350 ppm by volume. 

To calculate daily net primary productivity ( , g C m−2 d−1), maintenance 

respiration is subtracted from daily net photosynthesis, based on tissue-

specific C:N ratios, temperature, and the amount of biomass per organ. The 

remainder is reduced by 25% to account for growth respiration. 

In case of water stress, the model simulates a limited opening of the stomata, 

causing a change in ratio between intercellular and ambient CO2 

concentrations, which results in a reduced photosynthetic rate (Gerten et al., 

2004; Haxeltine and Prentice, 1996; Sitch et al., 2003). Water available for the 

crop is calculated through a water balance, in which the soil is represented by 

a simple bucket, containing two layers, each with a fixed thickness. Water 

content of both layers is updated daily, taking into account transpiration, 

evaporation, runoff, and percolation through the layers (for more details, see 

Gerten et al., 2004 and the Appendix). 



 14 

 

Figure 3: Temperature response of the daily net rate of photosynthesis, at an ambient CO2 

concentration of 350 ppm and various radiation intensities, as simulated with Farquhar 

photosynthesis. 

 

2.2.2. Summarized biomass productivity approach 

A more summarized approach to model biomass productivity is the radiation 

use efficiency ( , g C MJ−1) approach. For crops, a linear relation exists 

between accumulated intercepted radiation and accumulated biomass, the 

slope representing the  value (Monteith, 1977), which combines the 

effects of photosynthesis and respiration (Goudriaan and Monteith, 1990). The 

daily fraction of intercepted radiation by the crop is computed from current 

 and a constant light extinction coefficient, using Beer’s law. Daily net 

primary productivity ( , g C m−2 d−1) is calculated by multiplying the 

fraction of intercepted radiation with: daily incoming short-wave radiation ( , 

MJ m−2 d−1), 0.5 (to convert short-wave radiation into photosynthetically active 

radiation), and radiation use efficiency (Eq. (A.34)). 

In the absence of water stress, radiation use efficiency is constant; with water 

stress, it is reduced by the ratio of actual and potential transpiration. Water 
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available for the crop is calculated through a water balance, in which the soil 

is represented by a simple bucket, consisting of single layer that increases in 

thickness in downward direction with the growing roots. Water content of the 

layer is updated daily, taking into account transpiration, evaporation, runoff, 

and percolation through the layer (for more details, see Farré et al., 2000 and 

the Appendix). 

 

The main difference between the two biomass productivity approaches is the 

dependence of the detailed approach on incoming radiation, CO2 

concentration, and temperature, while biomass productivity calculated 

according to the summarized approach is only dependent on incoming 

radiation. Furthermore, the detailed approach includes a coupled 

photosynthesis-water balance scheme, which allows for accounting for 

changes in water use efficiency, under changing temperatures or at higher 

CO2 concentrations. 

 

Table 1 shows the location-specific (phenological) crop parameters; other 

crop parameters with regard to radiation interception and biomass productivity 

are kept constant across the locations (Table 2). 

 

Table 1: Location-specific crop phenological parameters. Source: (Boons - Prins et al., 1993), 

assuming that sowing dates and temperature sums until maturity of spring barley are 

representative for spring wheat. 
Location (country, latitude 
(°), longitude (°)) 

Day of emergence 
(day of year) 

Temperature sum until 
anthesis (°Cd) 

Temperature sum until 
maturity (°Cd) 

UK (52°21′, −0°07′) 56 1185 1693 
Denmark (57°06′, 9°51′) 95 1104 1577 

The Netherlands (52°06′, 
5°10′) 

85 1347 1924 

Germany (48°07′, 11°42′) 91 968 1383 

France (centre) (47°58′, 
1°45′) 

69 1160 1657 

France (south) (43°37′, 41 1504 2149 
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1°22′) 
Spain (centre) 
(40°27′,−3°33′) 

36 1470 2022 

Spain (south) (37°25′, 
−5°52′) 

36 1540 2200 

Italy (42°25′, 14°12′) 36 1431 2044 

 

Table 2: Most important parameters for the different model approaches and their values. 

Sources: (a) (Kiniry et al., 1995), (b) (Van Keulen and Seligman, 1987), (c) (Haxeltine and 

Prentice, 1996), (d) (Sitch et al., 2003), (e) (Gerten et al., 2004) 

Symbol Parameter Value and unit 
 

Parameters for the summarized leaf area index approach 

 and  
Fraction of leaf area index at the first and 
second inflexion points on the leaf area 
development curve 

0.05 and 0.95 (−)  

 and  

 

Fraction of temperature sum at the first and 
second inflexion points on the leaf area 
development curve 

0.05 and 0.45 (−)  

 Fraction of the total temperature sum when 
anthesis is reached and senescence starts 

 0.70 (−)  

 Specific leaf area of leaves 0.053 m2 (g C)−1  

 Maximum leaf area index 5.0 m2 m−2  

Parameters for the detailed leaf area index approach 

 
Maximum relative growth rate of leaf area 
index 

0.0108 (°Cd)−1  

 Initial leaf area index 0.025 m2 m−2  

 
Fraction of temperature sum when juvenile 
stage ends 

0.15 (−)  

 
Fraction of temperature sum when anthesis 
starts 

0.70 (−)  

 
Threshold leaf area index when juvenile 
stage ends 

0.75 m2 m−2  

 Base temperature 0 °C (a)* 

 Specific leaf area of leaves 0.053 m2 (g C)−1  

 Maximum death rate due to shading 0.03 d−1 (b) 

 Critical leaf area index above which self-
shading is assumed to start 

4.0 m2 m−2 (b) 

Parameters for the radiation use efficiency approach 

 Radiation use efficiency based on total daily 
radiation 

1.38 gC MJ−1  

 Light extinction coefficient 0.5 (−) (c) 

Parameters for Farquhar photosynthesis approach (C3 plants) 

 and  
The value of the parameter at 25 °C and the relative change in the parameter for 
a 10 °C change in temperature, respectively 

 

 

 

Michaelis constant for CO2 
Michaelis constant for O2 
 
CO2/O2 specific  
ratio 

30 Pa ( = 2.1) 

30  103 Pa 

( = 1.2) 
2600 µmol µmol–1 

( = 0.57) 

(c) 

 C3 quantum efficiency  0.08 µmol µmol−1 (c) 

  ratio for C3 plants 
0.015 (gC m−2 d−1) / 
(gC m−2 d−1)  

(c) 

 Optimal  for C3 plants. 
0.8 Pa Pa−1 (d) 

 Atmospheric pressure 100  103 Pa (c) 

 Partial pressure of O2 20.9  103 Pa (c) 

 Molar mass of carbon 12 gC mol−1  
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 Light extinction coefficient  0.5 (−) (c) 

 
Conversion factor for solar radiation at 550 
nm from MJ m−2 d−1 to mol photons m−2 
d−1 

4.6 ×10−3 
mol photons MJ-1 

 

 Ambient mole fraction CO2 µmol mol−1  

 Co-limitation parameter 0.7 (−) (c) 

 Maximum Priestley-Taylor coefficient 1.391 (−) (e) 

 Scaling conductance  3.26 mm s-1 (e) 

 Minimum canopy conductance, which 
accounts for water stress not directly related 
with photosynthesis 

0.5 mm s-1  (e) 

 

2.3. Weather data 

Weather input data for the model runs were extracted from a database 

described by Van Kraalingen et al. (1991), for various locations in Europe 

(Fig. 4), for the year 1982. It contains daily data for minimum and maximum 

temperature ( , , °C), daily incoming short-wave radiation ( , MJ m−2 

d−1), daily precipitation ( , mm d−1), vapour pressure ( , kPa), and wind speed 

( , m s−1). Daily average temperature ( , °C), used in the radiation 

interception and biomass production approaches, is calculated from minimum 

and maximum temperatures. 

Data were used from various European weather stations (see Table 1). 

 

Figure 4: Locations of the nine weather stations used in this study. 
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We concentrated in this study on the effects of linear interpolation of 

temperature and radiation data only, as effects of disaggregation of 

precipitation data strongly depend on the soil-water model considered. We 

here focus on crop growth processes only and do not compare different levels 

of detail in soil-water models, that would allow addressing the effects of 

disaggregating precipitation data. Besides, monthly precipitation is mostly 

disaggregated to daily values in crop growth models on the basis of 

precipitation generators rather than through linear interpolation (e.g. Bondeau 

et al., 2007; Liu et al., 2007). Therefore, precipitation is given as daily values 

in all simulations. 

 

2.3.1. Linear interpolation of temperature and radiation data 

Actual daily temperature and radiation values from the nine weather stations 

were used to derive interpolated daily values for temperature and radiation. 

Average monthly values, which were assigned to the middle of each month 

(e.g.  = 15 and  = 46), were calculated from the actual weather 

data. Interpolated daily values for weather variable at day k ( ,°C or MJ m−2 

d−1) were calculated as: 

  (2) 

where,  and  are monthly averages of weather variable  (°C or MJ m−2 

d−1) at the middle day of month  and , respectively, and  is the 

kth day of the year (Sitch et al., 2003; Soltani et al., 2004). The same 

procedure was applied to derive interpolated daily  values (°C). 
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As a measure for the day-to-day variability in weather conditions, the average 

annual difference (for temperature or radiation) ( , °C or MJ m−2 d−1) 

between linearly interpolated data ( ,°C or MJ m−2 d−1) and actual data 

( ,°C or MJ m−2 d−1) was computed: 

  (3)  

A larger difference indicates larger day-to-day variability. 

 

2.3.2. Occurrence of high temperatures 

Extremely high temperatures may strongly influence yields through their 

effects on grain set, since harmful effects occur already after exposure to high 

temperatures for durations as short as one day (Saini and Aspinall, 1982). In 

line with a study by Semenov (2009), we summed the number of days with a 

daily maximum temperature exceeding 27°C and 31°C during the ten days 

after anthesis; two threshold temperatures were used, as wheat cultivars differ 

in their tolerance to extreme temperatures (Mitchell et al., 1993; Porter and 

Gawith, 1999). Anthesis was defined as a fixed fraction (0.7) of the 

temperature sum till maturity (Table 1). Days were summed for the nine 

locations, based on the data-sets with 1) actual daily , 2) interpolated 

daily , 3) actual daily , and 4) interpolated daily . 

 

3. Results 

3.1. Weather data 

Day-to-day variability in weather conditions was calculated in order to 

examine its correlation with possible differences between model results due to 

the use of input data with different temporal resolutions. Among the 
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considered study locations, day-to-day variability in weather conditions was 

highest in Germany and lowest in southern Spain (Fig. 5 and Table 3). Day-to-

day variability in weather conditions in Denmark, the Netherlands, France, and 

the United Kingdom was comparable to that in Germany, while variability in 

Italy and in central Spain was comparable to that in southern Spain (Table 3). 

Table 3: Day-to-day variability in weather conditions. 

Location 
Average annual deviation 
between actual and average 
temperature (°C) 

Average annual deviation 
between actual and average 
radiation (MJ m-2) 

UK 2.22 3.12 

Denmark 2.19 3.15 
The Netherlands 2.28 3.13 

Germany 2.61 3.42 
France (centre) 2.40 3.16 

France (south) 2.19 3.22 

Spain (centre) 1.80 2.68 
Spain (south) 1.66 2.30 

Italy 1.80 2.71 
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Figure 5: Actual and interpolated (daily) temperature (°C) and radiation (MJ m−2 d−1) from 

weather stations in Germany and southern Spain in 1982. 

 

During the ten days following anthesis, actual daily  exceeded at least 

during one day the threshold temperature of 27°C in all locations, except 

those in the United Kingdom and in central France. In the Netherlands, 

southern France, Spain, and Italy, actual daily  also exceeded at least 

once the threshold temperature of 31°C in the ten days following anthesis. If 

interpolated daily  data were used, only in southern France, Spain, and 

Italy  exceeded 27°C,  never exceeded 31°C. However,  
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exceeded 27°C on more days if interpolated daily  was used than with 

actual daily . Daily  (actual and interpolated) never exceeded 27°C 

during the ten days following anthesis (Table 4). 

Number of days when  exceeded a certain threshold temperature for two 

input data sets;  (actual daily and interpolated daily) never exceeded 

27°C. 

Table 4: Number of days when  exceeded a certain threshold temperature for two input 

data sets;  (actual daily and interpolated daily) never exceeded 27°C. 

Days with actual daily 

 above 

Days with interpolated daily  

above 

Location 27°C 31°C 27°C 31°C 

United Kingdom 0 0 0 0 

Denmark 2 0 0 0 

the Netherlands 4 1 0 0 

Germany 1 0 0 0 

France (centre) 0 0 0 0 

France (south) 5 1 3 0 

Spain (centre) 9 3 10 0 

Spain (south) 6 3 10 0 

Italy 6 2 10 0 

 

 

3.2. Total biomass for actual and linearly interpolated weather data 

Sensitivity of the different model combinations to interpolation of input data 

was tested for interpolation of temperature and radiation separately and for 

the combination of both interpolated temperature and radiation. Figure 6 

shows the average (relative) differences between simulated total standing 

biomass with actual weather data and with interpolated weather data based 

on the nine stations (see Eq. 1), for irrigated and rainfed conditions. 
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Figure 6: Average differences (%) based on all nine locations in simulated total biomass at the 

end of the growing season, using “actual temperature and actual radiation” compared to the use 

of interpolated data, for irrigated and rainfed conditions. The error bars indicate the maximum 

and minimum differences. 

 



 24 

FIGURE 7 

 

Figure 7: Differences (%) in simulated total biomass at the end of the growing season using 

“actual temperature and actual radiation” compared to the use of interpolated data for southern 

Spain and Germany for rainfed conditions. 

 

The models respond differently to the interpolation of the different types of 

input data. Differences under rainfed conditions are in general larger than 

under irrigated conditions, especially for the combination of both interpolated 

radiation and temperature. Using the Farquhar photosynthesis model with the 

summarized  approach, under rainfed conditions, results in an average 

difference of 15% (averaged over the nine stations, Fig. 6) in simulated total 

biomass between simulations with actual and simulations with the 

combination of both interpolated temperature and radiation, with a maximum 
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of 38% in Germany (Fig. 7). Using the  approach combined with the 

detailed  approach, under rainfed conditions, results in an average 

difference of 9% between simulations with actual and simulations with 

interpolated temperature and actual radiation data, with a maximum of 30% in 

the UK. The most summarized combination (  and summarized  

approach), under rainfed conditions, results in the lowest average difference 

(4%) between simulations with actual and those with actual temperature and 

interpolated radiation, with a maximum of 9% in Denmark. 

 

The effects vary among locations as shown for two contrasting locations: 

southern Spain and Germany (Fig. 7). Locations with a low day-to-day 

variability in weather conditions, such as southern Spain, show small 

differences as a result of the use of interpolated temperature and/or radiation 

data, for both irrigated and rainfed conditions. In contrast, locations with a high 

day-to-day variability, such as Germany, especially the use of the Farquhar 

photosynthesis approach results in large differences of up to 37%, if 

interpolated data for both temperature and radiation are used (Fig. 7). In Fig. 8 

we show the relationship between the day-to-day variability in weather 

variables (see Eq. 3), and the difference between model results with actual 

and interpolated weather data (see Eq. 1), for the model combination with the 

detailed biomass model (Fig 1c). It is evident that for this model combination a 

systematic positive linear relationship exists, i.e. a higher day-to-day variability 

in weather conditions results in a larger difference in biomass production 

between input data sets. Relationships between day-to-day-variability in 
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weather conditions and differences in simulation results for the other 

combinations of approaches are less distinct (not shown). 

 

Figure 8: Relation between the average annual difference between actual and interpolated 

weather data on the one hand (x-axis, indicating the magnitude of the day-to-day variability of 

the weather variables, Eq. 3), and the difference between model runs driven by actual and 

interpolated weather data on the other hand (y-axis, Eq. 1); for the combination of the Farquhar 

photosynthesis and the summarized leaf area index approach. 

 

The use of aggregated temperature data results for several stations in a small 

change in the timing of anthesis and in at most one day change in the 

simulated length of the growing season. Therefore, differences in simulated 

biomass are not attributable to simulated differences in length of the growing 

period, but are almost exclusively due to weather variability during the growing 

period. 

 



 27 

4. Discussion and conclusions  

The objective of this study was to analyse the sensitivity of crop modelling 

approaches, representing growth processes, with different detail, in response 

to changes in the temporal resolution of weather input data. Our results show 

that the simulated biomass depends on whether actual or interpolated 

temperature and/or radiation data are used. This is in line with earlier results 

of Nonhebel (1994) and Soltani et al. (2004). Nonhebel (1994) studied 

locations with high day-to-day variability in weather conditions and found 

overestimates of 5 − 15% for simulated potential yields as a result of using 

average weather data. Soltani et al. (2004) found significant over-estimates of 

yield with linearly interpolated input data at the locations with optimal or supra 

optimal air temperatures for crop growth and a high day-to-day variability. 

Importantly, in the present study, we find in addition, that the sensitivity to the 

interpolation of input data not only depends on the magnitude of the day-to-

day weather variability, but also increases with increasing detail in the process 

modelling. For the most summarized model combination, the difference at a 

particular site between simulated biomass with actual and simulated biomass 

with linearly interpolated input data is at most 10%, while for the most detailed 

model combination it is 37%.  

The large differences (higher simulated biomass with aggregated weather 

data) in the model with the Farquhar photosynthesis approach can be 

explained by the nonlinear temperature effect on the assimilation rate 

incorporated in that approach (Fig. 3). Due to the lack of day-to-day variability 

in linearly interpolated weather data, temperatures are more often at or near 

optimum values for growth, resulting in higher photosynthetic rates. In 
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contrast, the more linear nature of the other approaches resulted in smaller 

differences. Furthermore, we found for the Farquhar photosynthesis approach 

a positive linear relationship between the day-to-day variability in weather 

conditions and the differences in simulated biomass between simulations 

driven with actual and with linearly interpolated input data (Fig 8). This 

indicates that in locations with high day-to-day variability in weather 

conditions, and therefore large differences between actual and linearly 

interpolated weather data, differences due to the use of linearly interpolated 

input data are large. 

 

The required structure, parameter values and input data for a model to assess 

effects of extreme weather events, e.g. heat waves, on crop growth are not 

yet fully understood. Existing models that include these effects, often apply 

threshold approaches, as e.g.  thresholds for heat stress (Challinor et al., 

2005; Teixeira et al., 2010). Our results, however, suggest that current 

threshold models cannot be simply applied with temporally aggregated 

weather data, if calibrated with more detailed weather data. We cannot 

conclude that threshold models are generally unsuitable in combination with 

aggregated data, but at least current threshold values will have to be re-

parameterized if weather data with different characteristics (interpolated vs. 

actual; mean vs. maximum) are being used. Furthermore, whether threshold 

temperature models for heat damage to crops can be applied with interpolated 

monthly data also largely depends on the local day-to-day temperature 

variability and their statistical distribution characteristics. An in-depth analysis 
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of a global set of daily temperature measurements would be required, which is 

beyond the scope of this study. 

In addition to heat stress, effects such as yield reductions due to ozone 

pollution are also simulated using threshold values (e.g. Ewert and Porter, 

2000). This effect has not been considered here, as it is not addressed in any 

global-scale crop growth model, however, it is likely that re-parameterization is 

also advisable if input data with a different temporal resolution are being used, 

than that applied in the original model. 

 

Based on the results presented here, we stress the importance of the 

provision of daily weather data. Such data may be generated through weather 

generators, in combination with or directly by global circulation models. 

However, site-specific observed daily weather data, which are often required 

to calibrate weather generators, are currently unavailable for large parts of the 

Earth (Liu et al., 2009), which hampers the application of weather generators 

at the global scale. For that reason, we stress that observed daily weather 

data should be made available for more regions and measurement sites. 

Results of weather generators should be tested for various climates, 

especially for climates with extreme temperatures, in order to assess their 

applicability in climate impact assessments, which may require rather detailed 

crop growth models, at least for conditions of high day-to-day weather 

variability.  

Our hypothesis that model sensitivity to the use of temporally aggregated data 

increases with an increasing degree of detail in the modelling approach, is 

supported by the results of this study. This observation has implications for 
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the choice of a specific approach to model a certain process, which thus 

depends on the temporal resolution of the available input data. However, 

whether model uncertainty is unnecessarily increased if detailed approaches 

are combined with temporarily sparse weather data, needs further evaluation. 

Nevertheless, we suggest that the available temporal resolution of the input 

data and the implications for model results and model applicability need to be 

taken into account in the design of a (global) crop growth model. More 

detailed models need to be (re-)evaluated or re-parameterised if driven with 

less detailed input data, while more summarized models may prove to be 

unsuitable for studies addressing the effects of changes in day-to-day weather 

patterns, such as studies on weather extremes. 
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Appendix 

1. Radiation interception 

1.1. Detailed leaf area index approach 

During the juvenile stage or until a certain  threshold ( , m2 

m−2), the rate of increase of  is exponential and mainly driven by 

temperature, through its effect on cell division and extension: 

   (A.1) 

   (A.2) 

where,  ((°Cd) −1) is the maximum relative growth rate of ,  (°C) the 

effective temperature, calculated as the difference between daily average 

temperature ( , °C) and a base temperature ( , °C), and  (−) a 

water stress factor, derived from the ratio between actual and potential 

transpiration. 

Beyond the juvenile stage: 

  (A.3) 

where,  (g C m−2 d−1) is the simulated rate of increase in leaf weight 

and  (m2 (g C)−1) is a constant specific leaf area of new leaves.  

The senescence rate is described by: 

  (A.4) 

with: 

 and  (A.5) 

 (A.6) 
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where,  is an exogenously defined relation between temperature and the 

relative death rate due to ageing (Fig. 2), which only takes place after 

anthesis.  is the relative death rate due to shading, where  (m2 m−2) 

is the critical value above which shading only takes place and  (d−1), 

the maximum possible relative senescence rate due to shading. 

 

1.2.Summarized leaf area index approach 

Before senescence starts, the fraction of an exogenously defined maximum 

leaf area index ( , −) is calculated as: 

  (A.7) 

  (A.8) 

 (A.9) 

where,  (−) is the fraction, on a specific day, of the total temperature sum 

required to reach maturity (based on the effective temperature), and  (−) and 

 (−) are shape coefficients, calculated from the fractions of leaf area index 

( , −; , −) and the fractions of the temperature sum ( , −; , 

−) at exogenously defined inflexion points on the leaf area development curve. 

Following the onset of senescence,  is calculated as: 

  (A.10) 

where,  (−) is the fraction of the total temperature sum when 

senescence starts.  
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Potential leaf area index ( , m2 m−2) is calculated from an exogenously 

defined crop-specific maximum leaf area index ( , m2 m−2) and : 

  (A.11) 

 is reduced if the biomass required to support the calculated leaf area 

index is not available: 

  (A.12) 

where,  and  (g C m−2) are standing total biomass and standing root 

biomass, respectively (Bondeau et al., 2007; Neitsch et al., 2005). 

 

To account for water stress, in the pre-anthesis phase a water scaler ( ,−) is 

included to reduce . This water stress scaler is either based on the ratio 

of actual and potential transpiration (in combination with the radiation use 

efficiency approach), or (in combination with the Farquhar photosynthesis 

model) as follows: 

  (A.13) 

where,  is water supply (see Eq. (A.30), mm d−1),  potential 

evapotranspiration (mm d−1),  a scaling factor (mm s−1), and  potential 

canopy conductance (see Eq. (A.29), mm s−1) (Gerten et al., 2004). 

 

2. Biomass productivity 

2.1. Detailed biomass productivity approach 

Daily net photosynthesis ( , g C m−2 d−1) is calculated as the gradual 

transition between the light-limited ( , g C m−2 h−1) and Rubisco-limited ( , g 

C m−2 h−1) conditions: 
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 (A.14) 

where, θ  is a co-limitation parameter (−),  (h d−1) the day length, and  (g 

C m−2 d−1) the “dark respiration”, with: 

   (A.15) 

  (A.16) 

where,  (MJ m−2 d−1) is daily absorbed photosynthetically active 

radiation and  (mol photons MJ−1) a conversion factor for solar radiation, 

with: 

 ,  (A.17) 

 ,  (A.18) 

 (Pa), the partial pressure of CO2 in the intercellular air spaces of the leaf:  

 and  (A.19) 

 (Pa), the partial pressure of ambient CO2: 

  (A.20) 

 (Pa), the CO2 compensation point: 

 , and  (A.21) 

the temperature dependent parameters , , and : 

  (A.22) 

where, the number 24 (h d−1) is the number of hours per day,  (–) a 

temperature stress factor,  (g mol–1) the atomic mass of carbon,  the 

C3 quantum efficiency (µmol µmol−1),  (Pa) the partial pressure of oxygen, 
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 (Pa Pa−1) the ratio of  to  (  =  under optimal water conditions),  

(µmol mol–1) the ambient mole fraction of CO2,  atmospheric pressure (Pa), 

 (Pa) the Michaelis-Menten constant for CO2,  (Pa) the Michaelis-

Menten constant for O2,  (µmol µmol–1) the CO2/O2 specificity ratio, with  

either ,  or , and  the accompanying  values, and  (g C m−2 

d−1) the maximum daily rate of photosynthesis:  

   (A.23) 

with: 

 ,  (A.24) 

 , and  (A.25) 

the “dark” respiration ( ): 

  (A.26) 

where,  is a constant  ratio (−). 

 

In case of water stress, the photosynthesis rate is related to canopy 

conductance through the diffusion gradient in CO2 concentration as a result of 

the difference in  and . This can be expressed in terms of total daytime 

net photosynthesis. Total daytime net photosynthesis ( , g C m−2 d−1) is 

calculated as: 

  (A.27) 

Or, expressed in terms of canopy conductance: 

  (A.28) 
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where,  (mm s−1) is average daytime canopy conductance,  (mm s−1) the 

minimum canopy conductance, which accounts for water loss not directly 

related with photosynthesis, the factor 1.6 accounts for the difference in the 

diffusion coefficients of CO2 and water vapour; in Eq. (A.28)  is expressed 

in mm d−1 (the conversion from g C m−2 d−1 to mm d−1 is based on an the ideal 

gas) and  is expressed in s, 

 is calculated by rearranging Eq. (A.28): 

  (A.29) 

Maximum (non-water limited) daily net potential photosynthesis rate is 

calculated with help Eq. (A.28) with  = , and accordingly, applying Eq. 

(A.29) and Eq. (A.14) with  =  and  = , i.e. all available 

photosynthetically active radiation, gives the maximum average daytime 

canopy conductance, i.e. maximum potential canopy conductance ( , mm 

s−1).  

 

Water stress occurs when water supply ( , mm d−1) is lower than water 

demand ( , mm d−1). Supply is given by the maximum daily transpiration rate 

possible under well-watered conditions ( , mm d−1) and the relative soil 

moisture in the rooting zone ( , m3 m−3): 

  (A.30) 

The soil is represented by a simple bucket containing two layers, each with a 

fixed thickness and a fixed fraction of the roots present. The soil water content 

of each layer is updated daily, taking into account transpiration, evaporation, 

runoff, and percolation through the layers.  is calculated by summing the 
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soil water content of the two soil layers, which are multiplied by the fraction of 

roots in the specific layer and divided by its thickness. Finally,  is expressed 

as a fraction of , which is a soil-specific parameter, indicating the 

difference between field capacity and wilting point. Initialisation of the water 

balance is obtained by a spin-up run (for more details, see Gerten et al., 

2004). 

 

Demand is dependent on the fraction of the daytime the canopy is wet ( , −), 

potential evapotranspiration ( , mm d−1), based on the Priestley-

Taylor equations, , and an empirical parameter  (mm s−1): 

  (A.31) 

Water stress results in a lower canopy conductance, therefore, Eqs. (A.20) 

and (A.33) are solved simultaneously, using a bisection method, to obtain 

values of  and  under water-limited conditions. 

 

Finally, net primary production ( , g C d−1 m−2) is calculated as: 

  (A.32) 

where,  (g C m−2 d−1) is the maintenance respiration of roots, storage organs 

and a reserve pool, respectively, based on tissue-specific C:N ratios, 

temperature, the amount of biomass, and a respiration rate, and  the growth 

respiration: 

 (A.33) 

A more detailed description of the functions used is provided by Haxeltine and 

Prentice (1996) and Sitch et al. (2003). 
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2.2. Summarized biomass productivity approach 

Net productivity ( , g C m−2 d−1) is calculated as: 

 (A.34) 

where,  (g C MJ−1) is the radiation use efficiency,  (MJ m−2 d−1) daily 

incoming short-wave radiation, and  (−) the light extinction coefficient, the 

number 0.5 (MJ PAR (MJ short-wave radiation)−1) is used, because half of the 

daily incoming short-wave radiation is photosynthetically active radiation, and 

 (−) a water stress factor, i.e. the ratio of actual and potential transpiration. 

Potential transpiration is calculated based on the Penman equation (Penman, 

1948), actual transpiration is calculated based on its potential value, but also 

on soil water content ( , m3 m−3) and soil characteristics. Water available for 

the crop is calculated on the basis of a soil water balance, calculated for one 

layer. The thickness of the layer increases with increasing root extension. 

Newly explored soil is assumed to be at field capacity. Water content of the 

soil is updated daily, taking into account precipitation, transpiration, 

evaporation, runoff and percolation. Initial water content, fed into the model, is 

used for initialisation of the water balance (for more details, see Farré et al., 

2000).
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Figure captions 

 

Figure 1. Schematic overview of the different model combinations: 

a) summarized leaf area index with radiation use efficiency, b) detailed leaf 

area index with radiation use efficiency, and c) summarized leaf area index 

with Farquhar photosynthesis. 

 

Figure 2. The relative death rate of leaves (d−1) as a function of temperature 

(°C), as used in the detailed leaf area index approach. 

 

Figure 3. Temperature response of the daily net rate of photosynthesis, at an 

ambient CO2 concentration of 350 ppm and various radiation intensities, as 

simulated with Farquhar photosynthesis. 

 

Figure 4. Locations of the nine weather stations used in this study. 

 

Figure 5. Actual and interpolated (daily) temperature (°C) and radiation (MJ 

m−2 d−1) from weather stations in Germany and southern Spain in 1982. 

 

Figure 6. Average differences (%) based on all nine locations in simulated 

total biomass at the end of the growing season, using “actual temperature and 

actual radiation” compared to the use of interpolated data, for irrigated and 

rainfed conditions. The error bars indicate the maximum and minimum 

differences. 
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Figure 7. Differences (%) in simulated total biomass at the end of the growing 

season using “actual temperature and actual radiation” compared to the use 

of interpolated data for southern Spain and Germany for rainfed conditions. 

 

Figure 8. Relation between the average annual difference between actual and 

interpolated weather data on the one hand (x-axis, indicating the magnitude of 

the day-to-day variability of the weather variables, Eq. 3), and the difference 

between model runs driven by actual and interpolated weather data on the 

other hand (y-axis, Eq. 1); for the combination of the Farquhar photosynthesis 

and the summarized leaf area index approach. 


