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[1] The quest for improved hydrological models is one of the big challenges in hydrology.
When discrepancies are observed between simulated and measured discharge, it is
essential to identify which algorithms may be responsible for poor model behavior.
Particularly in complex hydrological models, different process representations may
dominate at different moments and interact with each other, thus highly complicating this
task. This paper investigates the analysis of the temporal dynamics of parameter sensitivity
as a way to disentangle the simulation of a hydrological model and identify dominant
parameterizations. Three existing methods (the Fourier amplitude sensitivity test, the
extended Fourier amplitude sensitivity test, and Sobol’s method) are compared by
applying them to a TOPMODEL implementation in a small mountainous catchment in the
tropics. For the major part of the simulation period, the three methods give comparable
results, while the Fourier amplitude sensitivity test is much more computationally
efficient. This method is also applied to the complex hydrological model WaSiM‐ETH
implemented in the Weisseritz catchment, Germany. A qualitative model validation was
performed on the basis of the identification of relevant model components. The
validation revealed that the saturation deficit parameterization of WaSiM‐ETH is highly
susceptible to parameter interaction and lack of identifiability. We conclude that
temporal dynamics of model parameter sensitivity can be a powerful tool for
hydrological model analysis, especially to identify parameter interaction as well as the
dominant hydrological response modes. Finally, an open source implementation of the
Fourier amplitude sensitivity test is provided.

Citation: Reusser, D. E., W. Buytaert, and E. Zehe (2011), Temporal dynamics of model parameter sensitivity for
computationally expensive models with the Fourier amplitude sensitivity test, Water Resour. Res., 47, W07551,
doi:10.1029/2010WR009947.

1. Introduction

[2] Rainfall‐runoff models have become important tools
to represent and test our knowledge about the processes in a
hydrological catchment. One of the most important aims in
model building is to keep the model structure as parsimo-
nious as possible, to aid calibration and uncertainty analysis,
and to avoid parameter interaction and lack of identifiability.
[3] For this purpose, it is necessary to identify dominant

hydrological processes and to parameterize them ade-
quately in the model as functional components. This is
often not straightforward. Depending on the hydrological
context (e.g., rainfall driven, energy driven, or occurrence
of snowmelt) different processes will be active in the

hydrological system at different moments in time. Ideally, in
a parsimonious model with low parameter interaction, this
should be reflected in the model structure, with different
model components dominating simulated dynamics over
time. Hence, we expect simulation results to be most sensi-
tive to variations of exactly those parameters that belong to
the corresponding model component. For instance, we
expect a good model to be sensitive to variation of snowmelt
parameters during snowmelt periods, but rather insensitive in
snow free periods.

1.1. Sensitivity Analysis for Temporal Dynamics

[4] Sensitivity analysis (SA) assesses the impact of model
parameters on the model outcome, and is therefore a con-
venient tool to assess model behavior and particularly the
importance of certain parameterizations within the model.
[5] Classically, SA is of most interest in the context of

model calibration. The goal is then to determine the most
important parameters for the calibration process as well as
the unimportant parameters that may be fixed at a pre-
defined value. Therefore, in hydrology, sensitivity is most
often calculated for some objective function, for example
the root mean square error RMSE or the Nash‐Sutcliffe
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coefficient of efficiency. In contrast, we do not approach the
question of sensitivity from a calibration point of view.
By analyzing temporal dynamics of parameter sensitivity
(TEDPAS) of model output variables, such as discharge,
groundwater level or snow water equivalents, we can
quantify which model components dominate the simulation
response. This information can then be used as an indicator
for dominant processes in the catchment, as well as the
functioning of the model. In other words the output quantity
can be a summary statistic of model performance, but it can
also be the model output at a given point in time. The same
SA methods can be applied for both approaches, with the
main difference that for TEDPAS, SA is performed for each
time step individually. The model runs required for the
sensitivity analysis only need to be performed once, and it is
possible to use these model runs to compute the sensitivity of
any output quantity. TEDPAS as an analytic tool for identi-
fication of dominant model components has been reported
before by Sieber and Uhlenbrook [2005] and Cloke et al.
[2008].
[6] Using TEDPAS as an analytic tool is related to the

dynamic identifiability analysis introduced byWagener et al.
[2003]. However, the two methods serve a different purpose.
Identifiability analysis aims at identifying parameters that
can be confined by given observations. It is a necessary, but
not sufficient condition that parameters must be sensitive to
be identifiable. Nonidentifiable but sensitive parameters
occur for instance, when parameters are strongly correlated
as for the Nash cascade where a decrease of one parameter
can be compensated by increasing the other [Bárdossy,
2007].

1.2. Sensitivity Analysis Methods

[7] A wide range of SA methods exist. Many methods
characterize local gradients at a given point in parameter
space by assessing the response of the model output to a
small variation of single parameters (the so‐called one at a
time method). This is a sensible approach if SA is used in
the context of model calibration. The main disadvantage of
this method (and other local SA methods) is that information
is available for this very specific location in the parameter
space only, which is usually not representative of the physi-
cally possible parameter space. To overcome this problem
global SA methods have been proposed, where multiple
locations in the physically possible parameter space are
evaluated. Global methods may be used without prior cali-
bration of the model, which may reduce the total computing
time required considerably as calibration often requires a large
number of model runs. Global SA with regression‐based
methods rests on the estimation of linear models between
parameters and model output. The method provides good
estimates of parameter sensitivity for nearly linear models,
but fails if the model output shows nonlinear (especially
nonmonotonic) dependence on model parameters, which is
very common for hydrological models. Regional sensitivity
analysis (RSA) [Hornberger and Spear, 1981] and derived
methods approach the question by comparing an initial dis-
tribution of model parameters to the distribution after con-
ditioning of the model output to observations. This approach
is more suited to find identifiable parameters than to find
sensitive parameters (see above). Finally, a number of
methods are based on ANOVA‐like analysis of the depen-

dence of the model output variance to simultaneously modi-
fied parameters (partial variance–based methods):

V ¼
X

i

Vi þ
X

i< j

Vij þ � � � þ V1;2;3;...;n ð1Þ

V is the total variance, Vi is the variance caused by parameter
�i (first‐order variance), Vij is the covariance caused by �i
(second‐order variance) and �j and higher‐order terms show
the variance contribution from multiple parameters. Sensi-
tivities in terms of partial variance are then calculated by
dividing by the total variance V. Therefore, all such defined
sensitivities add up to 1. Variance‐based methods result in
reliable estimates of sensitivities also for strongly nonlinear
models, as was often demonstrated using examples where the
analytical solution can be computed [e.g., Saltelli and Bolado,
1998]. The main drawback of these methods is that they are
not easy to implement and the required number of model runs
is very high (usually >1000) for most approaches. The most
important variants of this method are Sobol’s method [Sobol,
2001] and the (extended) Fourier amplitude sensitivity test
((E)FAST) [Schaibly and Shuler, 1973; Cukier et al., 1973,
1975; Fang et al., 2003; Saltelli and Bolado, 1998].
[8] Some of the recent studies applying SA to rainfall

runoff, flood inundation, and water quality models are listed
in Table 1. Eight out of the 18 studies use variance‐based
methods. In seven studies, on the order of 10,000 model
runs were computed to calculate sensitivities, which is
impossible for computationally expensive models. To our
surprise, we were unable to find an application of FAST or
EFAST to rainfall‐runoff modeling.
[9] The selection of the appropriate method for analyzing

parameter sensitivity depends strongly on the goal of the
sensitivity analysis [Saltelli et al., 2006] (Figure 1). Three
types of application and their potential results are illustrated
in Figures 1a, 1b, and 1c using an arbitrary precipitation
pulse and a three‐parameter model. First, if the correct values
of a parameter can be fixed from additional, independent
data before calibration, then which parameter causes the
greatest reduction in variance (called factor prioritization
setting by Saltelli et al. [2006])? This use is illustrated in
Figure 1a). In Figure 1 (left), the distribution of parameter
values (normalized to the range between 0 and 1) is shown
using parallel coordinates [Wegman, 1990]. The grey sets
illustrate the physically possible parameter space while the
highlighted sets indicate the parameter range, to which P2 is
fixed from independent data without calibration. In reality,
there is no true parameter set because the parameters are not
observable [Beven, 2002; Zehe et al., 2007] or cannot be
identified [Klaus and Zehe, 2010]; however, we assume
perfectly determinable parameters for the illustration of the
factor prioritization setting.
[10] Figure 1 (right) shows the distribution of the model

output for the sampled parameter space in light grey. The
red shaded area shows the greatly reduced variance after
fixing P2. The black line shows the observations. Factor
prioritization is used to identify the relevant model com-
ponents for a certain time step or to identify periods with
high information content for the calibration of these para-
meters [Saltelli et al., 2006].
[11] A second use of SA is the identification of para-

meters that can be fixed at any value in their possible
range without significantly reducing the output variance.

REUESSER ET AL.: TEMPORAL DYNAMICS OF MODEL PARAMETER SENSITIVITY W07551W07551

2 of 14



T
ab

le
1.

R
ec
en
t
S
en
si
tiv

ity
A
na
ly
si
s
S
tu
di
es

in
S
ur
fa
ce

H
yd

ro
lo
gy

an
d
W
at
er

Q
ua
lit
y
M
od

el
in
ga

S
tu
dy

M
od

el
P
ar
am

et
er
s

M
et
ho

d
R
un

s
F
O
P
V

E
va
lu
at
ed

M
od

el
O
ut
pu

t

D
ef
la
nd

re
et

al
.
[2
00

6]
Q
U
E
S
T
O
R

5–
12

pa
ra
m
et
er
s:
ch
em

ic
al

re
ac
tio

n
co
ns
ta
nt
s

an
d
ox

yg
en

ex
ch
an
ge

co
ns
ta
nt
s

E
F
A
S
T

50
0

x
N
as
h‐
S
ut
cl
if
fe

co
ef
fi
ci
en
t

of
ef
fi
ci
en
cy

C
lo
ke

et
al
.
[2
00

8]
E
S
T
E
L
‐2
D

9
pa
ra
m
et
er
s:
m
oi
st
ur
e,

hy
dr
au
lic

co
nd

uc
tiv

ity
,

B
ro
ok

s‐
C
or
ey

an
d
va
n
G
en
uc
ht
en

pa
ra
m
et
er
s,

st
or
ag
e
pa
ra
m
et
er
s,
up

sl
op

e
pr
es
su
re
,

ri
ve
r
st
ag
e,

ra
in
fa
ll

M
M
G
S
A
b

<
12

80
x

fu
zz
y
m
em

be
rs
hi
p
(o
ve
ra
ll,

f(
t)
);

su
m

sq
ua
re
d
er
ro
rs

va
n
W
er
kh
ov
en

et
al
.
[2
00

9]
S
A
C
‐S
M
A

14
pa
ra
m
et
er
s
fo
r
up

pe
r
(3
)
an
d
lo
w
er

(5
)
zo
ne
s,

pa
rt
iti
on

(3
),
an
d
pe
rc
ol
at
io
n
(3
)

S
ob

ol
’s

m
et
ho

d
7.
5
×
10

6
x

4
ob

je
ct
iv
e
fu
nc
tio

ns

va
n
W
er
kh
ov
en

et
al
.
[2
00

8b
]

S
A
C
‐S
M
A

78
ce
lls

×
14

pa
ra
m
et
er
s
fo
r
up

pe
r
(3
)
an
d
lo
w
er

(5
)
zo
ne
s,
pa
rt
iti
on

(3
),
an
d
pe
rc
ol
at
io
n
(3
)

S
ob

ol
’s

m
et
ho

d
4
×
10

6
x

R
M
S
E

va
n
W
er
kh
ov
en

et
al
.
[2
00

8a
]

S
A
C
‐S
M
A

14
pa
ra
m
et
er
s
fo
r
up

pe
r
(3
)
an
d
lo
w
er

(5
)
zo
ne
s,

pa
rt
iti
on

(3
),
an
d
pe
rc
ol
at
io
n
(3
)

S
ob

ol
’s

m
et
ho

d
13

0,
00

0
x

R
M
S
E
,
T
R
M
S
E
,
S
F
D
C
E
,
R
O
C
E

W
ag

en
er

et
al
.
[2
00

9]
S
A
C
‐S
M
A

78
ce
lls

×
14

pa
ra
m
et
er
s
fo
r
up

pe
r
(3
)
an
d
lo
w
er

(5
)
zo
ne
s,
pa
rt
iti
on

(3
),
an
d
pe
rc
ol
at
io
n
(3
)

S
ob

ol
’s

m
et
ho

d
no

t
re
po

rt
ed

x
R
M
S
E
,
T
R
M
S
E
,
R
O
C
E

T
an

g
et

al
.
[2
00

7b
]

S
N
O
W
‐1
7–

S
A
C
‐S
M
A

5
pa
ra
m
et
er
s
fo
r
S
N
O
W

(p
re
ci
pi
ta
tio

n
co
rr
ec
tio

n,
m
el
tin

g
fa
ct
or
s
(2
),
w
in
d,

an
d
S
C
A

pa
ra
m
et
er
)

an
d
13

pa
ra
m
et
er
s
fo
r
S
A
C
‐S
M
A

(s
ee

ab
ov

e)

S
ob

ol
,
R
S
A
,
A
N
O
V
A
,
P
E
S
T

≤1
0,
00

0
x

R
M
S
E
of

di
sc
ha
rg
e,

R
M
S
E
of

B
ox
‐C

ox
tr
an
sf
or
m
ed

di
sc
ha
rg
e

P
ap

pe
nb

er
ge
r
et

al
.
[2
00

8]
H
E
C
‐R

A
S

6
pa
ra
m
et
er
s:
in
pu

t
qu

al
ity

(1
),
3
pa
ra
m
et
er
s
fo
r

ro
ug

hn
es
s,
pa
ra
m
et
er

fo
r
nu

m
er
ic
al

so
lu
tio

n,
do

w
ns
tr
ea
m

in
iti
al

sl
op

e

m
ul
tip

le
c

no
t
re
po

rt
ed

x
m
ea
n
ab
so
lu
te

er
ro
r;
N
as
h‐
S
ut
cl
if
fe

m
ea
su
re

P
ap

pe
nb

er
ge
r
et

al
.
[2
00

6]
H
E
C
‐R

A
S
d

3
su
rf
ac
e
ro
ug

hn
es
se
s,
3
m
od

el
in
pu

t
pa
ra
m
et
er
s,

an
d
1
pa
ra
m
et
er

fo
r
nu

m
er
ic
al

so
lu
tio

n
S
A
R
S
‐R

T
,
co
rr
el
at
io
n,

R
S
A

30
00

in
un

da
tio

n
pe
rf
or
m
an
ce

m
ea
su
re

D
em

ar
ia

et
al
.
[2
00

7]
V
IC

(v
ar
ia
bl
e

in
fi
lta
tio

n
ca
pa
ci
ty
)

10
pa
ra
m
et
er
s:
ba
se

fl
ow

,
la
ye
r
th
ic
kn

es
s,
hy

dr
au
lic

co
nd

uc
tiv

ity
,
in
fi
ltr
at
io
n,

B
ro
ok

s‐
C
or
ey

pa
ra
m
et
er

R
S
A
+
(F
re
er
96

),
sc
at
te
rp
lo
ts

60
,0
00

R
M
S
E
,
R
M
S
E
B
ox
‐C

ox
,
A
R
E

of
di
sc
ha
rg
e

M
cI
nt
yr
e
et

al
.
[2
00

3]
W
at
er
R
A
T

26
pa
ra
m
et
er
s
re
la
te
d
to

ch
em

ic
al

pr
oc
es
se
s

R
S
A

10
,0
00

w
at
er

qu
al
ity

co
nc
en
tr
at
io
ns

Si
eb
er

an
d
U
hl
en
br
oo

k
[2
00

5]
T
A
C
D

20
pa
ra
m
et
er
s:
pr
ec
ip
ita
tio

n
(2
),
sn
ow

(7
),
so
il
(1
3)
,

ru
no

ff
(2
2)
,
an
d
ro
ut
in
g
(4
)

R
S
A
,
re
gr
es
si
on

w
ith

L
at
in

hy
pe
rc
ub

e
sa
m
pl
in
g

40
0

q(
t)
,
N
as
h‐
S
ut
cl
if
fe

of
q
an
d
lo
g(
q)

C
hr
is
tia

en
s
[2
00

2]
M
IK

E
S
H
E

so
il
hy

dr
au
lic

pa
ra
m
et
er
s

re
gr
es
si
on

w
ith

L
at
in

hy
pe
rc
ub

e
sa
m
pl
in
g

25
m
ul
tip

le
e

M
ul
et
a
an

d
N
ic
kl
ow

[2
00

5]
S
W
A
T

35
fo
r
sn
ow

(6
),
se
di
m
en
t
(5
),
ev
ap
or
at
io
n
(5
),

ro
ut
in
g
(1
0)
,
an
d
ba
se

fl
ow

(9
)

re
gr
es
si
on

w
ith

L
at
in

hy
pe
rc
ub

e
sa
m
pl
in
g

30
0

R
M
S
E
(d
is
ch
ar
ge
,
se
di
m
en
t
yi
el
d)

V
an

G
ri
en
sv
en

et
al
.
[2
00

6]
S
W
A
T

41
pa
ra
m
et
er
s
re
la
te
d
to

sn
ow

,
so
il,

gr
ou

nd
w
at
er
,

ge
om

or
ph

ol
og

y,
ev
ap
or
at
io
n,

ch
an
ne
l
fl
ow

,
ru
no

ff
,
er
os
io
n,

an
d
cr
op

M
or
ri
s
m
od

if
ie
d:

m
ul
tip

le
O
A
T
w
ith

L
at
in

hy
pe
rc
ub

e
sa
m
pl
in
g

no
t
re
po

rt
ed

to
ta
l
su
m
s
an
d
su
m

sq
ua
re
d
er
ro
rs

of
fl
ow

,
se
di
m
en
t,
an
d
nu

tr
ie
nt
s

F
og

lia
et

al
.
[2
00

9]
T
O
P
K
A
P
I

35
(t
hi
ck
ne
ss

of
so
il,

hy
dr
au
lic

co
nd

uc
tiv

ity
,
w
at
er

co
nt
en
t,
M
an
ni
ng

ro
ug

hn
es
s)

O
A
T
lo
ca
l
S
A

71
di
sc
ha
rg
e
(c
om

po
si
te

se
ns
iti
vi
ty
)

B
en
ke

et
al
.
[2
00

8]
2C

‐m
od

el
5
pa
ra
m
et
er
s:
st
or
e
sh
ap
e
(2
),
ev
ap
or
at
io
n
(1
),
an
d

m
ax
im

um
di
sc
ha
rg
e
(2
)

st
ep
w
is
e
fi
xi
ng

of
pa
ra
m
et
er
s,

lo
ca
l
S
A

30
,0
00

an
nu

al
di
sc
ha
rg
e

C
ul
lm
an

n
et

al
.
[2
00

6]
W
aS
iM

‐E
T
H

6
so
il
m
od

ul
e–
re
la
te
d
pa
ra
m
et
er
s

O
A
T
lo
ca
l
S
A

13
pe
ak

di
sc
ha
rg
e

a A
R
E
,a
bs
ol
ut
e
re
la
tv
ie
er
ro
r;
F
O
P
V
,f
ir
st
‐o
rd
er

pa
rt
ia
lv

ar
ia
nc
e;
M
M
G
S
A
,m

ul
tim

et
ho

ds
gl
ob

al
se
ns
iti
vi
ty

an
al
ys
is
;Q

U
E
S
T
O
R
,Q

ua
lit
y
E
va
lu
at
io
n
an
d
S
im

ul
at
io
n
T
oo

lf
or

R
iv
er

sy
st
em

s;
R
O
C
E
,r
un

of
f
co
ef
fi
ci
en
t

er
ro
r;
S
A
R
S
‐R

T
,
se
ns
iti
vi
ty

an
al
ys
is
ba
se
d
on

re
gi
on

al
sp
lit
s
an
d
re
gr
es
si
on

tr
ee
s;
S
F
D
C
E
,
sl
op

e
of

th
e
fl
ow

du
ra
tio

n
cu
rv
e
er
ro
r;
T
A
C
D
,
tr
ac
er

ai
de
d
ca
tc
hm

en
t
m
od

el
,
di
st
ri
bu

te
d;

T
R
M
S
E
,
R
M
S
E
af
te
r
B
ox

‐C
ox

tr
an
sf
or
m
at
io
n.

b
M
M
G
S
A

is
a
co
m
bi
na
tio

n
of

S
ob

ol
,
K
‐L

en
tr
op

y,
an
d
M
or
ri
s
m
et
ho

d.
c S
ob

ol
,
K
ul
lb
ac
k‐
L
ei
bl
er

en
tr
op

y,
M
or
ri
s,
R
S
A
,
an
d
re
gr
es
si
on

m
et
ho

d.
d
P
lu
s
tw
o
si
m
pl
e
m
od

el
st
ru
ct
ur
es

fo
r
te
st
in
g.

e C
um

ul
at
iv
e
an
d
pe
ak

di
sc
ha
rg
e,

av
er
ag
e
ba
se

fl
ow

,
av
er
ag
e
gr
ou

nd
w
at
er

el
ev
at
io
n,

av
er
ag
e
so
il
m
oi
st
ur
e.

REUESSER ET AL.: TEMPORAL DYNAMICS OF MODEL PARAMETER SENSITIVITY W07551W07551

3 of 14



The remaining parameters explain the variance (factors
fixing setting). This is useful to exclude irrelevant para-
meters from the model calibration and set their values to
an arbitrary one. Figure 1b shows that P3 may be set to
any value in the full range, without reducing the variance
in the model output significantly. The variance in the
model output covers the full range without depending on
whether P3 is selected from one of the ranges around 0.1
or 0.3 or 0.7.
[12] Finally, SA can also be used in a third context

[Saltelli et al., 2006, p. 1117]: “Sometimes practitioners
want to analyze input factors with respect to their capacity to
produce realization of the model output Y within a given
region, e.g., between bounds, or above a threshold. This
leads to a factors’ mapping (FM) setting, whose question is
which factor is mostly responsible for producing realizations
of Y in the region of interest”?
[13] One of the best known applications of this is the gen-

eralized likelihood uncertainty estimation method (GLUE).
Parameters are sampled from a prior distribution, evaluated
against a likelihood measure such as the Nash‐Sutcliffe effi-
ciency and subsequently rejected or accepted. The accepted
(also know as behavioral) parameters (Figure 1c) are then used
to generate prediction boundaries. Sensitivity analysis can here
be seen as a by‐product, because the width of the posterior
parameter distributions is an indication of their sensitivity.

[14] As “best practice” to determine the dominant model
components Saltelli et al. [2006] suggested to use measures
based on first‐order partial variance (FOPV). As stated
above, partial variance–based methods belong to the global
sensitivity analysis (SA) methods, which determine the
parameter sensitivity for an entire region in parameter space
with distributed sampling techniques in parameter space. As
indicated in equation (1), FOPV measures the sensitivity
caused by each single parameter, thus parameter interactions
do not need to be analyzed for FOPV.

1.3. Advantages of FAST

[15] There are several methods to compute FOPV sensi-
tivities. FAST was originally developed for the analysis of
chemical reaction systems, providing a computationally
efficient way to compute FOPV [Schaibly and Shuler, 1973;
Cukier et al., 1973, 1975] As for all partial variance–based
methods, FAST is able to reliably estimate sensitivities of
parameters also for nonlinear models and is therefore well
suited for hydrological models. Multiple sensitivity mea-
sures are reported to give contradicting results for the same
application [Tang et al., 2007a; Cloke et al., 2008]. (This is
not very surprising, if for example local and global sensi-
tivities, regional SA and variance‐based methods are com-
pared). In contrast, results for FOPV appear to show better

Figure 1. Illustration of the different purposes of sensitivity analysis (SA) [Saltelli et al., 2006]:
(a) factor prioritization investigates the most influential parameter, (b) factor fixing investigates the
least influential parameter, and (c) factor mapping is related to calibration and GLUE‐like procedures.
(left) Possible and selected parameter sets are shown using parallel coordinates. (right) Measured discharge
(black), possible simulation runs (light grey), and the remaining variability (red) are shown to visualize SA
settings. The three different selected parameter sets for factor fixing (Figure 1b) result in the same remaining
variability, and only the red set is shown.

REUESSER ET AL.: TEMPORAL DYNAMICS OF MODEL PARAMETER SENSITIVITY W07551W07551

4 of 14



comparability. For example, Saltelli and Bolado [1998]
demonstrated the equivalence of sensitivities computed
using Sobol’s method with FAST. Saltelli and Bolado
[1998] concluded that FAST is computationally much
more efficient, requiring for example only 150 runs to
determine reliably the sensitivity of 6 parameters. This may
help to overcome problemswith high computational expenses
when calculating TEDPAS such as those of Sieber and
Uhlenbrook [2005]. However, FAST has some limitations
which make the method unsuitable for certain types of
problems. Results from FAST are not accurate for discrete
parameter values [Saltelli et al., 2000; Frey and Patil, 2002].
Also parameter interactions cannot be detected by the FAST
method. The focus of this study is on factor prioritization and
therefore, FOPV may be appropriate and parameter interac-
tions are not required according to Saltelli et al. [2006].
[16] As argued, FOPV SA is an appropriate method to

analyze TEDPAS in order to quantify which model com-
ponents dominate the simulation as an indicator for domi-
nant processes in the catchment. However, for complex
hydrological models we need a highly efficient method
to estimate sensitivities. Therefore this paper aims at
(1) implementing the computationally efficient original
FAST method, (2) investigating whether FAST is applicable
to rainfall‐runoff models, (3) comparing FAST to existing
implementations of FAST, EFAST, and Sobol’s method
using a lumped (computationally inexpensive) hydrological
model, (4) applying FAST to a computationally expensive
hydrological model (WaSiM‐ETH), and (5) showing how
the resulting sensitivities are a useful diagnostic tool by
performing a qualitative model validation and we will iden-
tify interactions among parameters in WaSiM‐ETH which
result in problems during model calibration.

2. Methods and Study Area

2.1. Fourier Amplitude Sensitivity Test

[17] As with other global SA methods, for FAST, the
ranges in which parameters are varied according to the
physically possible parameter space, are usually determined
with pretests including expert knowledge, model docu-
mentation or model runs. All SA methods have in common
that the parameters are modified between the model runs j =
1, 2, 3, …, N (which we denote as the model run domain).
FAST is based on the fact that the model output in this
model run domain can be expanded into a Fourier series.
The coefficients of the Fourier series can then be used to
estimate the mean expected model outcome as well as the
variance. If individual parameters are varied with specific
frequencies, the corresponding Fourier coefficients allow
estimation of the partial variance or model parameter
sensitivity. This constitutes the first step of the method
(section 2.1.1): generating the Fourier parameter set for the
sensitivity test. This is exemplified in Figure 2, with the
labeled arrows indicating the analysis steps. Figure 2 shows
the three relevant domains (time domain, model run domain,
and model run frequency domain) in three boxes. The top box
shows how simulation results and parameter sensitivity
change with time. Also presented is the simple toy model
consisting of a time‐dependent, weighted average of para-
meters a and b: o = an + b (1− n) with n= t/50. The bottom left
box shows the model run domain, where different model runs

constitute the x axis. The left plot in the model run domain
shows how parameters a and b are varied with frequenciesw =
3 and 7, respectively, in the model run dimension ( j = 1, 2, 3,
…, N) and varied according to a uniform distribution in the
range −0.5–0.5. Note that the order of the parameter sets
along the model run dimension j needs to be maintained for
the evaluation method to work.
[18] The model is then evaluated for each of the parameter

sets (the second step, arrow 2). Figure 2 shows the exem-
plary evaluation of the very simple model for the three time
steps (t = 0, 25, 50) in the three plots in the bottom right box
of the model run domain.
[19] To retrieve the information from the different fre-

quencies, i.e., to analyze the sensitivity of the model output
for the different parameters, the model output is Fourier
transformed in the model run dimension j = 1, 2, 3, …, N
(the third step, arrow 3; section 2.1.2). For our example, the
results for the Fourier transformation for the three time steps
are shown in the model run frequency domain in Figure 2.
The fraction of the variance in the model run dimension that
can be explained by a certain parameter is proportional to
the Fourier coefficient for the corresponding frequency and
its multiples (see Cukier et al. [1978] for further details). In
the example we observe Fourier coefficients above 0.02
only for frequencies 3 and 9 for t = 0, frequencies 3, 7, 9,
and 21 for t = 25, and frequencies 7 and 21 for t = 50. Thus,
the variance at t = 0 can be fully explained by parameter a
(frequency 3 and its multiples). Corresponding statements
are possible for t = 25 and t = 50. Finally, the results can be
presented in the time domain (Figure 2, top box).
[20] The three steps are described in more detail in

sections 2.1.1 and 2.1.2. The method is available both as
part of SimLab and as software package [Reusser, 2008] for
the open source data analysis language R [R Development
Core Team, 2008].
2.1.1. Generation of the Parameter Set and Model
Evaluation
[21] As stated, when generating the Fourier parameter set,

we want to modify each parameter with a different fre-
quency among the model runs. Generation of the parameter
set can be subdivided into selection of appropriate fre-
quencies wi, the generation of a value set S with uniform
distribution between −0.5 and 0.5 and a transformation of S
into the actual Fourier parameters �.
[22] Cukier et al. [1975] present a table with suggested

frequencieswi that are mutually independent (seeCukier et al.
[1975] and McRae et al. [1982] for further details) and have
mutually independent multiples up to order 4. The higher
the order, the smaller the error of the numerical approxi-
mation of the FAST method (for further details, see Cukier
et al. [1975]. With higher number of parameters, the number
of required model runs (also presented by Cukier et al.
[1975]) increases in order to assure independence of fre-
quencies. Therefore, the selected frequencies w(i) and the
required sampling size N ( j = 1,…,N) depend on the number
of parameters n (i = 1,…,n). The selected frequencies
together with the model run index are then converted into a
supporting variable S( j, i) (equation (2)), which varies at the
appropriate frequency in the range −0.5–0.5. Calculation of S
( j, i) was initially proposed as an exponential function
[Cukier et al., 1973], which has the disadvantage of resulting
in a distribution that over emphasizes low and high values
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[Saltelli et al., 1999]. Saltelli et al. [1999] proposed to use
the function shown in equation (2) which results in a uni-
form distribution of S( j, i). The final transformation of
S( j, i) to the actual Fourier parameters �( j, i) has undergone
some development since the publication of the original
method. The transformation based on the cumulative density
function F(�) of the parameter as shown in equation (3) was
presented by Fang et al. [2003]. Compared to the original
method [Cukier et al., 1978] this method has an advantage if
nonuniformly distributed parameters are used. We used
uniform distributions for all parameters with ranges as
shown in Tables 2 and 3. Note that in this case, the trans-
formation procedure of Fang et al. [2003] does not provide
an improvement of the method compared to the original
method of Cukier et al. [1978].

S j; ið Þ ¼ arcsin sin !i �=Nð Þ 2j� N � 1ð Þ=2½ �f gð Þ=� ð2Þ

where j = 1, …, N, i = 1, …, n,

� j; ið Þ ¼ F�1
i S j; ið Þ þ 0:5ð Þ ð3Þ

with Fi
−1 being the inverse of the cumulative density func-

tion for parameter i.
2.1.2. Analysis of Parameter Sensitivity
[23] For each model time step t, a model output seriesM =

y ( j, t) was transformed with fast Fourier transformation
resulting in a power spectrum. The variance si

2 that could be
explained by a certain parameter i was calculated from the
sum of the power in the spectrum for the frequencies w(i),
2w(i), 3w(i), 4w(i) (for further details on the reason for using
higher‐order frequencies to the order of 4, see Cukier et al.
[1975]). Whereas the total variance s2 was calculated as the
sum of the power spectrum over all frequencies. The sen-
sitivity of model output y on parameter i is then calculated as
the partial variance, which is the ratio si

2/s2.

Figure 2. Illustration of the Fourier amplitude sensitivity test (FAST) with a simple toy model: o = na +
(1 − n)b with n = 1 − t/50 for t = 0, …, 50. In the first step (arrow 1), parameters are sampled according to
a predefined sampling scheme for multiple model runs (model run domain). The second step includes
running the model for each time step (arrow 2). Because of the special sampling design, parameter sen-
sitivities can be calculated with Fourier transformation in the third step (arrow 3, model run frequency
domain). Applying FAST for each time step allows calculation of TEDPAS.
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2.2. EFAST

[24] We used the implementation of EFAST from the
software package SimLab [Saltelli et al., 1999; Saltelli and
Bolado, 1998]. In EFAST, total order sensitivity can also be
determined. This sacrifices the efficiency of FAST to obtain
simultaneously the FOPV with a limited number of runs,
thus only a fraction of the runs is available to estimate the
sensitivity for a certain parameter. While the basic idea to
vary parameters with a certain frequency in the model run
dimension remains, some modifications to the algorithm
need to be introduces in order to asses total order sensitivity.
The reader is referred to Saltelli et al. [1999] and Saltelli and
Bolado [1998] for further details.

2.3. Sobol’s Method

[25] For Sobol’s method, a special sampling scheme is
applied as well. For a given sampling size N and n para-
meters, a sub sample size Ns is calculated as Ns = N/2n + 2.
Parameters �i are then sampled randomly for two sub sample
sets M1 and M2, each consisting of Ns independent param-
eter sets. Variances are then estimated by evaluating the
model for parameter sets, where one parameter in M1 is
replaced by the corresponding parameter of M2, thereby
assessing the effect of changing this single parameter. For
further details, see Sobol [2001] and Saltelli [2002].

2.4. Study Regions

2.4.1. Huagrahuma Catchment, Ecuador
[26] The Huagrahuma catchment is located in the south-

ern Ecuadoran Andes, as part of the Paute river basin
(Figure 3). The geology consists of Cretaceous and early
Tertiary lavas and andesitic volcanoclastic deposits, shaped

and compacted by glacier activity during the last ice age
[Hungerbühler et al., 2002]. The hydraulic conductivity of
the bedrock is low, particularly compared to the hydraulic
conductivity of the thin layer of volcanic ashes that constitute
the soil layer [Buytaert et al., 2005]. On average, the soil layer
is about 80 cm thick, with some bedrock outcroppings at
convex locations and hilltops [Buytaert et al., 2006a]. No
deep aquifers are present, and water flow is restricted to
overland flow and subsurface flow in the soil layer above the
bedrock. The vegetation of the Huagrahuma site consists of
noetropical alpine grasses and shrubs and some low statured
cloud forest. The climate regime is bimodal, with a average
annual precipitation of around 1300 mm y−1 but a very low
seasonality. Precipitation is characterized by frequent low‐
intensity events (drizzle), resulting in around 75% of wet days
throughout the year.
2.4.2. Weisseritz Catchment
[27] The catchment of the Wilde Weisseritz upstream of

the gauging station Ammelsdorf (49.3 km2) served as a sec-
ond case study. The catchment is situated in the eastern Ore
Mountains at the Czech‐German border (Figure 3) and has an
elevation of 530 m to about 900 m asl. Slopes are gentle with
an average of 7°, 99% are <20°; calculated from a 90m digital
elevation model [SRTM, 2002]. Soils are mostly shallow
Cambisols of 1 to 2 m thickness. Land use is dominated by
forests (≈30%) and agriculture (≈50%). The climate is mod-
erate with mean temperatures of 11°C and 1°C for the periods
April–September and October–March, respectively. Annual
precipitation for this catchment is 1120 mm/yr for the two
years of the simulation period from 1 June 2000 until 1 June
2002. During winter, the catchment usually has a snow cover
of up to about 1m for 1 to 4months with high flows during the
snowmelt period (Figure 5 shows the pronounced peaks

Table 2. Parameter Ranges for TOPMODEL

Name Symbol Units Minimum Maximum FAST Frequency

Initial subsurface flow qs0 M 1e‐5 6e‐5 19
Soil transmissivity (log transformed) ln Te log(m2 /h) −7e‐1 −4e‐1 59
Shape of the transmissivity curve m 1e‐2 4e‐2 91
Initial root zone storage deficit Sr0 m 1e‐3 4e‐2 113
Maximum root zone storage deficit Srmax m 1e‐1 1e+0 133
Unsaturated zone time delaya td −3e+0 1e+0 143
Channel flow velocity vr m/h 8e+2 2e+3 149
Surface hydraulic conductivity k0 m/h 1e‐3 1e‐2 157
Capillary drive CD 1e‐1 1e+0 161

aThe unsaturated zone time delay is dimensionless if it is negative and h/m when it is positive.

Table 3. Parameters of the Model WaSiM‐ETH Used for the Sensitivity Analysis

Parameter Name Process Symbol Units Range FAST Frequency

Temperature limit for snowmelt snowmelt Tm0 °C −2–2 41
Difference between snow/rain temperature limit

and temperature limit for snowmelt (the first
is always higher)

snow accumulation TR/S °C 0–2 67

Temperature melt index snowmelt C0 mm/°C/day 0.7–2 105
Fraction on snowmelt which is surface runoff snowmelt cmelt 0.2–0.5 145
TOPMODEL regionalization parameter base flow m 0.005–0.04 177
Scaling factor for transmissivities base flow Tkorr 0.005–0.4 199
Scaling factor for vertical flow base flow Kkorr 800–8000 219
Recession constant for surface runoff single linear

storage
surface runoff kD h 1–120 229

Maximum content of the interflow storage interflow SHmax mm 1–150 235
Recession constant for interflow runoff single

linear storage
interflow kH h 50–300 243

Precipitation intensity limit fast infiltration Plimit mm/h 0.2–20 247
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during spring). High flows can also be induced by con-
vective events during summer. WASY Gesellschaft für
wasserwirtschaftliche Planung und Systemforschung mbH
and Internationales Hochschulinstitut Zittau [2006] con-
clude from their analysis based on topography, soil types,
and land use that subsurface stormflow is likely to be the
dominant process. Meteorological data including precipita-
tion, temperature, wind speed, humidity, and global radia-
tion for 11 surrounding climate stations was obtained from
the German Weather Service (Deutscher Wetter Dienst,
Climatological data for 11 climate stations around the
Weisseritz catchment, 2007). Discharge data, as well as data
about land use and soil was obtained from the state office for
environment and geology (Landesamt für Umwelt und

Geologie Sachsen, Data about land use, soils, discharge, and
the digital elevation model, 2007).

2.5. Hydrological Models

2.5.1. TOPMODEL
[28] The hydrological model TOPMODEL is used in this

study [Beven and Kirkby, 1979]. TOPMODEL is a fre-
quently used model, is based on simple physical approx-
imations, and is well documented in the literature (for an
overview, see Beven et al. [1995] and Beven [1997, 2001]).
It has been applied to a wide range of catchments, including
regionalization studies [e.g., Ibbitt et al., 2000; Bastola et al.,
2008]. The choice of TOPMODEL as a good model structure
for the hydrology of the páramo ecosystem is based on
extensive field experience [Buytaert et al., 2006b; Buytaert
and Beven, 2009, 2011]. The steep topography induces large
spatial differences in soil moisture and tendency for the
generation of overland flow, which are captured by the
topographic index. Additionally, the absence of a dry sea-
son, and the marked drop of soil hydraulic conductivity in
nonsaturated conditions result in continuously wet soils
(>60 vol% [Buytaert et al., 2005]). Field research has shown
that also in dry periods a saturated soil layer exists above the
bedrock, even on steep slopes [Buytaert et al., 2005]. This
suggests that the variation in the contributing area is mini-
mal, and that the entire catchment contributes to base flow
most of the time.
[29] Finally, the high porosity and low bulk density (typi-

cally below 0.6 g/cm3) [Buytaert et al., 2006a] give rise to
easily compressible soils. Bulk density tends to rise and
hydraulic conductivity tends to fall with depth [Buytaert
et al., 2006a], giving support to the use of a nonlinear
transmissivity profile. The TOPMODEL assumption of an
exponential function of the storage deficit appears to give a
good representation of the recession curves in these catchments.
[30] The model has seven parameters and two initializa-

tion values (Table 2). Here qs0 and Sr0 initialize the initial
subsurface flow per unit area and the initial root zone
storage deficit, respectively. The surface hydraulic conduc-
tivity (k0) and the capillary drive (CD) are only used in the
infiltration excess routine. The maximum root zone storage
deficit (Srmax) is part of the root zone equations, the
unsaturated zone time delay (td) controls the flow from
unsaturated to saturated zone, while the areal average of the
transmissivity (ln Te, log transformed), and the rate of
decline of transmissivity with increasing storage deficit (m)
are related to the saturated subsurface flow. vr is the river
flow velocity. An explicit euler scheme is used to update
model states. The model is run with 15 minute time steps.
2.5.2. WaSiM‐ETH
[31] WaSiM‐ETH is a modular, distributed model

(J. Schulla and K. Jasper, Model description WaSiM‐ETH,
available at http://www.wasim.ch/downloads/doku/wasim/
wasim_2007_en.pdf) and was used for the Weisseritz
catchment with a regularly spaced grid of 100 m resolution,
with 115 × 147 cells to cover the catchment. The model
provides methods for the interpolation of meteorological
input data. For each cell, a surface runoff storage and an
interflow storage are parametrized with the corresponding
linear recession constants and a maximum storage size for the
interflow storage (see Table 3). The precipitation intensity limit
defines a threshold, above whichmacro pore flow is active and

Figure 3. Maps of (a) the Wilde Weisseritz catchment
(scales in m; between 50° 40′ and 50° 49′ northern latitude
and 13° 35′ and 13° 45′ eastern longitude) and (b) the Hua-
grahuma catchment within the Paute basin, Ecuador.
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rainfall enters the lower soil storage directly. Interception
(leaf area index–dependent simple bucket), evapotranspiration
(Penman‐Monteith) and snow (temperature‐index approach)
are also included as modules. Four parameters of the snow
module were investigated more closely. Snow accumulation
is determined by the snow‐rain temperature limit. The tem-
perature melt index defines the amount of snow melted for
each degree and hour the temperature is above the snowmelt
limiting temperature (third parameter). Finally, the fraction of
snow melt which builds surface runoff is the fourth parameter.
The unsaturated zone is described for each subbasin on the
basis of the TOPMODEL approach [Beven and Kirkby, 1979].
The TOPMODEL regionalization parameter m determines
how strong the gradient in the saturation deficit is due to
differences in the topographic index. m also enters the equa-
tions for the vertical flow qv (equation (5)) and the base flow
QB (equation (4)). Vertical flow and base flow are both cali-
brated with the scaling factors Tkorr and Kkorr. Channel flow is
routed with a simple storage to account for diffusion.

QB ¼ Tkorre
��e�Sm=m ð4Þ

qv ¼ Kkorrkf e
�Si=m ð5Þ

where g is the mean value of the topographic index, a constant
for a given basin, kf the saturated hydraulic conductivity, Sm
and Si the mean and local saturation deficit for a subbasin,
model state variables.
[32] WaSiM‐ETHwas set up and run 487 times with hourly

time steps, the number of required runs (see section 2.1.1) for
sensitivity analysis with 11 varying parameters. WaSiM uses
an explicit euler time stepping scheme [Clark and Kavetski,
2010] to update model states. The set of resulting discharge
time series y ( j, t), one for each of the N parameter sets was
then further analyzed to calculate sensitivities.

3. Results

3.1. Comparison of Sensitivity Analysis Methods
With TOPMODEL

[33] Sensitivities were calculated with the following SA
methods: (1) Sobol in SimLab 3.2.6 (n = 5632), (2) EFAST
in SimLab 2.2 (n = 5000), (3) FAST (SimLab 3.2.6, n =
1289), and (4) FAST (R package [Reusser, 2008], n = 487).
The number of model runs for EFAST and Sobol was
selected as a balance between the reduction of numerical
artifacts (e.g., first‐order sensitivities outside the possible
range from 0 to 1, random fluctuations of TEDPAS) and
computation time, while the minimum requirements as
suggested by the implementation were used for FAST. The
487 runs for the method in the R package are reported by
Cukier et al. [1975, 1978] (with the corresponding fre-
quencies listed in Table 2), while the minimum requirement
of 1289 simulation runs for SimLab 3.2.6 is undocumented.
[34] Mean absolute difference (MAD) for parameter

sensitivities calculated with different sensitivity algorithms
are in general smaller than 0.07 (partial variance, unit free)
with two exceptions. First for the unsaturated zone time
delay td, comparing results from Sobol’s method to the
other results, MAD is between 0.18 and 0.25. Second, MAD
is up to 0.27 when comparing results generated with the
EFAST method to the other methods.

[35] The reason for the two exceptions becomes apparent
in Figure 4. For each method (Figures 4a–4d), two graphs
show the sensitivity of the modeled discharge for different
parameters. The top graph shows the initial conditions (qs0,
Sr0), root zone storage (Srmax), and transmissivity‐related
parameters (m, ln Te), while the bottom graph shows the
remaining parameters. With Sobol’s method, the modeled
discharge depends on td after the initial period, while sen-
sitivity determined for td with the other methods is low.
With EFAST, the parameter with the highest sensitivity
shows higher sensitivity compared to the other methods
(most clearly visible for m toward the end of the simulation).
In addition, with EFAST ln Te has some influence on
modeled discharge for June and July.
[36] For all three methods, the TEDPAS is similar for

these four variables: initial conditions (qs0 and Sr0) are
dominant until middle of the simulation, thereafter m and vr
are of highest importance. Scrutinizing the 4 parameters qs0,
Sr0, m, and vr, 90% of the time, the same parameter dom-
inates in all of the methods (rank 1 in sensitivities).
[37] As explained in section 2, the sensitivity is reported

as partial variance that can be explained by this parameter at
this time step. For example, a value of around 0.7 for
parameter m during June indicates that 70% of the observed
variation between themodel runs j = 1,…,N can be explained
by this parameter. The sum over all parameter sensitivities
never exceeds 1.0 but may be lower because of the numeric
approximation [Cukier et al., 1975] or when parameter
interactions are of importance (nonadditive models [Saltelli
et al., 2006]). Figure 4e shows the 25 best (selected
according to RMSE) modeled discharge time series in black
and the measured time series in gray.

3.2. FAST WaSiM‐ETH

[38] Sensitivities for the computationally expensive
WaSiM‐ETH model were calculated with the FAST method
only (FAST frequencies are listed in Table 3). Figure 5
shows TEDPAS of the modeled discharge on the annual
time scale. Figures 5a–5c show the sensitivity of the mod-
eled discharge for different parameters, grouped according
to the different model components. Figure 5a shows the
snowmelt‐related parameters. The three saturation deficit–
related parameters,m, Tkorr and Kkorr, are shown in Figure 5b.
Figure 5c shows the remaining parameters, kD, kH, SHmax, and
Plimit. Last, Figure 5d shows the 25 best (selected according to
RMSE) modeled discharge time series (in black) and the
measured time series (in grey).
[39] We observe that snow‐related parameters are impor-

tant during winter and spring, which is as expected. Also,
saturation deficit–related parameters are unimportant for
discharge during snowmelt periods. Note that the plots only
show first‐order effects. Influence of interacting parameters
are not visible from these plots. Therefore, in order to
exclude the influence of a parameter, higher‐order terms
(or total order sensitivity) need to be calculated. TEDPAS of
the three saturation deficit–related parameters is highly
correlated with correlation coefficients of >0.62. This sug-
gests a strong interaction of the these parameters, as will be
further discussed in section 4. The correlation between TR/S
and Tm0 is also high with a coefficient of 0.73, while cor-
relation coefficients between all the other time series are
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<0.5. For TEDPAS at the event time scale, see Reusser and
Zehe [2011].

4. Discussion

4.1. Comparing Sensitivity Methods for TOPMODEL

[40] All 3 SA methods result in very similar TEDPAS for
four important variables. Differences exist for two para-
meters: the model appears to be more sensitive for ln TE in
July with EFAST. For td sensitivity is high with Sobol’s
method. With FAST the model shows only minor sensitivity
for the two parameters.
[41] We suggest that four potential sources for such dif-

ferences exist: (1) a rough response surface of the discharge
dependent on the parameters from the explicit Euler scheme,
as suggested by Kavetski and Clark [2010], causing small
parameter variations to have a potentially high effect on
sensitivity, (2) the possibility of interferences causing errors
for FAST, as suggested by Saltelli and Bolado [1998],
(3) the different sampling schemes, and (4) the different

algorithms to compute the partial variance might cause
differences in the estimated sensitivities.
[42] We identified a rough response surface (source 1) of

the discharge when varying the initial storage deficit Sr0 and
the unsaturated zone time delay td by visual inspection (not
shown; details are available from the corresponding author).
The modeled discharge shows a pronounced increase if the
time delay td approaches 0, while the dependence of the
discharge on the initial storage deficit is erratic. We also
identified some effect on sensitivities when interchanging
the FAST sampling frequencies wi (results not shown, details
available from the corresponding author) which may be
caused by interferences (source 2) [Saltelli and Bolado,
1998] or the rough surface [Kavetski and Clark, 2010].
However, the identification of the dominant process from
the sensitivities was not affected by these effects, as indi-
cated by stable rank 1 assignment. Thus, while this could be
a possible explanation for differences between the different
SA methods, it does not affect the value of the FAST method

Figure 4. Parameter sensitivities of TOPMODEL, with (a) Sobol’s method (SimLab 3.2.6, n = 5632),
(b) EFAST (SimLab 2.2, n = 5000), (c) FAST (SimLab 3.2.6, n = 1289), and (d) FAST (R package, n =
487). Initial conditions, transmissivity, and root zone storage–related parameters are shown always in the
top panel, and the remaining parameters are shown in the bottom panel. (e) Discharge for the 25 best sim-
ulation runs and the observation.
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for the identification of dominant model components from
TEDPAS.
[43] The sampling schemes (source 3) are tightly linked to

the evaluation algorithms (source 4) for FAST and Sobol’s
method, making it challenging to disentangle these two
possible sources of the differences. However, we may still
note a few facts. First, the sampling density is about a factor
of 5 or more higher for Sobol’s method (n = 5632) compared
to the other methods. This also holds for EFAST (n = 5000),
as in EFAST only a fraction of the model runs can be used to
determine the FOPV for a certain parameter. With the higher
sampling density for Sobol’s method, we have a higher
chance that the pronounced increase in discharge when td
approaches 0 is sampled appropriately compared to the other
methods. Second, the fundamental principle for the evalua-
tion algorithm is the same for the three FAST‐based methods.
Thus, the differences observed by the three methods are
caused by the sampling scheme. The main differences are the
higher sensitivity for the soil transmissivity and the shape of
the transmissivity curve for EFAST compared to the other
two and the higher unsaturated zone time delay of FAST
(SimLab) compared to the other two.
[44] While the pronounced increase of the modeled dis-

charge with the time delay td approaching 0 in connection
with the higher sampling density for Sobol’s method and the
sampling scheme as the source of the differences between
the three variants of the FAST method indicate the sampling
(and curse of dimensionality) to be the main reason, the

ultimate identification of the difference remains an issue for
further research.

4.2. TEDPAS of TOPMODEL

[45] The results of the temporal sensitivity analysis for
TOPMODEL on the Huagrahuma catchment are very much
as expected. Although the effect of the initialization values
decreases over time, several thousands of time steps are
required for the effect to die out. This highlights the
importance of a warm‐up period when using the model in
prediction mode. Model parameter m, which defines the
shape of the transmissivity curve, is known to be a sensitive
parameter [e.g., Buytaert and Beven, 2009], with an effect
over the entire recession curve. The channel velocity
parameter vr has a major effect on the time to peak flow, and
to a lesser extent on the shape of the steep part of the
recession curve. The observation that the sensitivity of vr
shows a peaky behavior, with high sensitivity related to
precipitation events is therefore physically plausible.
[46] Other parameters, particularly Srmax and td are known

to be relatively insensitive in the ecosystem. Evapotranspi-
ration is nearly independent of soil moisture in the continu-
ously wet grasslands. The organic soils also tend to have a
very high soil moisture, accelerating the flow from the
unsaturated to the saturated zone [Buytaert et al., 2006b;
Buytaert and Beven, 2009]. Therefore, the relatively high
sensitivity of td in the Sobol method is not very clear, but
may be related to interaction between td and m. It is indeed
possible that an artificially high time delay between the
unsaturated and saturated zone compensates for too quick
saturated flow, which is controlled by both ln Te and m. The
peaks in the sensitivity of CD are related to the very rare
occurrence of infiltration excess overland flow in the study
catchment. Hence, this model routine is nearly always
inactive, apart from a few occurrences of intense precipita-
tion events.
[47] Finally, it is interesting to note that the sensitivity of

the parameters does not change during the major high‐flow
event in early June. This suggests that the similar model
structures are operational during this period as during the
dry periods and that the parsimonious model structure per-
forms well for a relatively wide range of hydrological con-
ditions. This is in agreement with results from vanWerkhoven
et al. [2008a], who also find a comparatively small variability
in the patterns of dominating hydrological processes for a
given catchment in their interannual comparison of parameter
sensitivity for a number of catchments along a hydroclimatic
gradient in the United States. However, these patterns of
dominating hydrological processes are also dependent on the
conditions of a given year. Thus, van Werkhoven et al.
[2008a] summarize their results in a table presenting param-
eter sensitivity for three types of catchments (dry, medium
wet, and wet) and three climatic conditions (dry, mid and wet
years).

4.3. TEDPAS of WaSiM‐ETH

[48] Checking the yearly patterns in TEDPAS is a first
assessment to verify the model structure. A first pattern on
the annual scale is, as expected, the model showing high
sensitivities for snow‐related parameters during winter and
spring. However, simulated discharge shows some sensi-
tivity for snow‐related parameters approximately until end

Figure 5. TEDPAS for WaSiM‐ETH. The parameter sen-
sitivity of the modeled discharge for (a) snow model–related
parameters, (b) saturation deficit–related parameters, and
(c) the remaining parameters, kD, kH, SHmax, and Plimit.
The sensitivity is reported as partial variance that can be
explained by the corresponding parameter. (d) The 25 best
modeled discharge time series (in black) and the measured
time series (in grey).
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of June, although in reality snow cover was completely
depleted by the end of May. We, thus, suggest to revise the
parameter range of C0 used for sensitivity analysis for this
catchment for subsequent analyses.
[49] A second pattern on the annual scale is the first‐order

insensitivity of discharge for saturation deficit–related
parameters during snowmelt periods. This is plausible since
discharge is (by definition) dominated by meltwater during
these periods.
[50] This is in agreement with results from van Werkhoven

et al. [2008a], who also find plausible, typical patterns of
sensitivity for the Sacramento Soil Moisture Accounting
Model for certain combinations of hydroclimatic and model
storage conditions: “In each case the respective conditions for
sensitivity reflect conditions when the storage is actively
impacting model predictions and reasonably represents the
expected dominant processes.”
[51] Plausibility checks are also possible on the event time

scale by checking the sequence of parameter sensitivity and
comparing it to expectations on the basis of model design
[Reusser and Zehe, 2011; Sieber and Uhlenbrook, 2005].
Performing TEDPAS has two additional benefits. First,
TEDPAS is also a valuable tool for calibration of model
parameters. The fraction of meltwater contributing to over-
land flow cmelt will hardly ever be well identifiable, because
the sensitivity of simulated discharge for this parameter is
always smaller than 2% despite the large range for cmelt of
20%–50%. Note that this result needs to be confirmed with
calculation of higher‐order sensitivities in order to definitely
exclude any influence of cmelt.
[52] As stated before, sensitivity is a necessary but not

sufficient condition for identifiability [Wagener et al., 2003]:
parameters may show high sensitivity but be poorly identi-
fiable if compensatory effects between two parameters
make them interdependent. Such compensatory effects of
parameters may be detected (second benefit), indicated by a
highly correlated sensitivity of the model output for multiple
parameters. Correlated model parameters can be a major
source for poor identifiability in hydrological modeling
[Bárdossy, 2007]. In the case study, we observe correlated
parameters for the saturation deficit–related parameters,
which will complicate proper identification of these para-
meters during calibration.Brun et al. [2001] demonstrate how
to derive a set of identifiable parameters from such a set of
correlated parameters.
[53] We see TEDPAS and identifiability analysis [Wagener

et al., 2003] as complementary analytical methods, with
TEDPAS indicating dominant model components, while
identifiability analysis shows how the parameters have to
vary in time to reproduce observed quantities, which is
another important piece of information to identify model
structural errors.

5. Conclusions

[54] We demonstrated that SA can provide valuable
information for improved model understanding, which goes
beyond the most often selected approach to date, where the
most influential parameters for calibration are determined.
[55] For our case study we found that TEDPAS is con-

sistent with expectations on both the annual and event time
scale. In addition, SA may enhance calibration because time

periods of high parameter sensitivity are the relevant periods
for calibration. On the basis of the understanding of the
importance of parameters, a priori assumptions may be
revised and field experiments may be guided. Finally, the
method allows us to detect compensatory effects of para-
meters, which we found for the saturation deficit–related
parameters of WaSiM‐ETH.
[56] An optimal use of SA methods needs highly efficient

methods. We applied such a highly efficient SA method
called FAST to two rainfall‐runoff models. FAST allows us
to determine global sensitivity for parameters with only a
limited number of model runs. The current case study
required around 150 and 490 runs for 6 and 11 parameters,
respectively. Our analysis of parameter sensitivities for
WaSiM‐ETH would not have been possible without this
very efficient sampling scheme. In addition, on the basis of
the efficient calculation of sensitivities from model output
variables, entire time series of parameter sensitivity can be
calculated (e.g., for discharge).
[57] That extended SA presented here is only a first step

in obtaining better model understanding. The ultimate goal
is to gain insight into model behavior by answering the three
research questions: (1) During which periods is the model
reproducing observed quantities and dynamics? (2) What is
the nature of the error in times of poor model performance?
(3) Which components of the model are causing this error?
The first two research questions may be answered using the
time series of grouped errors (TIGER)method [Reusser et al.,
2009], while the third question is answered using SAmethods
as presented here. This approach closely relates to the
framework for diagnostic model evaluation proposed by
Gupta et al. [2008].
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