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Abstract. Geoscientific measurements often provide time attribute to the long time scales of the common variabil-
series with irregular time sampling, requiring either data re-ity. The persistence time (memory) is strongly overes-
construction (interpolation) or sophisticated methods to hantimated when using the standard, interpolation-based, ap-
dle irregular sampling. We compare the linear interpolationproach. Hence, the Gaussian kernel is a reliable and more ro-
technigue and different approaches for analyzing the correbust estimator with significant advantages compared to other
lation functions and persistence of irregularly sampled timetechniques and suitable for large scale application to paleo-
series, as Lomb-Scargle Fourier transformation and kerneldata.

based methods. In a thorough benchmark test we investigate
the performance of these techniques.

All methods have comparable root mean square errors
(RMSESs) for low skewness of the inter-observation time dis-

tribution. For high skewness, very irregular data, interp(O)- Paleoclimate proxy data sample past regional and global cli-
lation bias and RMSE increase strongly. We find a 40 %416 variation. Through their analysis we can attempt to
lower RMSE for the lag-1 autocorrelation function (ACF) nqerstand past environmental conditions and changes. In

for the Gaussian kernel method vs. the linear interpolationy qer to separate local from global effects, measures of asso-

scheme,in the analysis of highly irregular time series. For thegjation like linear correlation and cross spectral density esti-
cross correlation function (CCF) the RMSE is then lower by mation are traditionally employed to analyze these records.

60%. The application of the Lomb-Scargle technique gavep crycial problem with these records it their irregular sam-
results comparable to the kernel methods for the umvr:lrlateID"ng in time due to the complex sedimentation/ accumula-
but poorer results in the bivariate case. Especially the highsign rate. However, standard methods can not be applied
frequency components of the signal, where classical methodg e timescales and resolutions are different. This is not
show a strong bias in ACF and CCF magnitude, are preserved nronhjem in the geosciences only, as irregular observation
when using the kernel methods. of continuous-time processes also occurs in the detection of
We illustrate the performances of interpolation vs. Gaus-pjomedical rhythms$chimme) 2001), astronomy Edelson
sian kernel method by applying both to paleo-data from fourand Krolik, 1988 Scargle 1981, 1982 1989 or turbulence
locations, reflecting late Holocene Asian monsoon variabil-research, where the velocity of the flow can only be measured
ity as derived from speleotheﬂJrSO measurements. Cross jf Seeding partic]es pass a measurement VO|UBT9€(TS€I"I
correlation results are similar for both methods, which weet al, 200Q Harteveld et a].2005. When our aim is to re-
construct the linear auto- or mutual dependencies of the un-
derlying processes from the observations, we can estimate

Correspondence td<. Rehfeld either (cross-) power spectra or correlation functions, as both
m (rehfeld@pik-potsdam.de) are related to each other by the Fourier transfaBatfield
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2009. The irregular sampling of the time series makes directas if they were observed coevally and calculate the correla-
use of the standard estimation techniques of association medion coefficient. “Binned correlation” essentially resamples
sures impossible, as they rely on regular observation timesthe data into time bins on a regular grid that are assigned
For (cross-) power spectral density estimation, standard linthe mean values of the observations within these bins. Using
ear interpolation of these irregular observations onto a reguthese regular, reconstructed time series, the standard correla-
lar sampling causes an additional bias towards low frequention estimator can be applied. We do not employ these two
cies in power spectral density (PSD) estimatiGal{ulz and  techniques because both do not utilize all available obser-
Stattegger1997). vations individually, which means loss of information. Also,
Historically, there are several approaches to overcome thisince the standard estimator is used for calculation of the cor-
problem. The concepts can be classified into four cate+elation coefficient, binning — or resampling — is problematic
gories: (a) direct transform methods, (b) slotting techniqueswhen data gaps are present and we want to estimate the cor-
(c) model-based estimators, and (d) time series reconstruaelation function.
tion methodsBroersen et al2000. Model-based estimators fit a model to the time series, the
The Lomb-Scargle (LS) periodogram, introduced for usespectra or the ACF, which requires prior knowledge about
in astronomy $cargle 1981, 1982, is a well-known direct  the actual process (cHarteveld et al.2005and references
transform method that computes a least squares fit of singherein), a prerequisite we typically cannot meet due to the
curves to the data. The obtained least squares spectrum dbheterogeneity and complexity of geophysical processes.
tects peaks at high frequencies but turned out to be severely The fourth group of estimators resamples the data (through
biased for turbulence spectrBrpersen et al.2000 which some kind of interpolation) in order to create time series on a
do not possess periodic components. If the underlying asregularly spaced grid, which then can be analyzed using the
sumption of least squares optimization, that the noise in thestandard FFT-based estimators. The most frequently used
data is normally distributed, is fulfilled, then LS is equivalent technique in geophysical time series analysis is linear inter-
to the Maximum-Likelihood estimate. Like all least squares polation. Paleo data often has rather large data gaps and it is
techniques, the estimator is not robust in the presence of outontroversial if, when and how missing observations can be
liers. This is illustrated by the limitations of the method in appropriately approximated. For standard interpolation (e.qg.
the application to bimodal rhythms and signals with isolatedlinear, akima-spline and cubic-spline) a significant reduction
outliers Schimme] 2007). in variance toward the high-frequency range of the estimated
Standard slotting techniques determine the correlatiorpower spectrum occurs in the analysis of irregularly sampled
function by binning all available products in the lag domain, data Schulz and Stattegget997. When we are interested
so that observations only contribute to the correlation func-in phenomena on short timescales (compared to the mean
tion at a lag if their observation time difference deviates lesssampling interval), such effects should be considered, and if
than half the lag bin width from the considered lag. This possible, avoided.
technique was proposed Mayoin 1978 and further elabo- Without objective performance tests of these estimators,
rated byEdelson and KroliK1988. It has become popularin application of specific methods is a matter of taste, but the
velocimetry Broersen et al2000 and is frequently applied chosen routine may not be the optimal method available.
in astronomy Bottcher and Derme201Q Fan et al, 201Q Therefore benchmark tests comparing various methods are
Nieppola et al.2009 Zhang et al.2010. The disadvantage crucial. One study, conducted for the estimation of power
of this technique is that, without post-processing, the correlaspectral density from flow velocimetry data in an engineering
tion function estimates are not necessarily positive semidefibackground, has been performed Bgnedict et al(1998.
nite and the spectra computed from their Fourier transformThe test cases exhibited flat or simple exponentially decreas-
can show negative powerStoica et al.(2008, therefore, ing spectra or contained a single deterministic sinusoidal
proposed a weighting technique for autocorrelation estimacomponent. They are therefore not nearly as complex as
tion which weighed observations based on a sinc kernel andpectra in geophysical time series analysis typically are. Fur-
claimed that it yielded positive semidefinite results. In their thermore, they used a Poisson sampling scheme, which is
review, Babu and Stoic2009 also showed the application reasonable in measurements with detector dead time, but less
of other kernels in the time domain, including Laplacian andjustified for paleo records.
Gaussian kernels. The distribution of sampling time errors In this paper we first review the methods that are or could
in time series reconstruction from paleo-archives is often asreasonably be applied in the estimation of correlation func-
sumed to be Gaussian, which, we believe, intuitively sup-tions of geophysical time series. This encompasses the stan-
ports its use in time domain analysigludelseg2010 pro- dard approach, re-sampling by means of (linear) interpola-
posed two techniques to estimate the correlation coefficiention followed by a FFT-based routine, the LS periodogram,
that he terms “binned correlation” and “synchrony correla- the slotting technique and kernel-weighted estimators.
tion”. “Synchrony correlation” consists of using the percent- We then — for the first time to our knowledge — compare
age of pairs of observations in the different time series thatand evaluate systematically the performance of methods suit-
have the smallest measurement time difference, treat therable for estimating correlation functions of geophysical time
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series under the presence of varying sampling schemes, and
we specifically quantify the extent and direction of estimator
variance and bias due to sampling irregularity. We do this
using a newly developed testing scheme, based on simulate
time series with increasing inter-sampling time irregularity
but constant mean sampling rate. In a last step we apply
the methods to real proxy data from the Asian summer mon-
soon region, we evaluate the consistency of the results witt
respect to the synthetic tests and validate our ACF resulte~ 290 L U U U V0 U LU L.
further by the application of an independent least squares es

timator for the persistence time of autoregressive processe y
of order 1 (AR(1)) Mudelsee2002.

A Regular correlation estimation

2 Methods B Slotted estimator

X
Assuming that two time series andy, were observed from /
stationary stochastic processes at unit time intervals, their
sample CCFo (k) gives an estimate of the strength of a pos-
sible linear association between the processes behind the ob- = = | **| <|°* : . !
servations at each possible lag numbelt is defined as

n n N n o~ la
Py (k) = Py (KAT) = Py (k) /66 (1) <o e e b ] el ‘s
1 N—k

= m;(xz—f)()’ﬂrk—y) . (2

binning of products
according to time difference

Here, 7, (k) is the sample cross-covariance at fagy
is the number of observation8,, 6, the sample standard C Weighted estimator
deviations of the processes andy are the estimated mean X
values of the time serie€Chatfield 2004. The spacing of
the CCF lagsArt, equals — in this standard definition — that
of the time series; andy;, At =" —1}7.

The discrete Fourier transform of the sample CCF is the
sample cross spectral density function or cross spectrum and
vice versa. The power spectrum can thus be estimated in  |ag
two ways, either by computing the discrete Fourier trans-
forms of the input time series and multiplying them after
complex-conjugating one of them, or by estimating the CCF
and Fourier transforming it (cChatfield 2004for more de-
tails). We denote all estimators in the definitions in their re-
spective sections by, for the sake of simplicity.

weighting of products
according to time difference

Fig. 1. Principles of correlation function estimatiofd) shows the
classical estimator, where the correlatjon (k) is given by a mean
over products of zero-mean observations &lagart.(B) For irreg-

larly sampled time series, the slotted estimator compa as
In the case of irregularly sampled time series, the classmar Y P Rutpet)

he mean over all products in bins whose centers are & kgart.
definition, as illustrated in Figla, can not be readily ap- () Non-rectangular correlation uses the weighted mean over all

plied. An irregularly spaced time series is a pair,£) of  available products with the weight maxima a lagpart.
tuples of common lengtiV*, wheret; <t; <... <ty are

the time points and; is the value at time;". For simplic-

ity we have transformed the time variable to get a normal-consider irregularly sampled time serigs,x), (¢¥,y) of

ized mean increment of 1 by dividing by the mean sam-second-order stationary processes with zero mean, these have
pling period: ¢ = tor'g/Atx and we will use this notation to be resampled onto a common regular time grie'{ with

in the foIIowmg The differences between observation timesconstant time increments-Y (n) — ¥V (n — 1) = At, for all

At =t —t* ; are not any more constant and the mean ofn =1,2,...N*Y. The grid spacing we will use is the larger

1
their distribution is the mean sampling timg*. When we  of the mean sampling intervals of the time series.

2.1 The resampling approach for irregular time series
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We restrict ourselves in this analysis to the linear inter-1997. The choice of the frequenciesis described irScar-
polation technique, as the effects of other standard routinegle (1989 and we adopt the recommended values for the
are not much different in their variance reduction towards thefundamental frequenayg = wmin = % and maxi-

. max—‘min -
high-frequency er_ld of the spectr_u@cmulz and Stattggger mum frequencyvmax= %. In the bivariate case we define
1997. A resampling method which does not result in a ré- o gpservation timesnin and fmax as the lower and upper
duction in variance is theearest neighbor techniquerhere o s of the overlapping part of both time serigsand
the function is approximated at the desired grid points byyt, otherwise, in the univariate case, minimum and maxi-
the value of the observation closest in time. This leads t0 &, ,m observation time are usedh*? — max(A*, ArY) is
shifting bias Broersen2009 which, in the presence of large 114 common sampling rate we define in the bivariate case.
gaps in the data, can be rather large. We therefore do not emr,o number of frequencied; = ofac N
ploy this scheme. After resampling, the standard FFT—basegpacing of the frequency vector

determines the
) According Hocke and
routines can be employed.

Kampfer(2009 there is no principal limit, the oversampling
factor ofac> 1 is regarded as a smoothing factor, although
the number of independent frequencies is constant. We use

The Lomb-Scargle approach to the spectral estimation of ir2fac= 2, unless otherwise stated.

regularly sampled data can be understood as a least square th‘?fo“gh introduption to bivariate Lomb-Scargle spec-
fitting of sinusoids to dataScargle 198]). The Lomb- U@l estimation was given b$chulz and Statteggglo97).
Scargle Fourier transform (LSFT) The use of the technique for correlation function estimation,

however, has not yet been explored, though it was already

2.2 Lomb-Scargle approach

N* . . proposed irScargle(1989.
LSFT. () = Fo(w) Y (Ax; COSw i} +iBx; sinw i), (3)
i=1 2.3 Correlation slotting
uses the explicit observationtim§s= i —t*(w) shiftedby  The sample correlation functiof,, (k) at a lagk is cal-
the constant (complex) phase shift culated by averaging over the lagged products of the

standardized observations. For irregular time series the
™ (0) = itan‘l (Z sinZwt;‘/Z coszwtj‘>, (4) inter-sampling times vary, and without resampling EB. (
2w ; ; cannot be applied. An alternative is thaotting or
Edelson and Kroliktechnique Edelson and Krolik 1988
Mayo, 1993. Its key idea is to calculate the cross-products of
all available, standardized, observations and discretize them
1 into bins according to their sampling time differences as can
Fo(w) = TZeXp(_i oty — " (@) (5)  be seenin Figlb. The technique was developed in fluid me-

chanics and applied in astrophysiggkAt) at the lagkAt
allows for a time shift in the alignment of the two time series is then defined as

in bivariate spectral analysis. The amplitudesnd B are NE Y v
Zi:le:lxiyjbk(tj - )

defined as
Sl b ) — 1)

-1/2 -1/2
Alw) = (Z cod wif> . Bw)= (Z sir? wff> . () 7 _
- and thekernelbk(t} —t) selects the products whose time lag
is not further than half the bin width fromAz:

to ensure time invariance of the LSF3dhulz and Stattegger
1997). The coefficientry

pk-AT) =

(10)

1 1

In the univariate case, the well-known Lomb-Scargle peri-
odogram is then given by 1 forl|(t; —t;)|—k| < %

0 otherwise (11)

be(ti—t;) = {
Py (w) = LSFT, (w)LSFT! () 7)

Note that the observations have to be standardized to zero

The (bivariate) cross spectrum can be estimated as mean and unit variance before the analysis. We set the lag bin

width At to be equal toAr*Y, and since we divide the ob-

Pry (@) = LSFT: @)LSFT, (@) ®) servation times by this mean sampling interval, we can omit
which can be inverted, using the Fourier transfoBudrgle it in the formulae above, for easier readability (cf. Séct).
1989, to get the cross correlation coefficient estimate We do not choose this width arbitrarily but rather in the con-

text of the desired time resolution of the CCF, more on this
Py (k) =F [ Pry(w)]. (9)  inSect2.4

There are, however, several disadvantages of this tech-
The squared absolute value of the LSFT gives the widelynique, primarily a high variance of the estimat8apu and
known and used LS periodograr®dghulz and Stattegger Stoicg 2009 Benedict et al.200Q Harteveld et al.2005
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Kernels: weight by Table 1. Kern_elsb(d) used _in th_is p)?perd denotes the distance
between the inter-observation t|m_‘ai? andkAt, k denotes the
e k-th lag. The standard width parameteis chosen to result in a
sinc (h=1) 1 main lobe width ofA#*Y, the mean sampling interval or common
Gaussian (h=0.25) i sampling period in the bivariate case.

/y \ Kernel bk — Al,-xjy) Standard
f (reference) =b(d) choice for

/ //;0.5 \\\ \ h
. : — Rectangle;Edelson { L itd=<h/2, At*Y /2

20N\ 15 o -os +05 H.Wo and Krolik (1989 0 if otherwise

difference between . . sin(rhd
—0.5 observation times Sinc; Stoica and % —J'I(Zd ) AtYY
[g-til-k| Sandgrer{2006
2 2
Gaussian; Le_‘d| /2h AtYY /4

. . . _ Bjoemstad  and V27"
Fig. 2. Kernel-based estimators effectively “use” observations Falck(2009)
whose inter-sampling time difference is close to the lag for which
linear correlation is estimated. Slotting (the rectangular kernel)
chooses observations within an interval, Gaussian and sinc kernel
weigh the products smoothly according to the difference between g
observation interval and desired lag. Kernels were scaled to the

standard choice for width paramete(cf. Tablel, Fig. 3).

0.55[

0.5

0.45-

due to which we will not use this method in the following,
but rather apply related, non-rectangular kernels. It also does_ 4
not always provide positive semidefinite covariance matrix T
estimates, a problem which can be overcome by “fourier fil- §°'35’
tering”. We discuss this further in Se@t5b. € ot

2.4 Non-rectangular kernels |

In analogy to the slotting approach, and taking it further,
weighted averaging of the observations can be performed us-
ing symmetric, smooth density functions that tend to zero for o1 5 1 - 5 S s s
time differences much larger or smaller than the desired lag Kernel width h

k (Hall et al, 1994. The similarity is illustrated in Figlc. ) ) )

These requirements are for example met by the sinc kerndl'd: Influence of varying kernel width on the RMSE ofp(1),

. . using the kernel estimators (cf. TaldlgFig. 2). 100 Realizations of
Ecszfto'll'?';\all)Izrl];jaiacr;ggeeasoe%?l |bn ult:izlsfn;?sagigsb?rllarllri]ngi?ea sinusoids with random phase in colored noise (30 %) were sampled

- > . A using'—distributed sampling intervals (sk =2.85). (cf. S&B).
observations into discrete sets, the weights prevent a sudden
cutoff in the time domain. time series (cf. Fig3). Other parameter choices might, how-

the weight functions. We decide to scale them to a kernekeries and the statistic to be estimated.

width of the mean sampling rate for two reasons. (i) This

choice ensures that — for non-rectangular kernels — observez 5 Positive semidefiniteness of the estimated function
tions at (near-)regular times are rated higher than those that

are further away, but are still included in cases where littleln connection with the slotting-based covariance estimation,
information is available. (ii) In a trade-off between the loss the issue with the possible lack of positive semidefiniteness
of resolution and control of estimator variance, the desiredof the correlation estimates has been discussé@raersen
resolution of the correlation function also plays a role, as a(2002, Harteveld et al.(2005 and Stoica and Sandgren
kernel width choice larger than the lag spacing would result(2006. By Bochner’s theorem, positive semidefiniteness of
in mixing information for adjacent lags. The width param- the correlation function is necessary and sufficient to ensure
eters for the kernels and their relation to the mean samplinghon-negativity of the Fourier transform estimateagf). A

rate were confirmed as empirical optima in case of irregularfunction g (k) is positive semidefinite if
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and concatenating them into a time line for which we then
generate a corresponding signal. Given the shape parame-
//,6(1 —Hw®w)dt dl >0 12) ter o and the scale parametgr the mearu of theI'(«, B)-
distribution is given byu = o, the variance by? = a2
and the skewness by sk2/./a. For low skewness (in our
is a possible correlation function. For discrete, short, andc@se the lowestvalue was 0.1) the distribution is close to nor-
regularly sampled time series, using E40)and a simple, mal (cf. Fig.7b). Since the higher order moments depend

integrable function forw, we can find this condition violated ©N!Y on the shape parameterwe can vary the scale param-

for all kernel methods. This problem can, amongst others €1€7# in @ way to keep the mean constant while increasing

be solved by a technique called “Fourier filtering”, which SKEWness and variance. We will only give the skewr;ess pa-
rameter in the following, as the variane€ = (28/sk)? =

involves Fourier-transforming the correlation function esti- 2 _ _ ‘
mate, setting any negative power estimates to zero and apphi2-/ (SK))” is uniquely determined in our parameter con-
figuration. A distribution with a skewness of 2.85 (Fifip)

ing an inverse FFT afterwards to obtain a positive semidef- : i ) ;
results in a time series with large gaps, as large values be-

inite correlation function estimatdBabu and Stoica2009 X > A
Hall et al, 1994. Another routine could involve using the C€OmMe more likely in more and more skewed sampling inter-
val distributions.

absolute value of the power spectrum, instead of setting neg*
ative estimates to zero. Also, positive semidefinite matrices
have non-negative eigenvalues, which is another means tg Comparison for synthetic records
test this property, and the same modifications as for the power
spectra could be applied here. It should be keptin mind, how-To assess the adaptability and suitability of the different es-
ever, that, due to numerical problems, even the “unbiasedtimators, we perform a number of tests on artificially gen-
1/(N —1) correlation estimator can result in negative power erated discrete signals for which we know the “true” ACFs
estimates. When the positive semidefiniteness of the correlaand/or CCFs of the underlying processes. For each signal
tion matrix is essential, Fourier filtering should be performedtype we first estimate the RMSE in the case of regular sam-
and/or the eigenvalues of the matrix should be checked.  pling. Then we create time series wilhdistributed inter-

) observation times with increasing skewness. Since the time
2.6 Quality of performance measures vectors are artificial, they do not need to have an actual unit,
ebut we assume that time is measured in years.

for all integrable functions, and only if this holds trug (k)

Our aim is to evaluate which of the approaches listed abov

yields the best results for the estimation of ACFs and CCFs3 1 Sinusoids with random phase

for geophysical time series. The performance of the esti-

mators can be evaluated with respect to the “tregected  Using techniques that are not (yet) fully established, our first

functions This can of course only be done for modeled or concern is to make sure that the results for the standard, reg-

synthetic time series where we can calculate ACFs and CCFglarly sampled case are consistent with those from the stan-

exactly. dard estimators. Therefore we sample a simple signal, a su-
To evaluate the different estimators we calculatertiot perposition of three sinusoids:

mean square erro(RMSE) of the estimatof for a statistic 3

6. 6 can be e.g. the cross correlation function atdagy, (k). x(t) = Z Sin(@; + ;) (14)

The RMSE is given by =

RMSE®@) = /E[(é_Q)Z] =,/var(é)+bias(é)2 (13) with w; = % T; = (18,21,41) yr at a regular rate of 4

years. The phase variab®; , is randomly drawn from a

and incorporates both variance and bias of the estimator, i.auniform distribution on(0, 2 ), making this a sample from a
its variability and its systematic deviation from the true value. stationary stochastic process. The true ACF is then a super-
To estimate the RMSE we generate a large number of timgposition of cosine functiong,, = 1/221'3=1 coqw;), irre-
series of a given signal type and sampling scheme and comnspective of the relative phases of the signal components. The
pute the “target statisticd for each. The deviation between length of the simulated time series is 1000 yr and we evaluate
the mean of these many estimates and the ‘true’ function ighe function for 200 lags. Sample time series, mean ACF and
the approximatdiasof the estimator, together with the vari- power spectral density (PSD) of the mean ACF are depicted
ance around this mean we can estimate the RMSE. in Fig. 4. The kernel estimators, the LS periodogram as well

To evaluate the contribution of the sampling irregularity as the “classical” method perform comparably well with a
to the estimation error, we perform the analysis for differ- RMSE below 2 % (see Fid, left columns) in the regularly
ent sampling schemes, first for reqular sampling and then fosampled case.
more and more irregular sampling. This we do by drawing We now use irregularly sampled observation times
inter-sampling-time intervals from the Gamma-distribution and perform a stepwise increase in sampling distribution
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(a) Sinusoids (random phase) (b) Time interval distribution
time series x,
i At= 4, regular
2
o 0.8}
21
s z
B S 0.6f
k)
5o E
5 o
o g4l
5 1} 0.4
4
ot 0.2f
_a . . . . 0 . .
) 200 400 600 800 1000 0 2 4 6 8 10 12
Time [a] Sampling interval [a]
(c) ACF (d) Power spectrum
1 T T 0.12 T T T
——linint
Gauss
0.1 ? -*-sinc
0.5 N ——Lomb
[ —true
= 0.08f
o
a
°
e 0 © 0.06
©
£
o 0.04f
=z
-0.5
/ 0.021
-1 L L 0 L L L ~ et
0 20 80 100 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0 60
Lag [a] Frequency [1/a]

Fig. 4. Autocorrelation analysis of synthetic signals: for a regularly sampled combination of sinusoids (tfl) Be give a sample time

series(a), the sampling interval probability densitl), the expected correlation functiqn) and the corresponding power spectr(u
determined from 100 realizations of sinusoid time series with random phase arguments. Legends for each row are given in the right panels.
All estimators perform equally well.

55 skewness (as described in S&t6). For skewness sk=0.1

50 the RMSEs are only slightly higher (Fi§, middle columns),

:2 but for a skewness sk = 2.85 the RMSE is as high as 40 % for

25 ‘ interpolation and 35 % for the LS method. The estimated
X 30 RMSE for the Gaussian kernel method, is rather small com-
%'é 25 pared to that, with an approximate 12 %, lower than that
o

20 l of the sinc kernel method (23%). We have increased the
skewness in steps ofZb from sk=0.1 to sk=2.85 and note
that the RMSE of the ACF seems to be increasing almost lin-

e o early for all the methods. For the LS estimate it jumps in the
Reguar Sampling seheme Skz85 beginning, from 5% tav 20 %, and continues to increase at
M iin. Interp. ™ Gauss M sinc H LS a rate of 9% per unit skewness, with the breakpoint occur-

ring at a skewness of.85. The RMSE of the interpolation
Fig. 5. Mean RMSE for the ACF estimation (lags 1-3) using lin- followed by the FFT-based estimator (denoted “linint” in the
ear interpolation, Gaussian or sinc kernel or the inversion of thefigure legends) increases at a faster overall rate than all the
Lomb-Scargle periodogram of noise-free sinusoids given for reg-other methods (6 % per unit skewness). The Gaussian ker-
ular, gamma-distributed and mildly irregular (skewness sk=0.1)ne| method has the lowest RMSE at high skewness and the

resp. very irregular (sk =2.85) sampling. Errorbars give the stan-gyest increase with respect to the estimate for regular sam-
dard deviation of the estimate, calculated using 1000 bootstrap iterbling

tions. : . .
ations To investigate the reason for the differences between the

methods further, we evaluate the RMSE of the power spectra
obtained from the Fourier-transformed ACFs at the highest
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Fig. 6. Autocorrelation analysis of synthetic signals: for an irregularly sampled combination of sinusoids (t#)Eep give a sample

time serieqa), the sampling interval probability densitly), the expected correlation functig¢o) and the corresponding power spectr(dh
determined from 100 realizations of sinusoid time series with random phase arguments. Legends for each row are given in the right panels.
High sampling irregularity leads to a variance reduction in the ACF for LS and interpolation.

input signal frequency = 27 /18 (c.f. Figs.4d and6d). We  at high time resolution and then re-sample the observations
find, that with increasing skewness, the RMSE of this peakonto the desired irregular sampling times. We perform the
increases from around 3 % to 10 % for interpolation and thesame simulations as before, first evaluating for regular sam-
LS correlation function estimate, while for sinc and Gaussianpling and then, for gamma-distributed inter-sampling inter-
kernel it goes from< 1 % to approximately 2 %. Estimating vals, where we subsequently increase the skewness of the
the bias of this peak, we observe that the comparatively highnterval distribution. The driving process is given by
RMSE for interpolation and LS method corresponds to a neg-

ative bias increasing linearly from 5 %1050 % with respect X (1) = ¢ X (t—1) +& = e 2/ X (t;_1) + &

to the expected peak power at the high-frequency component.

In contrast to that, the bias is nearly constant for the kerneRnd for bivariate correlation analysis we sample a second
methods, the slight increase in RMSE must therefore be du®rocess driven by the first at ldg
to an increase in variance. This lack of power in the high

frequency component of the estimated spectrum is accompaz(t") =aX(i-o)+éi . (16)
nied by a positive bias for the lowest frequency component ¢ and¢ are uncorrelated Gaussian distributed noise pro-
w =2m/100 (results not shown). cesses with a variance?, o2 such that the overall pro-
cess variances? = 0%.2/(1 —¢?) and 02 = 02 + (¢?0?).

We choose the AR(1) coefficient gs= 0.7, corresponding

to a persistence time = —At/Ing, the coupling strength
To understand the quantitative and qualitative effect of thew = 0.5, coupling lag¢ =1 and generate our time se-
different estimation techniques on the short-term correlativeries (e.g. Fig.7a) following the different sampling schemes
properties (e.g. the persistence time, the lag at which the ACKe.g. Fig.7b). Then we set out to estimageand« from the

has dropped taAt/e), we use AR(1) processes generated time series.

(15)

3.2 Autoregressive processes
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(a) Coupled AR1 x107° (b) Time interval distribution
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Fig. 7. Cross correlation analysis for two irregularly sampled signals (cf. Ef<d.6) from different sampling schemes: Sample time series

(a) and sampling time interval histogran(s), the mean ACFs out of 100 realizatiof and the mean estimated CQ@#. Legends for

each row are given in the right panels. A positive bias in interpolation ACF estimates and a negative bias in the interpolation and LS CCF
estimates is observable for increased sampling irregularity.

In the estimation of the AR(1) coefficiest the RMSE for 55
interpolation increases from 2 % to 17 % and the error for the
sinc-kernel increases from 6 % to 13.5%. The LS technique
results in the largest increase for high skewness with a RMSE 35

of 52 %. The Gaussian kernel method remains more accurat“ 05

with an increase from 2% to 8.5 %. E
15
The coupling strengtlx is the true value of the CCF at
the coupling lagt. A typical application in the geoscience A—— . N\
context is the estimation of the degree of similarity for time 5 Regular Sk 0.1 Sk 2.85
series from different sources, with different sampling prop- Sampling scheme

erties. Analyzing two time series of inter-sampling time dis-
tribution skewnesses gk=0.1 sk, =2.85, we find that the

CCF estimation at lag= —1 has a negative bias for all tech- Fig. 8. Mean RMSE for the ACF estimation (lag 1) using linear
niques. The bias of the LS technique is strongly negative,nterpolation, Gaussian or sinc kernel or the inversion of the LS
underestimating the true correlation by more than 65 %. Lin-periodogram of time series from AR(1) processes (cf. B,

ear interpolation results in a 30 % lower estimated couplinggiven for regular, gamma-distributed and mildly irregular (skew-
strength, the sinc kernel method in 15 % and the Gaussianess sk=0.1) resp. very irregular (sk=2.85) sampling. Errorbars
kernel estimate is negatively biased by 8 % with respect togive the standard deviation of the estimate, calculated using 1000
the “true” coupling strength of 0.5 (Fige). bootstrap iterations.

M lin. Interp. ™ Gauss ®sinc BELS

Looking at the performance under the increasing sampling
time distribution skewness of time serigs (keeping sk
constant at 0.1), we find that the RMSE of the estimated
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Fig. 9. RMSE for the CCF estimation (at the lag of coupling) us-

ing linear interpolation, Gaussian or sinc kernel or the inversion of 0.05} —— ]
the LS Periodogram of time series from coupled AR(1) processes fraction of total variance due to noise

(cf. Egs.15, 16) — given for regular and two gamma-distributed sam-

plings with mildly irregular (skewness gland sk, =0.1) and very ~ Fig. 10. Effect of the Signal-to-Noise ratio on the RMSE of the
irregular (skewness gk=0.1, sk, = 2.85) inter-observation-times. ACF for skewed (sk = 2) inter-observation times. The share of the
Errorbars give the standard deviation of the estimate, calculated usioise variance in the overall process variance increases from left to
ing 1000 bootstrap iterations. right (cf. Eq.17).

Varying s and using irregular time series (sk =2) we find
increases for all methods, but least for the Gaussian kernehat the mean RMSE ¢f, (1) estimated for the Gaussian ker-

(Fig. 9). nel method increases slightly from 5 % for sinusoidal signals
_ _ _ _ _ (s =0, cf. Fig. 10), to 7% for pure red noises = 1). At
3.3 Sinusoids with random phase in colored noise the same time, the RMSE for the interpolation-based routine

rises from 10 % to 15 %, that for the LS-technique decreases
For irregular time Series, the effect of interpolation on the from 27 % to 19 %. The sinc kernel performs similar to the
ACF estimation of noise-free sinusoids is that it seems tojnterpolation routine for sinusoidal signals with up to 30 % of
suppress high-frequency variability. For red-noise signals wenhoise, but has a higher RMSE for noise-dominated signals.
find that |t, Sim”arly, leads to an overestimation of autocor- For irregu|ar time series with low inter-samp”ng_time distri-
relation. To generate more “realistic” signals, we synthesizepytion skewness (sk = 0.1) we find that the RMSE is maximal
the above-mentioned sinusoidal signals (E§ with varying  for medium signal-to-noise ratios, i.e. it is lower for purely

amounts of additive red (AR) noise: deterministic and purely random time series than for the mix-
ture of both (results not shown). For mostly deterministic
x(t) = EZ sin(wit + O;.p) +5; . (17) time series_,s <05, the LS tec_:hnique has then the highe;t
3 = RMSE, while sinc and Gaussian kernel-based methods give

more accurate results. For dominant red nagise0.5, the

The sinusoidal components vary with the frequencies LS technique gives good results with low RMSE, where at
%, T; =[18,21,41] years. The time vectaris concatenated the same time the performance of the sinc kernel deterio-
into a time line from random variables drawn from a gamma-rates. The interpolation-based FFT-routine is not the best
distribution withi. =4 and sk=0.1. The phase varialtde,, choice for irregular time series, irrespective of the signal-to-
is, for each realizatiom, randomly drawn from a uniform noise ratios of the processes generating the time series. The
distribution on(0,2). This makes the time series samples increased RMSE for interpolation observable for the ACF es-
from stationary stochastic processggepresents ared noise timates is due to a positive bias for(1). The RMSE of the
process (cf. Eq15) whose variance we vary in the range  kernel-based methods is lower and the ACF bias is constant
[0,1]. The persistence time is, for this intercomparison, and negligible. The high-frequency variability is systemat-
fixed atr =4 (corresponding tg ~ 0.78). Since we adjust ically underestimated when using interpolation. The higher
the overall variance of the process to equal unity, the signalthe persistence timein the AR(1) component, the lower are
to-noise ratio varies in proportion with the advantages of the Gaussian-kernel based estimator, since

The “true” ACF is then given by the high-frequency variability in the signal is lower.

pk)=(1-5)/3) _ cod w;lk|)+s-exp(~[k|/T).  (18)

Nonlin. Processes Geophys., 18, 3894 2011 www.nonlin-processes-geophys.net/18/389/2011/



K. Rehfeld et al.: Comparison of correlation analysis techniques for irregularly sampled time series 399

3.4 Summary of the synthetic tests

In all tests we performed in this section, we find that linear o |
interpolation comes with two systematic effects. Firstly, it
has a positive bias for ACF estimation and secondly, it has a
negative bias in CCF estimation. Both effects become more
severe with increasing sampling time distribution skewness.
The LS technique performed well for the ACF estimation of .
slightly irregular autocorrelated time series but not for sinu-
soids. We find the opposite pattern for the sinc kernel: its
RMSEs are low in the application to sinusoidal data — but 70% S0r
high for the ACF of autocorrelated noise processes. The

Gaussian kernel estimates are consistent and have the, efg. 11. Map showing the location of the paleo records and the main
close to the, lowest RMSEs in all tests. Therefore we recomwind directions of the Indian and East-Asian summer monsoon sys-
mend the use of the Gaussian kernel-based estimator insteagins. Presently there are three major inflow corridors into Southern
of — or in addition to — the standard interpolation routine for China, through the Bay of Bengal and over Indo-China, through the
irregular time series with positive inter-sampling time distri- South China Sea and from the south et ¢t al, 2008 Clemens
bution skewness, and especially in the presence of observé! al, 2010.

tion gaps.

Pacific

[ s 3%
China 7 V‘B
Sea b

Bay of
Bengal |

i 4E 130°E
\ p
90°F 100° 110°E 12

4 Comparison for paleo data For the late Holocene time span of 387-1100BP, we
estimate cross correlation and persistence time of four

We will now apply the Gaussian kernel estimator and in- speleothems*80 records (cf. Fig11), reconstructed from
terpolation followed by the standard FFT-routine to paleoDongge cave in southern Chins/éng et al. 2009, Hes-
records from the Asian Monsoon domain, to evaluate poshang cave in central Chin&( et al, 2008, Wanxiang cave
sible differences between the CCF/ACF estimates of thesén north-central ChinaZhang et al. 200§ and from Dan-
datasets, depending on the analysis technique. dak cave in southern Indi®érkelhammer et 312010. The

The Asian monsoon system (cf. Figjl) affects a large Sample locations lie in different branches of the Asian mon-
share of today’s world populatiorzhang et al(2008 find soon and therefore enable us to assess spatial variability of
its strength in the past 1800 yr to be correlated with agricul-the monsoon system. The data sets have quite different inter-
tural and cultural prosperity, its weakening with periods of sampling time distributions, with rather high time resolution
unrest and instability. It can be divided into the Indian and (0.5a—3.9a) and considerable time uncertainties. The details
the East Asian monsoon subsystems (ISM and EASM), thaef the overlapping part of the records, which we will use,
transport moisture from different sources. Oxygen isotopeare given in table2. For all four records$*80 variations
ratios §80) from cave records have been used to study theare interpreted as mainly dominated by precipitation amount
Holocene variability of monsoonal precipitation over China changes, thus reflecting summer monsoon strenging
and India. While most of them show a millennial-scale et al, 2005 Hu et al, 2008 Zhang et al.2008 Berkelham-
trend, believed to be linked with the decreasing solar irra-mer et al, 2010).
diation through the HoloceneMiaher, 2008 Wang et al, Prior to correlation analysis we subtract (nonlinear) trends
2009, sources for variability on shorter time scales are de-from the records, that we estimate using a 500a wide Gaus-
bated Berkelhammer et a12010. In an inter-comparison  sian kernel smoother (high-pass filter), adapted for irregular
of four published, acclaimed records of monsoonal precipi-sampling. For the standard approach of CCF (ACF) estima-
tation from four different geographical locations we want to tion the time series are then interpolated linearly to a regular
investigate the spatial and temporal consistency of linear degrid with spacing of the larger of the mean sampling inter-
pendencies among these time series. Cross-correlation anaials (a spacing equalling the mean sampling period) of the
ysis of monsoon records could give clues to the interrelation+espective two time series involved. This means that in case
ships between the different monsoon branches and their dedf the CCF comparison of Dandak and Wanxiang records,
velopment with time. Autocorrelation analysis can, amongstthis CCF has a lag resolution of3a, in case we compare
other methods, give insights into the persistence inherent téhe Wanxiang to the Dongge record the resolution is@2 3.
the time series and is believed to increase before certain dy-
namical transitionsScheffer et al.2009. Persistence time
(cf. Eq.15) is a characteristic parameter for the time scales
on which these climate processes operate.
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Table 2. Mean sampling intervals,variances and skewnesses of the inter-sampling time distributions and number of observations in the
overlapping section of the used paleo proxy records (625 AD—1563 AD).

R d Mean sampling  Skewness No. ofR ¢
ecor ratepa; [a] SKa; Observationgv eterence
Dandak 0.50 2.95 1874 Berkelhammer et a(2010
Wanxiang 3.31 —0.96 284 Zhang et al(2008
Heshang 2.34 1.45 402 Hu et al.(2008
Dongge (DA) 3.92 0.41 241 Wang et al(2005
4.1 Results from ACF analysis additional methods employed when performing autocorrela-

tion analysis of irregular time series.
First we look at the individual ACFs (e.g. Fig@2c and d) . .
and find that the Gaussian estimate shows a much strongéh2 Results from cross correlation analysis

initial decline than that resulting from interpolation. To in- oo . :
. : . . Next, pairwise cross correlation functions were calculated for
vestigate whether this more pronounced decline, this lower,

persistence time (cf. Eq. 15), is due to a negative bias of all four records. Only two combinations resulted in signifi-

the kernel method or to a positive bias of the interpolation weg?ﬁr::ti ecr(])trroefla(;lgg ?Ozi;ogz%)(i;%ﬁiérngt(i:grzr?(IeastlonOCZOS;S
perform the additional least squares analysis (LSq). The esti- ' T P p. L.

mator, implemented similar to that Mudelseg2002, fits a (—0.19,0.27) for the Gaussian kernel at lag zero between the

L : . . Wanxiang and Dandak records is significant to the 95 % level
simplified Ohrnstein-Uhlenbeck process, a continuous-time . .
n the two-sided test for zero correlation under the null hy-

AR(1) analog, to the time series. Its estimates are robust with . ) : .
o . . : ; pothesis of the time series being sampled from autocorrelated
respect to variations in sampling rates, irregularity and per-

sistence time and show a small, but constant, biak(6) red noise processes. In the brackets we give the estimated

i ' ) ' ” critical values of the test that were determined using AR(1)
and variance. We compare four results: from interpolation, . . . )
followed by ACF estimation involving the FET: from inter- processes (with persistence times based on the LSq estimate)

. L= j .__on the original time axis of the records.
polation, followed by the LSq estimation; from the Gaussian The late Holocene section (387-1325BP) of the record
kernel ACF estimate and from LSqg analysis of the original . o :
record (cf. Fig13). We find a pronounced overestimation, up from Wanxiang cave correlates also significantly with that
] ' ; T ... from Heshang cave with a lag zero correlation coeffi-
to a factor of two, when interpolation is involved. Thisisir- . . .

: . ; . cient of 0.28 0.2, 0.23) based on interpolation and 0.28
respective of whetherwas estimated via ACF or the LSq fit. —0.2,0.19) from the kemel estimator. We find that the high-
The Gaussian kernel estimate is generally lower than that of o I . ' : !
LSq analysis, but differs by not much, except in the estimate requency variability of the estimated correlation function is

for the Heshang cave record where it is 50 % lower. We couldmore pronounced in the kernel estimate. However, the over-
all shapes of the functions agree well.

relate this to the differences in the respective sampling time The lack of significant correlation between the other

distributions: The Heshang sampling time distribution shows
: . , records could have several reasons. One may be that our
high skewness and a large mean sampling period, both com-

R L : : estimators did fail to capture the “true” underlying mon-
bining into a source of estimation error. Neither high skew- o I .
: oon variability common to all records. This is not unlikely,
ness (Dandak) nor a lower sampling rate (Dongge) alone lead.

o : Since there are time uncertainties and local influences to be
to such a deviation between the LSq and Gaussian kemel e?éken into account, especially when analyzing records that
timates, which is in agreement with the results from Sg&ct. » €SP y yzing

) ) ) are spaced so far apart and reconstructed over such a time
It.f.ollovys from th|§, that interpolation causes a strgngly span. It may well be that the strongest commonality be-

positive bias on persistence and the kernel-based estimate {5,0q the records are trends on centennial to millennial time

slightly negatively biased. Thus, if in an analysis the two €s-gcges that cannot be reconstructed from a less than 1000 yr

timates coincide we could assume the resul; to be unbiaseqlOng overlapping section and that possible links operating
On the other hand, we should exercise caution when the r€5, ghorter time scales were obscured in the generation pro-

sults from different methods disagree. Persistence times givea.ss on the other hand, our time section includes the North-

a measure of memory in processes and are thus important tg, . hemispheric Medieval Warm Period (MWP, ca. 700 BP—
characterize time scales on which climate processes operatgq g BP) and parts of the Little Ice Age (LIA, ca. 100 BP—
As we see in this section, interpolation leads to a strong overy BP), periods where monsoonal circulation seemed to be

estimation of persistence for irregular time series, with a biasStronger (MWP) or weaker (LIA) according Zhang et al.
changing also in relation to the skewness of the observatio 2008.

time distribution. Caution should therefore be exercised an
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Fig. 12. Exemplary cross correlation analysis&éfgo records from Dandak and Wanxiang caves: Standardized time &8yidse sampling
interval distributiongb), the estimated ACHg, d) and the corresponding CCF with the dashed lines representing the estimated 95 % critical
values of a two-sided test for the null hypothesis of time series being sampled from a red noise (glotesends for each row are given

in the right panels.

25 led to a weakening of the monsoon. In contrast, warm phases
should have led to a strong circulation which results in an in-
_ 20 creased influence of the ISM on Chinese precipitation. This
- should be observable in an increased correlation between In-
-% 15 dian and Chinese rainfall variation and, at the same time, an
c increased correlation between €0 records.
z 10 We therefore analyze two time slices (389 BP—700 BP and
H 700BP-1100BP) of the records separately. After signifi-

° I cance testing — and considering lags of 0 to 30yr absolute
o = value —, we find a contrasting picture: while the North-
Dandak Wanxiang Heshang Dongge ern Chinese records correlate with the Indian Dandak record
W in. Interp H :'Etsecrﬁ Record M Gaussian Kemel E&régqi;-al Record fjuring the warm phase (MWP), this correlation is insignif-
icant in the colder phase (towards the LIA) that followed
Fig. 13. Persistence times of t#&80 records estimated using lin- (cf. Fig. 14c). On the other hand, while the southern Chinese
ear interpolation ACF estimate, Gaussian kernel ACF estimate anj?ongge record correlates with the more northern records

the least squares fitting of AR(1) processes (denoted by LSq) o om_He;hang e_md_ Wa”Xia”Q caves during the LIA, this cor-
interpolated and original record. relation is not significant during the MWP.

This points us towards a more differentiated interpretation
of these correlations, emphasizing the geographical origins
of these cave records. According to the “isotopic zones”

The Asian summer monsoon is a large-scale atmospherishown inMaher (2008, Feng et al.(1999 and references
circulation phenomenon. During northern hemisphere coldtherein, Wanxiang cave is located in a zone that is, at present,
phases, less energy available for its generation might havdominated by the ISM. Heshang and Dongge cave lie in an

www.nonlin-processes-geophys.net/18/389/2011/ Nonlin. Processes Geophys., 18438011



402 K. Rehfeld et al.: Comparison of correlation analysis techniques for irregularly sampled time series

A Whole time period B Cold phase with parts of the LIA C Medieval warm period
(387 - 1100) BP W'anxiang (387-700) BP W.anxiang (700 - 1100) BP W.anxiang
\Heshang \Heshang \Heshang
Dongge Dongge Dongge
Dandak Dandak Dandak

Fig. 14. Results from pairwise cross correlation analysis for all records: Red links indicate significant positive cross correlation at or close
to zero lag for the respective records. While in the warm phase of the MWP the Northern Chinese records correlate with the Indian Dandak
record and not with the southernmost Dongge cave re@yahis is reversed in the cold phase after the MWP. The Chinese records then
correlate amongst each other, but not with the Indian Dandak ré€yrd

“isotopic zone” where both monsoonal branches are influ-positive for ACF estimation but negative for CCF quantifica-
ential. However, Dongge cave lies closer to the southerrtion and its magnitude scales linearly with sampling irregu-
zone that is, at present, dominated by monsoonal precipitarity.
tation from the south east (South China Sea) but not from In all synthetic test cases we studied the Gaussian kernel
the south-west (ISM). Recent investigations show, that everwas close to or was the estimator with the lowest RMSE.
within southern China, moisture sources and their isotopiclts performance was slightly inferior to that of the sinc ker-
signature, differ orthogonally to these “isotopic zondsiu(  nel for sinusoidal time series but significantly better for red
et al, 2008, pointing at a stronger influence of the South noise ACF and CCF estimation, especially in the application
East monsoon in direction of Dongge cave. We concludeto records with disparate sampling rates.
that during warm phases our results are consistent with these We find that the sinc-kernel performs well for ACF estima-
isotopic zones, since the records from central China corretion of sinusoidal signals. It shows, however, alternating bias
late with the Indian Dandak record. In the cold phases, thepatterns in the ACF for red noise time series, resulting in a
atmospheric circulation might have been different, emphasizhigh RMSE comparable to the FFT-based result. This might
ing the south east moisture source for allover China, evidenbe due to the shape of the kernel with its positive and nega-
through a correlation between the Dongge cave record angve weights, thus emphasizing regular, deterministically re-
the more northern Chinese records and, since we observe nfurrent structures that are not present in stochastic processes.
significant correlation with the Dandak record, less ISM im- Another reason for the mixed performance could be cutoff
pact. effects, since the kernel effectively presents a rectangular fil-
Interpolation and kernel-based estimation give similar re-ter in the frequency domain.
sults. The CCF estimates at and around lag zero were not—or The performance of the Lomb-Scargle periodogram-based
not significantly — lower for interpolation where a significant routine showed advantages over interpolation for low skew-
correlation was detected. We believe that this is due to theyess time sampling. For very irregular time series, in ACF as
long time scales on which these correlations are recorded, &s CCF tests, we found a strong sampling effect resulting in
the advantages of the kernel-based method are larger for loy |arge bias.
persistence (cf. Sedd). In all tests we performed on synthetic data, we have found
that linear interpolation comes with two systematic effects:
It shows a positive bias for ACF estimation, and it has a
5 Conclusions negative bias in CCF estimation, emphasizing low-frequency
variability at the cost of high-frequency components. Both
Comparing different methods for analyzing correlations from effects become more severe with increasing sampling time
irregularly sampled time series, we have found that thedistribution skewness and lower persistence in the processes
kernel-based method is robust and has a comparable — arfdom which we generate the time series. The Gaussian ker-
often even lower — RMSE and bias than the traditionally em-nel estimates are consistent with those from interpolation for
ployed schemes using interpolation in the application to syntegular sampling and have the, or close to the, lowest RMSEs
thetic records, for regular and irregular sampling. in all tests.
For the interpolation and FFT-based routine we find a four The estimated persistence time using the Gaussian kernel
to seven times increase in RMSE, predominantly caused bghows generally only a small negative bias with respect to
an increase in the absolute value of the bias. This bias ishe least squares estimate on the original record. The least
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