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Abstract

We investigate conditions that amplify market failures in energy innovations, and suggest optimal policy
instruments to address them. Using an intertemporal general equilibrium model we show that “small”
market imperfections may trigger a several decades lasting dominance of an incumbent energy technology
over a dynamically more efficient competitor, given that the technologies are very good substitutes. Such a
“lock-in” into an inferior technology causes significantly higher welfare losses than market failure alone,
notably under ambitious mitigation targets. More than other innovative industries, energy markets are
prone to these lock-ins because electricity from different technologies is an almost perfect substitute. To
guide government intervention, we compare welfare-maximizing technology policies including subsidies,
quotas, and taxes with regard to their efficiency, effectivity, and robustness. Technology quotas and feed-in-
tariffs turn out to be only insignificantly less efficient than first-best subsidies and seem to be more robust
against small perturbations.
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1. Introduction

Whether technology policy is needed in addition to carbon pricing to combat global warming efficiently
is still debated controversially. The straight-forward approach suggests that addional externalities – for
example innovation spillovers – require additional instruments (Fischer and Preonas, 2010). In contrast,
some economists have argued that existing, technology unspecific instruments like patents and research
subsidies are sufficient to foster innovations in the energy sector (Nordhaus, 2009). In particular, there
is concern that the social costs of technology-specific policies (due to rent-seeking, transaction costs and
information problems) outweigh the benefits.

Our paper takes this debate as starting point by focussing on three questions: (i) Are innovation-related
market failures in the energy sector different from other sectors in the economy, in particular with respect
to possible technology lock-ins? (ii) Is it likely for the social costs of innovation externalities to exceed
the social costs of technology-specific instruments? (iii) In how far do policies with stronger technology
discrimination outperform more general policies?

The first of our questions is addressed in Gerlagh et al. (2008), within a model of patents for innova-
tions. The dynamic inefficiency of limited patent lifetime leads to a bias towards innovations with pay-back
time during the patent lifetime. As climate change is a stock-pollutant problem, the benefits of innovation
in energy technologies materialize in the distant future when atmospheric carbon concentration is high.
Hence, investments into energy innovation may be less than into other innovations. Several modeling stud-
ies incorporating carbon externalities and innovation address the second and the third question. With regard
to the technological structure, Kverndokk and Rosendahl (2007) and Rivers and Jaccard (2006) are close
to our model but do not consider intertemporal resource extraction and endogenous savings dynamics.
Fischer and Newell (2008) use a partial two-period equilibrium model calibrated to the US economy for
very moderate mitigation targets. Gerlagh et al. (2004) and Gerlagh and Lise (2005) analyze the impact of
constant ad-hoc carbon taxes under (perfectly internalized) technological change within an intertemporal
general equilibrium model. Finally, Popp (2004, 2006) studies the impact of R&D expenditures on carbon
prices and mitigation costs within a social planner model. Grimaud et al. (2010) use a similar technological
structure to analyze carbon pricing and R&D policies in a decentralized economy.

Another strand of research has focused on the high inertia of energy markets due to long investment
cycles, increasing returns to scale and networt externalities (Unruh, 2000, 2002; Foxon and Pearson, 2007;
Schmidt and Marschinski, 2009). This strand is partly based on the concept of ’lock-in’ – a market dom-
inance of an inferior incumbent technology at the expense of a superior contender technology (Arthur,
1989, 1994). Well-known examples include keyboard layout and video recorders (David, 1985; Cusumano
et al., 1992) but also energy technologies (Cowan and Hulten, 1996; Islas, 1997). Due to the inertia of the
energy sector, carbon pricing may have only little impact on investments and innovation, making additional
instruments necessary.

We differ from these models in analyzing the possibility and intensity of technology lock-ins within an
intertemporal general equilibrium model. Furthermore, we provide an extensive policy analysis consider-
ing first-best and several welfare maximzing second-best instruments. In the model we describe in Sec. 2,
lock-ins rise due to imperfections in the innovation process and the competition between technologies
that are almost perfect substitutes: Technological progress in the learning carbon-free sector is driven by
learning-by-doing with intra-sectoral knowledge spillovers. We furthermore explore the possibility of high
effective discount rates in the learning technology sector. The discount rate mark-ups might evolve from
risk premiums due to uncertainty and imperfect commitment about future climate policy which effects the
profitability of early learning-by-doing. We consider three energy technologies: (i) fossil energy, (ii) a
learning carbon-free energy where significant learning-by-doing occurs as expected for many renewable
energy technologies, and (iii) a mature (non-learning) carbon-free energy where technology has already
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experienced past learning and considerable up-scaling. Candidates for the mature carbon-free energy tech-
nology are nuclear power or hydropower.

We find that a possible lock-in into the inferior (non-learning) technology can be very costly compared
to the costs of the innovation market failure alone, i.e. when the inferior technology would not be available
at all (Sec. 3). Incomplete appropriation of the gains of innovation generally leads to higher prices. This is
the case for all technology development that exhibits spillovers, but given sufficient product differentiation,
consumers will buy new products even at higher prices. Impacts of spillovers will be small because the de-
mand of variety-loving consumers triggers further technological progress and cost reductions. Electricity,
however, is a very homogeneous good, and thus price competition dominates the market. The currently
cheapest technology crowds out other technologies that may be dynamically more efficient. Hence, due to
the very good substitutability between energy from technologies with different innovation potential markets
suffer more from spillovers than many other innovative industries.

Due to the good substitutability, seemingly small market failures have a considerable impact on the
energy mix, welfare and carbon prices. We therefore analyze the performance of different policies in
preventing lock-ins by calculating optimal first-best and second-best policy instruments (Sec. 4). We dis-
tinguish the following policy instruments: (i) subsidies for the learning carbon-free technology; (ii) quotas
(i.e. portfolio standards) with different degree of technology discrimination, (iii) feed-in-tariffs, (iv) taxes
on the mature carbon-free technology, and (v) second-best carbon pricing. We find that only the subsidy
achieves the social optimum, but feed-in-tariffs and quotas specifically targeting the learning technology
only incur very small welfare losses. The other instruments exhibit larger welfare losses up to the point
of showing no improvement compared to the laissez-faire market equilibrium with a carbon price only.
Limited commitment and political-economy aspects motivate our analysis of policy stimuli, i.e. subsidies
that are only available for a certain time (Sec. 5). It turns out, that an optimal subsidy stimulus of only a
few decades reduces consumption losses substantially. Finally, by considering small perturbations of the
optimal policies we find that the optimal feed-in-tariff and quota turn out to be fairly robust, while a devi-
ation from the optimal subsidy of as little as one percent may render the subsidy ineffective in preventing
a lock-in (Sec. 6).

2. The model

We use an intertemporal general equilibrium model that distinguishes household, production, fossil
resource extraction and several energy sectors.1 In addition to energy generated by combustion of fossil
resources, there are two carbon-free energy sources: a mature energy sector, and a more expensive yet
learning competitor technology. A further sector extracts fossil resources from a finite resource stock.
For simplicity, we use labor only as input in the production sector and not in the energy sector as only a
minor share of the labor force is allocated to the energy sector (in EU-27 approx. 3% (Eurostat, 2009)).
Furthermore, capital and fuel costs clearly dominate operation and maintenance costs (which include labor
costs) for all major energy generation technologies (IEA, 2010, Tab. 6.2). We assume standard constant
elasticity of substitution (CES) production functions stated in detail in the appendix. The economic sectors
are in a competitive market equilibrium within a closed economy. Global warming policy is addressed by
a carbon bank – an independent institution that manages a given carbon (permit) budget intertemporally.
The government, which anticipates the equilibrium response of the economy, imposes policy instruments
on the economy to maximize welfare. Fig. 1 gives an overview of the equilibrium and the role of the
government.

1The model is built to deal with a large set of climate policy issues like delayed carbon pricing, supply-side dynamics and double-
dividend aspects which go beyond the research question of this paper.
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Figure 1: Overview of the modeling framework.

2.1. The decentralized economy

Here, we concentrate on the description of the agents’ optimization problem and the interplay with
government’s policies; the mathematical description of production technology as well as the derivation of
the first-order conditions can be found in Appendix A and Appendix B, respectively.

The representative household
We assume a representative household with the objective to maximize the sum of discounted utility U,

which is a function of per-capita consumption C/L:2

max
Ct

T∑
t=0

(1 + ρ)−tLtU (Ct/Lt)

where ρ is the pure rate of time preference.
The household owns labor L, capital stocks K j, and the firms, and therefore receives the factor in-

comes wL and rK j, as well as the profits of all firms π j, where j ∈ {Y, F,R,N, L} enumerates the sectors
(consumption good sector Y , fossil energy sector F, resource extraction sector R, mature (non-learning)
carbon-free energy sector N, learning carbon-free energy sector L). Wage rate w, interest rate r, profits π j

and lump-sum transfers from the government Γ are taken as given from the household’s perspective. The
household is assumed to take the depreciation of capital at rate δ into account in its investment decision.3

2In the following, we often omit the time-index variables t in the main text to improve readability.
3Imposing the depreciation dynamics on the saving-side (households) instead of the investment-side (firms) is done for technical

reasons. It does not change investment behavior but simplifies the capital dynamics within the economic model.
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The household therefore faces the following constraints:

Ct = wtLt + rtKt − It + πt + Γt (1)

Kt =
∑

j

K j,t, It =
∑

j

I j,t, πt =
∑

j

π j,t (2)

K j,t+1 = K j,t + I j,t − δK j,t, K0 given (3)

The production sector
The representative firm in the consumption good sector maximizes its profit πY by choosing how much

capital KY and labor L to rent, and how much energy to purchase from the various sources: fossil fuels
sector, mature and learning carbon-free energy sectors (EF , EN , and EL, respectively).4 It has to consider
the production technology Y(·) and the given factor prices for capital (r), labor (w), fossil (pF), mature
carbon-free (pN) and learning carbon-free (pL) energy (the price of consumption goods is set to one).
Furthermore, the production sector may need to consider government intervention in form of a feed-in
tariff ςF . The feed-in-tariff takes the form of a subsidy but is cross-financed by a tax τF on energy from the
fossil and the mature carbon-free technology energy sectors.

πY,t = Y(KY,t, Lt, EF,t, EL,t, EN,t) − rtKY,t − wtLt − (pF,t + τF,t)EF,t − (pL,t − ςF,t)EL,t

− (pN,t + τF,t)EN,t (4)

The nested CES production function Y(Z(KY , AY L),E(EF ,EB(EL, EN))) combines a capital-labor inter-
mediate with energy, assuming an elasticity of substitution of σ1. Capital and labor are combined to an
intermediate input Z using the elasticity of substitution σ2; similarly, fossil energy and carbon-free energy
are combined to final energy with the elasticity of substitution σ3. Finally learning and mature carbon-free
energy are combined to aggregate carbon-free energy EB using the elasticity of substitutionσ4.5 Population
L and productivity level AY grow at an exogenously given rate.

Additionally, the government may impose quotas to influence the energy portfolio. Three quotas are
included, differing with respect to how specifically they can foster energy from the learning carbon-free
technology: Quotas of the first kind, ψT

L , set a minimum share of energy from the learning carbon-free (EL)
relative to total energy use. The second type ψB

L requires a minimum share of EL relative to all carbon-free
energy. Finally, the quota ψT

B determines the minimum share of energy from either carbon-free technology
relative to total energy use.

EL,t ≥ ψ
T
L,t(EF,t + EN,t + EL,t) (5)

EL,t ≥ ψ
B
L,t(EN,t + EL,t) (6)

EL,t + EN,t ≥ ψ
T
B,t(EF,t + EN,t + EL,t) (7)

The fossil energy sector
The fossil energy sector maximizes profits πF with respect to capital KF and fossil resource use R,

subject to the CES production technology EF and given factor prices for fossil energy, capital and resources

4The intertemporal profit maximization problem of the production, fossil energy and mature carbon-free energy sector boils down
to a static problem.

5We do not integrate fossil, learning and non-leaning energy on the same CES-level because we assume that substitutability
between the two carbon-free energies EL and EN should be higher than between a carbon-free and a fossil energy EF and EL. This
is due to the fact that carbon-free energy is usually considered in the electricity sector while fossil energy covers electric as well as
non-electric energy consumption.
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(pR). Additionally, it may consider a carbon tax τR or carbon permit price pC:

πF,t = pF,tEF(KF,t,Rt) − rtKF,t − (pR,t + τR,t + pC,t)Rt (8)

The fossil resource sector
The fossil resource sector extracts resources from an exhaustible stock S using capital KR. Its objective

is to maximize the sum of profits over time, discounted at the rate rt − δ
6:

max
Rt

T∑
t=0

πR,tΠ
t
s=0 [1 + (rs − δ)]−1

Resource owners rent the capital used in the extraction process at the market interest rate. The productivity
of capital ∂R/∂KR decreases with ongoing depletion of the exhaustible resource stock (Rogner, 1997;
Nordhaus and Boyer, 2000). The resource sector, therefore, has to consider the following constraints:

πR,t = pR,tR(S t,KR,t) − rtKR,t (9)
S t+1 = S t − Rt, S t ≥ 0, S 0 given (10)

The learning carbon-free energy sector
The learning carbon-free sector maximizes profit πL under capital input and with a fixed amount of land

N. It considers interest rate, the price of the learning carbon-free energy as well as an output subsidy τL

as given and may additionally consider a risk premium v ≥ 0 which effectively increases the discount rate
above the market interest rate. The risk premium reflects uncertainty and imperfect commitment regarding
the stringency of future mitigation policies (and, thus, carbon prices). Another rationale for imperfect
foresight is provided by Rivers and Jaccard (2006) who argue that the variance of learning investments is
larger than for other investments. Risk premiums evolve if capital or insurance markets are not perfect (i.e.
due to asymmetric information) or investors are risk-averse. As the learning-by-doing dynamics implies an
additional inertia through the knowledge stock, the learning sector is more vulnerable to uncertainty than
non-learning sectors.7 The optimization problem of the sector reads:

max
KL,t

T∑
t=0

πL,tΠ
t
s=0 [1 + (rs + v − δ)]−1

πL,t = (pL,t + τL,t)EL(AL(Ht)KL,t,N) − rKL (11)
Ht+1 = Ht + (EL,t − EL,t−1), H0 given (12)

The productivity AL depends on cumulative output H according to AL =
AL,max

1+( Ω
H )γ and converges to AL,max

when H → ∞. This formulation is based on Arrows’s learning-by-doing approach (Arrow, 1962) and
widely used in energy economic models (e.g. Kverndokk and Rosendahl, 2007; Fischer and Newell, 2008).

6As the interest rate already reflects depreciation of capital due to our formulation of the representative household (see Eqs. 1–3),
consumption has to be discounted by the interest rate net of depreciation.

7By the same token, imperfect commitment also concerns the fossil resource owners. Under a mitigation policy, however, high
carbon prices dilute the intertemporal rent dynamics of the fossil resource sector. Fossil resource rents become almost zero under
ambitious mitigation targets. Introducing high risk premiums does therefore not affect the resource extraction which is dominated by
the carbon price (see Kalkuhl and Edenhofer, 2010, for an analytical analysis).
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Ω is a scaling parameter, and γ is the learning exponent. It is related to the learning rate lr by γ =

− ln(1−lr)/ ln 2, which measures by how much productivity increases when cumulative capacity is doubled.
As shown in Appendix B, the firms’ internal value of learning µt is given by µt−1 =

1−φ
1+rt+v+δ

(pL,t +τL,t +

µt) ∂EL
∂Ht

. The spillover rate φ ∈ [0, 1] is introduced to indicate how much of the learning-by-doing effect is
anticipated by the individual firm. This approach is in more detail explained in Fischer and Newell (2007)
and relies on the learning-by-doing dynamics elaborated in Spence (1984) and Ghemawat and Spence
(1985). It is consistent with econometric studies on external learning-by-doing spillovers which suggest
that learning does not only depend on the individual firm’s cumulative production but also – to some extent
– on the other firms’ cumulative output (Irwin and Klenow, 1994; Barrios and Strobl, 2004). From a
social planner’s perspective, all externalities are internalized and spillovers are irrelevant as cumulative
output determines learning. In contrast, in a decentralized economy, only a share (1 − φ) of learning is
appropriated by the firm. Hence, φ describes an incentive problem.8

The learning carbon-free sector covers mainly renewable energy technologies requiring large amounts
of land. As best sites (regarding solar radiation, wind speed etc.) are used first, marginal costs increase
with ongoing deployment (if productivity is held constant) (cf. Edenhofer et al., 2011, Ch. 10). The
learning-by-doing effect may offset these diminishing returns in particular for the early deployment phase.

The mature carbon-free energy sector
The mature carbon-free sector sector maximizes profit πN subject to capital input KN :

πN,t = (pN,t − τN,t)EN(KN,t) − rtKN,t (13)

It takes interest rate and energy price as given and has to consider an output tax τN on energy generation
if it is imposed by the government. Being a rather generic sector, we employ an AK-technology function
where a change of the productivity level AN changes the marginal productivity of capital.

The carbon bank
We assume that society’s mitigation goal is formulated as an upper constraint on cumulative carbon

extraction – a so-called carbon budget –, and that the government has appointed an institution, the carbon
bank, to manage the corresponding carbon permits efficiently. Equivalently, the government could issue
all available carbon permits to the market and allow for free intertemporal permit trade. The carbon bank
has the objective to maximize the revenues πC from a given carbon budget B0 ≥ 0. It decides how much
carbon permits P to issue in each time period. As each unit of carbon R extracted by the fossil resource
sector requires the purchase of one carbon permit, it follows that P = R.

max
Rt

T∑
t=0

πB,tΠ
t
s=0 [1 + (rs − δ)]−1

πB,t = pC,tRt (14)
Bt+1 = Bt − Rt, Bt ≥ 0, B0 given (15)

Similar to an exhaustible resource, the carbon budget is a stock of permits which can be used throughout
the planning horizon. The resulting carbon price set by the bank therefore follows the Hotelling rule.

8A spillover rate of 100 percent implies that firms perceive the productivity increase as fully exogenous. In contrast, a 0 percent
spillover rates implies a perfect internalization of learning by firms. Learning then is a pure private good.
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While there are some economists arguing for such an independent institution to increase commitment
and reduce regulatory uncertainty (Barnes et al., 2008; Brunner et al., 2011) , we use this approach mainly
for didactical reasons. If there are no further externalities, such a Hotelling price path leads always to
an efficient abatement profile (Goulder and Mathai, 2000; Kalkuhl and Edenhofer, 2010). When market
failures in other sectors, however, cannot be corrected, it can be beneficial to deviate from the Hotelling
price path. As we want to study the potential of such second-best carbon pricing seperately (Sec. 4.5), we
use the Hotelling carbon price as default implementation of the government’s mitigation policy.

2.2. Equilibria of the economy
In this study, we distinguish three types of equilibria for the economy outlined above. The social op-

timum given by the choice of a benevolent social planner serves as the benchmark equilibrium. In the
Stackelberg equilibria, a welfare-maximizing government selects the optimal trajectory of policy instru-
ments from a pre-defined subset of available policy instruments given the implicit reaction functions of
the economic sectors (see for example Dockner et al. (2000, p. 111)). Thirdly, we consider a laissez-faire
market equilibrium with no government intervention.

Social optimum
The intention of considering the social optimum of our model economy, is to measure the extend

to what second-best policies fall short of the first-best. The socially optimal allocation is determined by
solving the welfare maximizing problem subject to investment, fossil extraction, carbon budget, technology
and macroeconomic budget constraints according to:

max
{K j,t}

T∑
t=0

(1 + ρ)−tLtU (Ct/Lt) (16)

subject to Eqs. 2, 3, 10, 12, 15, A.1–A.13
and Ct = Yt − It

Stackelberg equilibrium
The first-order conditions of the sectors described above (and spelled out in Appendix B) define an

intertemporal market equilibrium for given policy instruments. The government considers all technol-
ogy constraints, budget constraints, equations of motion and first-order and transversality conditions and
chooses policy instruments to maximize welfare (see Fig. 1).

Furthermore, the government balances incomes and expenditures in any time with households’ lump-
sum tax Γ. In case of the feed-in-tariff, the subsidy ςF for the learning energy is financed by the tax for
fossil and mature energy τF .

Γt = τN,tEN,t − τL,tEL,t + τR,tRt + πB,t (17)
ςF,tEL,t = τF,t(EF,t + EN,t) (18)

Hence, the government’s optimization problem is described by:

max
Θ

T∑
t=0

(1 + ρ)−tLtU (Ct/Lt) (19)

subject to Eqs. 1–15, 17–18 , A.1–A.13, B.1–B.20

Θ = {τL,t, τN,t, τR,t, ςF,t, ψ
T
L,t, ψ

B
L,t, ψ

T
B,t} is the set of government policies. For the purpose of our paper it will

be convenient to restrict policies to a single instrument while all other instruments are set to zero.
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Laissez-faire equilibrium
The laissez-faire market equilibrium is a special case of the Stackelberg equilibrium. Here we set all

policy instruments to zero – thus, Θ ≡ 0. Note that this does not include climate policy, as we always
assume that climate policy in form of a carbon budget is implemented by the carbon bank setting pC .

2.3. Calibration and implementation of the model

Model parameters are chosen to reproduce a global-economy baseline from a model comparison project
in the social optimum without any carbon budget (Edenhofer et al., 2010). We use a carbon budget of 450
GtC for the mitigation scenario. This limits global warming to 2°C above the preindustrial level with a
probability higher than 50 percent (Meinshausen et al., 2009). The endogenous fossil energy price starts
at 4 ct/kWh in 2010 and increases up to 8 ct/kWh in 2100 (under business as usual) due to increasing
extraction costs. The mature carbon-free technology refers to nuclear or hydropower as their learning rates
are very low (1-9%) compared to renewable energy technologies like solar, wind and ethanol (8-35%) (IEA,
2000; McDonald and Schrattenholzer, 2001). The parameters describing the non-learning carbon-free
technology are chosen to reproduce constant energy costs at 15 ct/kWh. This is at the upper bound of IEA’s
cost estimate for nuclear and gas (IEA, 2010).9 The recent IPCC Special Report on Renewable Energy
Sources and Climate Change Mitigation cites 41 learning rate estimations for renewable energy ranging
from 0% to 45% with a mean of 16.4% (Edenhofer et al., 2011, Ch. 10, Tab. 10-10). For the learning
carbon-free energy we will mainly consider two parameterizations: a moderate learning parameterization
with a 17% learning rate and 9 ct/kWh generation costs in 2100 (standard parameterization); and a high
learning scenario with a 25% learning rate and 5 ct/kWh generation costs in 2100. Initially, the average
costs are around 28 ct/kWh. The discounted consumption losses due to the consideration of the carbon
budget (i.e. the mitigation costs) are 1.7% for the 25% learning rate and 4.0% for the 17% learning rate
scenario.

The climate externality can be easily incorporated by a fixed carbon budget consistent with a cer-
tain temperature target. The magnitude of the innovation market failure, however, i.e. learning spillovers
and risk premiums, seems to be difficult to quantify. Several econometric studies confirm the existence
of learning-by-doing spillovers in the manufacturing and semiconductor industry; the estimated spillover
rates are usually between 20% and 60% (Irwin and Klenow, 1994; Gruber, 1998; Barrios and Strobl,
2004).10 The literature on R&D and innovation externalities indicates that social rates of return into in-
novations exceed the private rates of return by the fourfold (cf. Nordhaus, 2002). As only one fifth of the
value of innovation can be appropriated by the innovator, the resulting spillover rate is 80%. In our model,
however, we do not consider R&D externalities explicitly to avoid the interference of too many innova-
tion externalities. In order to still account for the high magnitude of innovation externalities, we chose a
learning-by-doing spillover rate of 60%, but we consider also lower and higher values. Due to the lack of
empiric evidence, we assume that the risk premium is zero (v = 0). Nevertheless, we elaborate the impact
of deviations from these values in Sec. 3. We set σ3 = 3, implying a good substitutability between fossil
and carbon-free energy. As the carbon-free energy sector covers mainly electric energy, we assume a high

9We use a small negative external learning rate in Eq. A.13 of gN = −0.4% to obtain constant costs for the non-learning carbon-free
energy because the interest rate falls over time. A negative learning rate can also be justified by increasing resource or site scarcities
or increasing safety standards which raised capital costs for nuclear power plants in the past (Du and Parsons, 2009). However, we
ran our model also for gN = 0 and did not observe qualitative differences in the economic dynamics.

10These spillover rates refer to countries that already have a comprehensive patent legislation. The knowledge transfer into coun-
tries with imperfect patent legislation should therefore be higher.
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substitutability and set σ4 = 21.11

The optimization problems as defined by (16) and (19) form a non-linear program (NLP) which is
solved numerically with GAMS (Brooke et al., 2005). All parameters of the model are listed in Ap-
pendix D. Additional figures with several model results can also be found in the supplementary material.

3. The lock-in effect

In this section, we compare the laissez-faire market equilibrium (with Hotelling carbon price) with the
optimal solution. In order to compare the dynamic outcome of several equilibria we introduce two metrics:
(i) consumption losses refer to the relative deviation of discounted consumption from the social optimum
under the same technological parameters (we use a 3% discount rate); (ii) the delay of learning carbon-
free generation (compared to the social optimum) is measured by the difference in years until the learning
carbon-free energy achieves a share of 10% in the total energy.

3.1. Why the energy sector is highly vulnerable to lock-ins

Fig. 2a shows carbon-free energy generation and costs in the social optimum (which is equivalent to
the laissez-faire equilibrium for φ = 0 and v = 0, i.e. without market failures) for two different elasticities
of substitution σ4 between EL and EN . Energy from learning carbon-free technology is used significantly,
although its average unit costs are initially higher compared to those of the mature technology. But when
the learning curve and spillovers are internalized, future cost reductions for the learning technology are
fully anticipated. Hence, the learning technology dominates the mature carbon-free technology.

Fig. 2b shows the generation in the laissez-faire equilibrium with intrasectoral learning spill-overs.
The spillovers lead to an imperfect anticipation of the future benefits of learning-by-doing. For a low
elasticity of substitution (σ4 = 3), the laissez-faire outcome does not differ significantly from the optimal
solution. For a higher elasticity of substitution, however, this changes fundamentally: The learning carbon-
free technology is delayed significantly and energy demand is met by energy from the mature carbon-free
technology. This has a clear and intuitive explanation: a low elasticity creates a niche demand for the
learning carbon-free energy even when it is more expensive than the mature carbon-free. Driven by such
a niche demand the learning sector may gain experience and reduce production costs until it becomes
competitive. But at high elasticities of substitution niche demand vanishes. In this case, the technology
with the lowest market price wins.

Fig. 2 shows that a dynamically inferior technology dominates the dynamically efficient technology
for many decades. The energy sector “locks-in” into the mature energy which competes with a learning
technology that cannot internalize the value of future learning appropriately into its price. The energy
sector is highly vulnerable to lock-in because electricity is an almost perfect substitute for consumers. In
contrast, many innovations in the manufacturing or entertainment electronic sector provide a new product
different from existing ones (e.g. flat screens vs. CRT monitor). The low substitutability implies a high
niche demand and, thus, provokes ongoing learning-by-doing although considerable spillovers exist and
market prices are distorted.

11IAMs use different elasticities of substitutions between energy technologies. Some models assume perfect substitutability (Mess-
ner, 1997; Kverndokk et al., 2004; Edenhofer et al., 2005; Kverndokk and Rosendahl, 2007), others use values of 0.9 (Goulder and
Schneider, 1999), 2 (van der Zwaan et al., 2002; Böhringer and Rutherford, 2008) or 8.7 (Popp, 2006). Gerlagh and Lise (2005)
use a variable elasticity of substitution ranging from 1 to 4. IAMs with differentiation between electric and non-electric energy usu-
ally assume high (Cian et al., 2009) or perfect (Manne et al., 1995; Leimbach et al., 2010) substitutability between electric energy
technologies while using lower elasticities of substitution between electric and non-electric energy.
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Figure 2: Carbon-free energy generation and costs (2030-2080) for two different elasticities of substitution (σ4 ∈ {3, 21}) between
learning and mature carbon-free energy: (a) optimal outcome and (b) laissez-faire equilibrium with 60 percent spillovers and no
additional technology policy instruments.

3.2. Economic impacts of lock-ins

In our standard parametrization the consumption losses due to the lock-in are 0.6%. Fig. 3 shows how
this value changes if several parameters are modified. As we already argued, a high elasticity of substitution
is an important condition for a lock-in to occur. A second important condition is that the generation cost
of mature carbon-free energy is at a critical level: In the case of 0.2 ≤ AN ≤ 0.25, which corresponds to
production costs between 12 and 15 ct/kWh, the mature carbon-free energy is an attractive option before
learning has started and an expensive one after considerable learning took place. Thirdly, there must exist
a market failure in the learning carbon-free sector, which is introduced by the spillover rate or the discount
rate mark-up (risk premium). Beside these three necessary conditions, Fig. 3 indicates that learning rates
and mitigation targets influence the magnitude of consumption losses. Hence, ambitious climate targets
(like 200 GtC) become more expensive if energy markets do not perform well although an efficient carbon
pricing instrument is applied.

Generally we can distinguish two sources of welfare losses. First, the intertemporally suboptimal de-
ployment of the learning carbon-free energy causes consumption losses even if no competitive mature
carbon-free technology is available (and no lock-in occurs). A doubling of the mature carbon-free produc-
tion costs (i.e. AN = 0.1) for example, makes the learning technology competitive even if high spillovers
exist. In this case the mature carbon-free energy generation is virtually zero. The resulting consumption
losses due to spillovers are smaller than 0.3% and there is almost no delay in learning carbon-free gener-
ation (< 5 years). In contrast, the simply existence of a competitive non-learning technology delays the
learning technology deployment due to lock-in substantially and reduces consumption even more. This
second kind of welfare loss is more severe than the impact of suboptimal deployment in a world where no
non-learning carbon-free energy is available.

In Fig. 3 only one parameter is varied at a time. This ignores that changes in multiple parameters may
cancel each other out or may mutually reinforce their effect on the technology lock-in. Indeed, Tab. 1 shows
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Figure 3: Consumption losses due to lock-in for several parameter variations around the standard parameterization.

lr φ v B0 σ4 Consumption
losses

Delay
(years)

Initial carbon price
(1=optimal)

1 17% 25% 15% 450 21 0.4% 16 1.16
2 17% 25% 15% 200 21 0.7% 20 1.14
3 17% 50% 15% 450 21 0.9% 27 1.23
4 17% 50% 15% 200 21 1.4% 35 1.17
5 17% 75% 10% 450 16 1.5% 40 1.27
6 17% 75% 10% 200 16 2.2% 50 1.18
7 25% 25% 15% 450 21 0.6% 16 1.51
8 25% 25% 15% 200 21 0.7% 13 1.49
9 25% 50% 15% 450 21 1.1% 24 1.83

10 25% 50% 15% 200 21 1.3% 22 1.77
11 25% 75% 15% 450 13 2.0% 34 2.27
12 25% 75% 15% 200 13 3.4% 41 2.09
13 25% 100% 0% 200 13 8.0% 87 2.15

Table 1: Parameter values that provoke lock-ins: Impact on consumption losses, delay of achieving 10% learning carbon-free energy
share and initial carbon price.

further parameter sets that cause particularly severe lock-ins with consumption losses greater than one
percent. Even if spillovers are only 25 percent, the existence of an additional high risk premium postpones
learning carbon-free energy generation and provokes consumption losses of 0.7% under a carbon budget
of 200 GtC. A (rather theoretically) upper bound for the consumption losses is given for the case where
spillovers are 100% and the carbon budget is very ambitious. In this case, consumption losses increase to
8.0%.

The lock-in does not only provoke consumption losses and delayed learning carbon-free generation, it
furthermore modifies the Hotelling carbon price by changing the interest rate and the initial carbon price.
While the impact on the interest rate is small, the initial carbon price level increases by 22 percent to meet
the carbon budget in our standard parameterization. The medium-learning parameterizations in Tab. 1
show similar figures. In contrast, if the learning rate is high the initial carbon price increases by 49–127
percent compared to the case where no market failures exist.
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Figure 4: Performance of several policy instruments under the Stackelberg equilibrium: (a) Consumption losses relative to the optimal
solution; (b) delay to achieve a share of 10% learning carbon-free energy.

4. Optimal policy instruments

The previous section showed that in absence of policy intervention there are significant consumption
losses higher than one percent possible due to severe temporary lock-ins. This motivates the analysis
of several policy instruments to prevent lock-ins and reduce welfare losses. We focus on two illustrative
parameter settings: a high learning scenario (25% learning rate) and a medium learning case (17% learning
rate). For a low learning rate (8%), innovation market failures cause only very small consumption losses
(Fig. 3). As in this case technology policies hardly increase welfare, we omit the policy analysis for the
8% learning rate case. We calculate optimal policies for a 60% spillover rate and zero risk premiums;
considering cases with lower spillover rates and additional risk premium leads to similar results.12

In the Stackelberg equilibrium, we calculate the welfare maximizing time paths of (i) subsidies for
the learning technology, (ii) feed-in-tariffs, (iii) carbon-free energy quotas, (iv) mature carbon-free taxes,
and (v) a modified carbon price. The instruments differ in two aspects: First, they comprise a different
degree regarding the technology discrimination: While the subsidy or feed-in-tariffs target the learning
technology only, carbon prices and carbon-free quotas do not discriminate between carbon-free technolo-
gies. Secondly, they rely on different financing mechanisms: The financial flows of subsidies and taxes are
balanced by lump-sum transfers; in contrast, feed-in-tariffs and quotas are income-neutral.

The performance of each of these instruments with respect to consumption losses and delay of learning
carbon-free deployment is shown in Fig. 4. In the following we discuss these instruments in detail.

4.1. Subsidy for learning carbon-free energy

Due to the learning-by-doing spillovers, the social value of the learning technology is higher than its
private value. By equating the learning technology sector’s first-order conditions of the optimal economy
(without spillovers) with the imperfect economy, we can calculate the optimal subsidy that internalizes
the value of learning and achieves an efficient allocation (see Appendix C). The optimal subsidy τL,t =

µ∗t
(
1 − (1−φ)(1+rt+1+δ)

1+rt+1+v+δ

)
basically adjusts the output price pL by adding some fraction of the socially optimal

value of learning µ∗t (which can be obtained from the efficient intertemporal market equilibrium or the

12See the supplementary material for optimal learning subsidies for paramter choices according to Tab. 1.
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social planner optimum). Obviously, the subsidy increases in φ and in v. It converges to the maximum µ∗t
if φ → 1 or v → ∞ and converges to zero if φ → 0 and v → 0. In case of zero discount rate mark-ups
(v = 0), the subsidy simplifies to τL,t = φµ∗t ; in case of zero spillovers and positive risk premiums, however,
the optimal subsidy becomes τL,t = µ∗t

(
v

1+rt+1+v+δ

)
. As the output subsidy is lump-sum financed, it does not

cause further distortions in the economy.
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Figure 5: (a) Optimal subsidy and feed-in-tariff and (b) optimal quota for learning carbon-free energy on total energy.

The numerical calculation confirms that this subsidy is a first-best instrument. If learning rates are
high, the subsidy is initially high as an early deployment of learning carbon-free energy is socially optimal
(see Fig. 5a). For lower learning rates, fossil energy is more attractive in the first decades. Learning energy
generation and the subsidy are delayed because postponed learning costs are lower due to discounting.
Note that after an initial “activation” phase which shifts the energy generation from the niche to large-scale
generation, the subsidy is declining because of diminishing learning with cumulative output.

4.2. Feed-in-tariff
Although a lump-sum financed subsidy is an efficient instrument, it is rarely employed in reality. Gov-

ernments which prefer a price instrument to a quota widely choose feed-in-tariffs to encourage renewable
energy generation. In contrast to the lump-sum-financed subsidy τL, the feed-in-tariff (ςF) is a subsidy
on learning carbon-free energy that is cross-financed by a tax on fossil and mature carbon-free energy τF .
This captures the idea that the costs of feed-in-tariffs are borne by the entire energy sector.

The optimal path of the feed-in-tariff closely follows the lump-sum financed subsidy (Fig. 5a). As the
cross-financing mechanism causes small distortions for fossil and mature carbon-free energy prices,13 the
feed-in-tariff converges faster to zero. Consumption losses, however, are small (< 0.1%) and there is no
delay in learning carbon-free energy deployment (Fig. 4).

4.3. Quota on the energy mix
Some governments use tradable quotas instead of subsidies to encourage renewable energy generation.

In the following, we calculate the performance of several quota regimes which differ with respect to their
degree of technological discrimination. In Eqs. (5–6), we introduced three different quota designs: (i) a

13The difference between lump-sum subsidy τL and feed-in-tariff ςF becomes apparent in the first-order conditions (B.5–B.7) in
Appendix B.
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minimum quota for the carbon-free energy on the total energy generation (ψT
B), (ii) a minimum quota for

the learning energy on the total energy generation (ψT
L ), and (iii) a minimum quota for the learning energy

on the total carbon-free energy generation (ψB
L).

Quota for (total) carbon-free energy
A quota on EB does not increase welfare compared to the laissez-faire equilibrium in our model. Hence,

it is therefore optimal to keep it at zero. A positive quota encourages both the learning and the mature
carbon-free technology relative to the fossil energy technology. Hence, this quota instrument has a similar
effect as the carbon tax but induces a further distortion due to the implicit income-neutrality while the
carbon tax generates lump-sum income for the household. As the instrument is too unspecific to prevent
the lock-in into the mature carbon-free, consumption losses remain substantial.

Quotas for learning carbon-free energy
This instrument is more specific. It can indeed increase the generation of learning carbon-free energy.

However, we find that the reference point of the quota matters: if the quota is chosen relative to the shares
of the two carbon-free energies (ψB

L), it can discriminate the mature against the learning technology and
therefore prevent a (temporary) lock-in. Nevertheless, it cannot push the learning technology relative to
the fossil energy which would be necessary to achieve an efficient timing of learning energy generation.

In contrast, the quota for learning energy relative to total energy (ψT
L ) does not only prevent a lock-in,

but also induces a more efficient learning energy generation at the expense of fossil energy generation.
The optimal quota almost achieves the socially optimal energy generation (Fig. 5b). From the first-order
conditions (B.5–B.7) follows that a binding quota ψT

L is equivalent to a feed-in-tariff if and only if the quota
price φT

L = τF/ψ
T
L = ςF/(1 − ψT

L ). Equally to the feed-in-tariff the quota operates like an implicit subsidy
on EL and an implicit tax on EF and EN while maintaining income neutrality. Overall consumption losses
are small and of the same magnitude as for the feed-in-tariff.

4.4. Tax on the mature carbon-free energy

Instead of promoting the learning technology, the lock-in can alternatively be addressed by taxing the
mature carbon-free technology which causes the lock-in. As shown in Fig. 4, this policy is relatively
expensive compared to the optimal subsidy, the feed-in-tariff, or the optimal quota. However, consumption
losses are mainly due to the delay of the learning carbon-free energy similar to the case where no (or only
a prohibitively expensive) mature energy technology is available (as discussed in Sec. 3).

4.5. Modified carbon pricing

The management of the carbon budget by the carbon bank leads to a Hotelling carbon price. In a
first-best setting (no technology failures) this is equivalent to an optimal carbon tax τR. However, when
additional market failures such as learning spillovers are present, the second-best carbon price differs from
the Hotelling carbon price. In our model the second-best carbon price deviates from the carbon bank’s
carbon price in the laissez-faire equilibrium only during the short transition phase when massive invest-
ments into the learning carbon-free technology are made. Nevertheless, the modified carbon tax cannot
prepone this transition phase. A higher carbon price would primarily encourage the mature carbon-free
technology. Hence, consumption losses remain almost unchanged compared to the laissez-faire outcome.
Nevertheless, a second-best carbon price performs better than the technology-unspecific quota for carbon-
free energy. Although both instruments encourage carbon-free energy at the expense of fossil energy, the
quota instrument causes an additional distortion due to the implicit income-neutrality property.
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Figure 6: Consumption losses with respect to the length of optimal temporary subsidies (starting in 2010).

5. Policy stimulus

The policy instrument analysis in Section 4 calculated optimal first-best and second-best instruments
for the entire time horizon (21st century). In reality such a long-lasting commitment by governments
might be difficult to implement. Furthermore, long-term subsidies may have adverse side-effects if they
cause rent-seeking behavior and transaction costs. A charming solution might be to limit the duration of
policy intervention. We therefore calculated the optimal subsidy starting in 2010 for different time spans.
The consumption losses of these policy stimuli are shown in Fig. 6. A policy stimulus of 25 years is
sufficient to prevent lock-ins and decrease consumption losses below 0.2%. If learning is moderate the
subsidy is relatively unimportant during the first 15 years as the large-scale learning energy deployment
begins in 2030. Hence, it is important that the subsidy is implemented when the transition phase starts
(under the high learning parametrization, this is immediately in 2010).

6. Robustness of optimal policy instruments

The previous analysis revealed that within our deterministic model setting there are only small dif-
ferences between subsidies, feed-in-tariffs and technology-specific quotas. In particular, the latter two
instruments are completely equivalent. This section provides some elementary considerations about the
performance of these instruments when relaxing the assumption of perfect information. First, we study
the behavior of the market equilibrium around the optimal instrument (sensitivity analysis). Second, we
exemplarily consider the consequences of the government being wrong in its believe about the magnitude
of the learning rate.

To assess the sensitivity of the ‘optimal policies’ with respect to small errors in their implementation,
we calculate the consumption losses of varying the instrument by one percent relative to its optimal use.
As shown in Fig. 7, changes in discounted consumption are small with one exception: when the subsidy is
set too low, significant consumption losses in the range of the laissez-faire outcome can result. Lowering
the subsidy by one percent results in a strong lock-in into the mature carbon-free technology because the
subsidy then fails to make the learning technology competitive. The high sensitivity is mainly due to
the high substitutability. It leads to strong quantity responses if the learning technology is slightly more
expensive than the mature technology. This flipping behaviour occurs only if the subsidy is slightly too low
as in this case the lock-in dynamics prevails. If the subsidy is higher than optimal, firms simply use slightly
more learning carbon-free energy. This sensitive behavior does not occur for the other instruments. As

16



 0

 0.2

 0.4

 0.6

 0.8

 1

Subsidy Feed-in-Tariff ψL
T
   Quota No Policy

(a) Consumption Losses (in %) -- 17% Learning Rate

-1%
opt
+1%

 0

 0.2

 0.4

 0.6

 0.8

 1

Subsidy Feed-in-Tariff ψL
T
   Quota No Policy

(b) Consumption Losses (in %) -- 25% Learning Rate

-1%
opt
+1%

Figure 7: Consumption losses relative to the 1st-best optimum of optimal and ’close-to-be-optimal’ (±1%) instruments.

Actual learning rate (%) Assumed learning rate (%) for subsidy No policy

8 17 25

8 0.00 (0) 0.15 (23) 0.18 (26) 0.19 (30)
17 0.07 (9) 0.00 (0) 0.48 (17) 0.60 (20)
25 0.62 (18) 0.24 (-6) 0.00 (0) 0.86 (20)

Mean 0.23 0.13 0.22 0.55

Table 2: Consumption losses in % and delay in years (in parentheses) relative to optimal policy if the government implements a
learning subsidy assuming a different learning rate than actually prevails.

the 1%-lower-than-optimal feed-in-subsidy implies an additional taxation of fossil and mature carbon-free
energy, it provides a greater buffer for the comparative advantage of the learning technology. For the quota,
small perturbations translate directly into small deviations in production if the quota is binding; a lock-in
cannot occur. Hence, the high sensitivity of the subsidy policy indicates that there may be a high risk of
failure.

In our second analysis, we explore the consequences of imperfect information about the learning rate.
To this end, we assume that the government derives its optimal policy based on the wrong learning rate
and sticks to this assessment for the entire planning horizon. This is implemented by running the optimal
policy from the presumed learning rate as an exogenously given policy for the ‘true’ learning rate. Tab. 2
shows the consumption losses if the government implements the optimal subsidy from the 8%, 17% and
25% learning scenario in all possible real-world learning scenarios. In all cases, consumption losses remain
below the no-policy case. Expected consumption losses are lowest for the subsidy assuming a 17% learning
rate (given that all three learning rates are equally likely). They are also lower than the expected losses in
the no-policy scenario, hence imperfect information is no argument for non-action.

The reasons for the consumptions losses lie, of course, in the stringency of the policy, but also in its
timing (see Fig. 5a). Consider, for example, implementing the subsidy from the 25% learning scenario:
this subsidy path is initially high but declines rapidly, therefore influencing the learning technology use
only in the first decade directly. If the actual learning rate is 25%, this subsidy induces a quick up-scaling
of learning carbon-free energy which then displaces other energy technologies due to its high learning
rate. At lower actual learning rates (e.g. 17%), however, the initial price advantage caused by the subsidy
is too short to reduce costs below those of the incumbent technologies. Consequently, the non-learning
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carbon-free energy remains competitive for a long time and the deployment of learning carbon-free energy
is delayed substantially. This causes consumption losses which are close to the no-policy case.

These considerations provide a first step regarding the robustness of policies. They also indicate the
complexity of the intertemporal dynamics of learning spillovers. A profound stochastic analysis requires
maximizing the expected intertemporal welfare for specific probability distributions of key parameters.
Considering the long time horizon in this application, however, introducing learning for the government
becomes crucial: realistically, part of the uncertainty about learning rates and spillovers will be resolved
after a few decades giving the government ample reason to revise its formerly announced policy. In a
consistent approach, the possibility to learning should itself be anticipated. A satisfying answer to the
question whether quantity or price-based technology instruments perform better in an uncertain world is
thus beyond the scope of this study, but an important topic for future work.

7. Conclusions

Our model provides important insights into the causes and implications of market failures for energy
innovations (Sec. 3). We identified a trio infernale of necessary conditions that provoke a lock-in into
a mature (non-learning) technology although a superior (learning) contender technology is available: (i)
learning spillovers and/or risk premiums, (ii) a high substitutability between these two technologies, and
(iii) a critical range of present and future generation costs of the competing technologies. The cost level
must be such that the contender technology is more expensive than the mature technology in the short term,
yet cheaper in the long run due to its learning potential. If only (i) and (ii) or (i) and (iii) hold, the market
failure is small and the associated welfare losses may be exceeded by the transaction costs of addressing
it. For example, if the high-cost carbon-free energy is prohibitively expensive, no lock-in occurs, and
thus, consumption losses of only 0.3% are caused by suboptimal timing of innovation alone. Similarly,
if substitutability is imperfect, the innovative technology gains experience in niche markets. In this case,
consumption losses are also low (0.2%). If all three conditions hold, however, the innovation process
may be delayed by several decades. For plausible parameters, this causes consumption losses ranging
from 0.4% to 3.4% and carbon price increases by 14–127 percent. Hence, lock-ins between low-carbon
technologies interfer with climate policy: Higher carbon prices and mitigation costs make it difficult for
governments to seek for ambitious temperature targets.

Market failure due to spillovers may not only affect the energy sector but all innovative sectors in the
economy. But in contrast to electronic, information and entertainment industries, energy – and in particular
electricity – is a homogeneous good where almost no product differentiation is possible.14 Thus, while in
many economic sectors condition (i) and (iii) hold, condition (ii) is violated. Spillovers and discount rate
mark-ups have only small impact on welfare and may not justify (technology-specific) policy intervention.

An optimal policy has to internalize spillovers. This can be done by a subsidy on learning carbon-free
energy which is lump-sum financed (Sec. 4). Feed-in-tariffs and minimum quotas on learning carbon-free
energy also provide a way to promote a technology. However, these are cross-financed by an implicit tax
on mature carbon-free and fossil energy. The distortionary financing mechanism leads to the occurrence of
small inefficiencies (around 0.1%). All these instruments require the regulator to pick the “winner”, i.e. to
support the dynamically more efficient technology while discriminating the other technologies. In reality,

14An exception might be niche markets due to imperfect grid access or benevolent consumers that are aware of the social costs of
lock-ins and therefore purchase the more expensive learning technology at their own costs. However, consumers must be aware of
choosing not only the carbon-free technology (which includes AN ), but the learning (carbon-free) technology at higher costs.
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the regulator might not have this option due to information, incentive and political-economy problems. In-
stead of picking-the-winner, the regulator could “drop-the-losers”, i.e. discriminate the non-learning tech-
nologies by a tax. In particular, this could be useful if it was easier to identify technologies which need to
be avoided, than to determine which (maybe yet not existing) technology will be essential for future energy
generation. This also enhances competition under several learning technologies. Technology-unspecific
carbon-free energy quotas and modified carbon pricing are poor instruments resulting in negligible or zero
welfare gains.

We performed our analysis within a global-scale economic model to analyse the dynamics and impli-
cations of technological market failures for climate change mitigation. The conditions for the occurence
of lock-ins and their implications should be transferable to a regional or national economy with similar
cost parameters, learning rates and technological substitutability. One crucial issue, however, concerns the
nature of spillovers: On the one hand, the knowledge transfer could be higher on a regional level (e.g.
due to higher mobility of skilled employees between firms); on the other hand, imperfect patent legislation
may lead to higher knowledge transfers in respective countries. If spillovers are global (and experience
is thus a global public good), a globally coordinated technology policy would become necessary. Such a
policy would suffer from the common free-rider and enforcing problems as studied for other global public
good problems. In contrast, if spillovers are national, it is in the interest of every government to internalize
knowledge externalities by specific policies.

Regarding the robustness of instruments, the implementation of the subsidy carries the risk of being
ineffective if it deviates only slightly from the optimal value. In contrast, the consumption losses for feed-
in-tariffs and quotas are always small if realized implementation differs from the optimal values (Sec. 6)
although they are never first-best in a deterministic setting. If the regulator does not know the actual
learning rate, assuming a medium learning reate seems to be a good strategy. Nevertheless, implementing
a subsidy based on a wrong belief in the learning rate leads to higher consumption than implementing
no subsidy at all. A concluding evaluation of these risks requires a comprehensive stochastic analysis
which considers uncertainties in several economic parameters and learning about uncertainty. While this
is beyond the scope of this paper, it indicates an important question for future research.

Appendix A. Technology

The following functional forms for utility and production are used:

U(C/L) =

(
C
L

)1−η

1 − η
(A.1)

Y(Z, E) =
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(A.6)
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Lt = L0(1 − qt) + qtLmax, qt =
e f t − 1

e f t (A.7)
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(A.8)

R(S ,KR) = κ(S )KR (A.9)

κ(S ) =
χ1

χ1 + χ2

(
S 0−S
χ3

)χ4
(A.10)

EL(AL,KL,N) = ALKν
LNν−1 (A.11)

AL(H) =
AL,max

1 +
(

Ω
H

)γ (A.12)

EN(KN) = ANe1gN tKN (A.13)

Appendix B. First-order conditions of decentralized agents

Household sector. Maximizing the Lagrangian
LH =

∑T
t=0(LtU(Ct/Lt)

[
1 + ρ

]−t
+ λH,t(Kt+1 − Kt − (It − δKt))) with respect to Ct and Kt and by using the

substitution (1) yields the following first-order conditions:

Lt
∂U
∂Ct

= λH,t (B.1)

λH,t − λH,t−1(1 + ρ) = −λH,t(rt − δ) (B.2)
0 = λH,T KT+1 (B.3)

Production sector. Maximizing the Lagrangian LY,t = πY,t + φT
B,t(EL,t + EN,t − ψ

T
B,t(EF,t + EN,t + EL,t)) +

φB
L,t(EL,t − ψ

B
L,t(EN,t + EL,t)) + φT

L,t(EL,t − ψ
T
L,t(EF,t + EN,t + EL,t)) with respect to KY,t, Lt, EF,t, EL,t and EN,t

and using the substitutions (4) and (A.2–A.5) leads to the first-order conditions:

rt =
∂Y(Z,E)
∂KY,t

, wt =
∂Y(Z,E)
∂Lt

(B.4)

pF,t =
∂Y(Z,E(EF,EB))

∂EF,t
− τF,t − φ

T
B,tψ

T
B,t − φ

T
L,tψ

T
L,t, (B.5)

pL,t =
∂Y(Z,E(EF,EB(EL,EN)))

∂EL,t
+ ςF,t + φT

B,t(1 − ψ
T
B,t) + φB

L,t(1 − ψ
B
L,t) + φT

L,t(1 − ψ
T
L,t), (B.6)

pN,t =
∂Y(Z,E(EF,EB(EL,EN)))

∂EN,t
− τF,t − φ

B
L,tψ

B
L,t − φ

T
L,tψ

T
L,t + φT

B,t(1 − ψ
T
B,t) (B.7)

With the KKT conditions for the inequaltiy constraints (5–7):

0 = φT
L,t(EL,t − ψ

T
L,t(EF,t + EN,t + EL,t)) (B.8)

0 = φB
L,t(EL,t − ψ

B
L,t(EN,t + EL,t)) (B.9)

0 = φT
B,t(EL,t + EN,t − ψ

T
B,t(EF,t + EN,t + EL,t)) (B.10)

Fossil energy sector. By maximzing πF given by (8), the common static conditions apply:

pR,t + τR,t + pC,t = pF,t
∂EF

∂Rt
, rt = pF,t

∂EF

∂KF,t
(B.11)
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Fossil resource extraction sector. Maximizing the Lagrangian
LR =

∑T
t=0

(
πR,tΠ

t
s=0 [1 + rs − δ]−1 + λR,t(S t+1 − S t + Rt)

)
with respect to Rt and S t and the substitutions

(9) and (A.9–A.10) leads to the first-order conditions:

λR,t = pR,t − rt/κt (B.12)

λR,t − λR,t−1(1 + (rt − δ)) = −(pR,t − λR,t)
∂R
∂S t

(B.13)

λR,T S T+1 = 0 (B.14)

Learning carbon-free energy sector. Maximizing the Lagrangian
LL =

∑T
t=0(πL,tΠ

t
s=0 [1 + rs + v − δ]−1 λL,t(Ht+1 − Ht − (EL,t − EL,t−1))) with respect to KL,t and Ht and

introducing the spillover rate φ leads to the first-order conditions:

0 =

(
pL,t

∂EL

∂KL,t
− rt

)
Πt

s=0 [1 + rs + v − δ]−1 + (λL,t+1 − λL,t)
∂EL

∂KL,t

0 = (1 − φ)
∂EL

∂Ht

(
pL,tΠ

t
s=0 [1 + rs + v − δ]−1 + λL,t+1 − λL,t

)
− λL,t + λL,t−1

0 = λT = λT−1

With µ̃t := λtΠ
t
s=0 [1 + (rs + v − δ)] we can transform this into rt =

(
pL,t + τL,t − µ̃t +

µ̃t+1
1+rt+1+v−δ

)
∂EL
∂KL,t

and

µ̃t− µ̃t−1(1+rt +v−δ) = (1−φ) ∂EL
∂Ht

(
pL,t + τL,t − µ̃t +

µ̃t+1
1+rt+1+v−δ

)
. Finally, with µt = µ̃t+1(1+rt+1 +v+δ)− µ̃t,

we obtain:

rt = (pL,t + τL,t + µt)
∂EL

∂KL,t
(B.15)

µt−1 =
1 − φ

1 + rt + v + δ
(pL,t + τL,t + µt)

∂EL

∂Ht
(B.16)

µT = 0 (B.17)

Mature carbon-free energy sector. The common static condition applies:

ANegN t(pN,t − τN,t) = rt (B.18)

Carbon bank. Intertemporal optimization results in a Hotelling price:

pC,t = (1 + rt − δ)pC,t−1 (B.19)
pC,T BT+1 = 0 (B.20)

Appendix C. Optimal first-best subsidy

Let ∗ denote the solution from the efficient intertemporal market equilibrium, i.e. where φ = 0 and
v = 0 and there is no subsidy τL,t = 0. Hence, Eqs. (B.15–B.16) read

r∗t = (p∗L,t + µ∗t )
∂E∗L
∂KL,t

(C.1)

µ∗t−1 =
1

(1 + r∗t − δ)
∂E∗L
∂Ht

(
p∗L,t + µ∗t

)
(C.2)
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Equating (C.1) with the original first-order condition (B.15) where φ, v, τL,t ≥ 0 and solving for τL,t in the
optimum yields:

τL,t = µ∗t − µt (C.3)

Substituting (C.3) into the RHS of (B.16), we obtain for the optimum:

µt−1 =
(1 − φ)

(1 + rt + v − δ)
∂E∗L
∂Ht

(
p∗L,t + µ∗t

)
(C.4)

Substituting (C.3) into the LHS of (C.4) as well as plugging (C.2) into the RHS of (C.4), we finally obtain
for τ:

τL,t = µ∗t

(
1 −

(1 − φ)(1 + rt+1 + δ)
1 + rt+1 + v + δ

)
(C.5)

Appendix D. Parameters and initial values for numerical solution

Symbol Parameter Value

ρ pure time preference rate of household 0.03
η elasticity of intertemporal substitution 1
δ capital depreciation rate 0.03
Lmax population maximum (bill. people) 9.5
f population growth parameter 0.04

a1 scale parameter in final good production 0.95
b1 scale parameter in final good production 0.05
σ1 elasticity of substitution energy–intermediate 0.5
a2 scale parameter in intermediate production 0.3
b2 scale parameter in intermediate production 0.7
σ2 elasticity of substitution labor–capital 0.7
a3, b3, a4, b4 scale parameter (energy usage) 1
σ3 elasticity of substitution fossil–carbon-free energy 3
σ4 elasticity of substitution learning–mature carbon-free 21
g0 productivity growth parameter 0.026
ζ productivity growth parameter 0.006

a scale parameter in fossil energy generation 0.8
b scale parameter in fossil energy generation 1.65E-4
σ elasticity of substitution energy–intermediate 0.15

χ1 scaling parameter 20
χ2 scaling parameter 700
χ3 resource base (GtC) 4000
χ4 slope of Rogner’s curve 2

ν share parameter learning carbon-free energy generation 0.95
AL,max maximum productivity learning carbon-free energy 0.6
Ω scaling parameter 200
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γ learning exponent 0.27
N land 1

v risk premium (learning technology) 0.0
φ spillover rate (learning technology) 0.6

AN productivity mature energy technology 0.2
gN productivity change rate -0.004

K0 Initial total capital stock (trill. US$) 165
S 0 Initial stock of fossil resources (GtC) 4000
B0 Carbon budget (GtC) 450
H0 Initial experience stock 0.2
L0 Initial population (bill. people) 6.5
AY,0 Initial productivity level 6

T time horizon (in years) 150
Table D.3: Parameters used for the numerical model.
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