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UNDER PRESS EMBARGO, DO NOT CIRCULATE!

As the Copenhagen Accord indicates, most of the international
community agrees that global mean temperature should not be al-
lowed to rise more than two degrees Celsius above pre-industrial
levels to avoid unacceptable damages from climate change. The
scientific evidence distilled in the IPCC’s 4th Assessment Report
and recent reports by the U.S. National Academies shows that this
can only be achieved by vast reductions of greenhouse gas (GHG)
emissions.
Still, international cooperation on GHG emissions reductions suf-
fers from incentives to free-ride and to renegotiate agreements in
case of non-compliance, and the same is true for other so-called
‘public good games.’ Using game theory, we show how one might
overcome these problems with a simple dynamic strategy of Lin-
ear Compensation (LinC) when the parameters of the problem
fulfill some general conditions and players can be considered to
be sufficiently rational.
The proposed strategy redistributes liabilities according to past
compliance levels in a proportionate and timely way. It can be
used to implement any given allocation of target contributions,
and we prove that it has several strong stability properties.

greenhouse gas emissions | free-riding | compliance | renegotiation |
strategy | compensation

In many situations of decision-making under conflicting interests,
including the management of natural resources (1), game theory

– the study of rational behaviour in situations of conflict – proves
to be a useful analysis tool. Using its methods, we provide in this
article a partial solution for the cooperation problem in a class of
so-called public good games: If a number of players repeatedly con-
tribute some quantity of a public good, how can they make sure ev-
eryone cooperates to achieve a given optimal level of contributions?
The main application we have in mind are international efforts to
mitigate climate change. There the players are countries and the cor-
responding public good is the amount of GHG emissions they abate
as compared to a reference scenario (e.g., a ‘business as usual’ emis-
sions path). The existing literature on the emissions problem stresses
the fact that only international agreements which contain sufficient
incentives for participation and compliance can lead to substantive
cooperation (2; 3), and game theory is a standard way of analysing
the strategic behavior of sovereign countries under such complex in-
centive structures. While earlier game-theoretic studies have been
mainly pessimistic about the likelihood of cooperation (4–19), our
results show that with emissions trading and a suitable strategy of
choosing individual emissions, high levels of cooperation might be
achieved.

The general situation is modeled here as a repeated game played
in a sequence of periods, with a continuous control variable (e.g.,
emissions reductions) that can take on any value in principle. We fo-
cus on the case where the marginal costs of contributing to the public
good are the same for all players. This is, e.g., the case if there is an
efficient market for contributions (24; 25).

We show that players can ensure compliance with a given ini-
tially negotiated target allocation of contributions by adopting a cer-
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Fig. 1. Illustration of Linear Compensation in a simple public good game. Alice,
Berta, and Celia farm their back-yard for carrots. Each has her individual farming
liability (thick separators) but harvests are divided equally. In the first year, Berta
falls short of her target by some amount (white area). Thus in the second year
her share of the total liabilities is temporarily increased by some multiple of this
amount, while those of the other two are decreased accordingly. Since in year
two, all comply with this completely, liabilities are then restored to their target
values (dashed separators).

tain simple dynamic strategy to choose their actual contributions over
time. In each period, the allocation of liabilities is redistributed in re-
action to the preceding compliance levels. The redistributions are ba-
sically proportional to shortfalls, i.e., to the amount by which players
have failed to comply in the previous period, but with a strategically
important adjustment to keep total liabilities constant. This strategy
will be called ‘Linear Compensation’ (LinC), and its basic idea is il-
lustrated in Fig. 1 in a fictitious community gardening example. In
the emissions game, these liabilities to reduce emissions then trans-
late into emissions allowances via the formula allowance = reference
emissions – liability. Our assumptions and the proposed strategy are
summarized in Table 1.

We prove that under certain conditions, an agreement to use the
strategy LinC is self-enforcing in that no player or group of play-
ers has a rational incentive to ever deviate from this strategy or can
ever convince the other players to switch to a different strategy by
renegotiating with them. In game-theoretic terms, it is both strongly
renegotiation-proof (26; 27) and a Pareto-efficient and strong Nash-
equilibrium in each subgame if all players use LinC. Moreover, ap-
plying LinC requires only little knowledge of costs, benefits, and dis-
counting, and is robust with regard to implementation errors such as
inadvertent shortfalls since it reacts in a proportionate way and re-
stores full cooperation soon afterwards. Since the strategy LinC can
in principle stabilize an agreement to meet any given target alloca-
tion, it does not solve the problem of selecting these targets them-
selves. However, it indicates that players can focus on ‘first-best’
outcomes, negotiating an allocation of the highest achievable total
payoff and then implementing that allocation by using LinC.

Before presenting our results in detail, we give a short literature
review and define our formal framework. Regarding the emissions
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game, we will then discuss the validity of our assumptions and what
implications the results might have for real-world climate politics.

Existing literature on the emissions game. A commonly used ap-
proach to strategic interaction on mitigating pollution is the theory of
International Environmental Agreements, recently surveyed in (4). In
this branch of the literature, cooperation has usually been modeled as
a one-shot game. Players join or stay out of a long-term coalition for
selfish (or rational) reasons, and within such ‘stable’ coalitions, play-
ers act to the best of the group. When this group includes all players,
the cooperation dilemma is overcome. Early insights of this theory
were that large stable coalitions tend to be unlikely, particularly when
they would actually benefit players (5; 6), and that additional ingredi-
ents to the international agreement are needed in order to entice more
players to join, e.g., side payments (7). More elaborate schemes have
been conceived and explored, e.g., optimized transfers, linking with
research cooperation, or endogenously determined minimum partic-
ipation clauses (28–30), suggesting that higher participation levels
may well be reached, but at the price of added complexity in the
agreement.

A different route is taken by authors who include the time dimen-
sion in the game by modeling it as a repeated game (8–10), thus in-
troducing a way for players to react to others’ shortfalls. In analogy
to the Prisoners’ Dilemma, players have the discrete choice to ‘de-
fect’ (emit the individual optimum) or ‘cooperate’ (emit only what is
optimal globally) in most of these models. The conclusion is mostly
that cooperation among more than a few players is unlikely because
the threat to punish defection by universal defection is not credible.
In (10), it is shown that in such a discrete model, defection by smaller
numbers of players can be a credible threat deterring unilateral defec-
tions. But in a model where countries choose emissions levels from a
continuum of choices, a similar strategy only works if players value
the future high enough (11). We will improve upon these mixed re-
sults and show that in such a continuous model and with the ability
to emit more than the individual optimal, one can even deter multi-
lateral deviations from the global optimum by reacting in proportion
to the size of the deviation, avoiding harsh punishments for small er-
rors. While the above models focus primarily on analytical results,

The public good game:

• Repeated game, no binding agreements or commitments
• Individual contributions are made per player and period

and are publicly known after each period
• Positive, non-increasing marginal individual benefits,

depending on total contributions
• Non-negative total costs with non-decreasing marginals,

depending on total contributions,
shared proportionally or based on marginal cost pricing

• All players discount future payoffs in the same way
• Optimal total contributions are known and

an allocation into individual targets has been agreed upon

The strategy of Linear Compensation (LinC):

• Initial individual liabilities = targets
• Shortfall per period = liability – actual contribution

(if positive, otherwise zero)
• New liability = target + [own shortfall – mean shortfall] · factor
• The strategy is to always contribute your liability

Table 1. Main assumptions and solution for the public good game

some authors also apply numerical models based on empirical data
(12). Although their analysis is made difficult by the fact that numer-
ical solution requires specifying a finite number of time periods, they
are able to show that the option to retaliate improves the prospect of
cooperation.

Finally, the models in (13–18) describe the climate change game
as a dynamic game with a stock pollutant, thus improving on both
the repeated game model and the static one-shot game model. In
(15; 18), it is shown that some intermediate amount of cooperation
can be stabilized against unilateral deviations by harsh punishments.
A similar model is also used in (19), the work most similar to ours:
it introduces the idea of keeping total contributions at the optimal
level also during punishments, but again using harsh instead of pro-
portionate punishments. We will show that a proportionate version
of their redistribution idea will even lead to renegotiation-proofness
when marginal costs are equal for all players. This is in line with
some real-world policy proposals that suggest a similar redistribu-
tion, although of direct financial transfers, to make threats credible
and thus ensure compliance with emissions caps (3).

Framework
The public good game. Assume that there are infinitely many pe-
riods, numbered 1, 2, . . . , and finitely many players, numbered
1, . . . , n. In each period, t, each player, i, has to choose a quantity
qi(t) as her individual contribution to the public good in that period.
The resulting total contributions in period t are Q(t) =

∑
i qi(t).

In the emissions game, qi(t) would be the difference between
i’s hypothetical amount of GHG emissions in period t in some pre-
determined reference scenario (e.g., ‘business as usual’), and i’s net
emissions in period t. By ‘net emissions’ we mean the amount of real
emissions caused domestically plus, if players use emissions trading,
the amount of permits or certificates sold minus the amount of per-
mits or certificates bought on the market. In other words, qi(t) = 0
corresponds to business-as-usual behaviour, and qi(t) > 0 means
that i has reduced emissions in t domestically and/or by buying per-
mits or certificates.

Depending on qi(t) andQ(t), player i has certain individual ben-
efits bi(t) and individual costs ci(t) in period t. The typical con-
ditions under which a problem of cooperation arises and can be ap-
proached by our results are reflected in the following somewhat ideal-
ized assumptions on these costs and benefits and on the information,
commitment abilities, and rationality the players possess. For the
emissions game, we discuss the validity of the following assumptions
in more detail in the Discussion and in SI: Validity of assumptions.

The contributed good is called a ‘public’ good since individual
benefits bi(t) are determined by total contributions only, through an
increasing function fi(Q(t)). They are zero at Q = 0, and marginal
benefits are non-increasing. A period’s total benefits B(t) are then
given by f(Q(t)) =

∑
i fi(Q(t)). On the negative side, we assume

that total costs C(t) are also determined by a non-negative and non-
decreasing function g(Q(t)) of total contributions, start at zero, and
marginal costs are non-decreasing.1

Unlike in many other models of public goods, we assume here
that total costs are shared in a way that equalizes marginal costs. E.g.,
costs might be shared in proportion to individual contributions, giv-
ing ci(t) = qi(t)C(t)/Q(t). Or, what is more realistic if there is a
perfect competition market for contributions, costs might be shared
according to a rule based on marginal cost pricing.2 In both cases,
one has the following convexity property on which our results will

1Formally, fi and g are twice differentiable, bi(t) = fi(Q(t)), C(t) = g(Q(t)) > 0,
fi(0) = g(0) = 0, f ′i(Q) > 0, g′(Q) > 0, f ′′i (Q) 6 0, and g′′(Q) > 0.
2 Each player i would then actually contribute an amount ai(Q) for which its individual
pre-trade cost function gi has marginal costs g′i(ai(Q)) equal to the global marginal costs
g′(Q), and would buy the remaining contribution, qi − ai(Q), at a price that also equals
g′(Q). Individual costs are then ci = gi(ai(Q)) + [qi − ai(Q)]g′(Q).
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rely: for each Q, there is some ‘cost sensitivity’ γ(Q) so that (i) if qi
and Q are both lowered by an amount x > 0, then ci gets lowered
by at most xγ(Q), (ii) if qi is raised by an amount x > 0 but Q
is kept constant by lowering the other values qj , then ci raises by at
least xγ(Q), and (iii) ci = 0 for Q 6 0. In other words, lowering
your contributions by x saves you at most costs of xγ(Q), but if x
contributions are redistributed from others to you, your costs raise by
at least that same amount. It is easy to see that in the proportional
cost-sharing case, γ(Q) equals average costs g(Q)/Q, while in the
marginal cost pricing case, γ(Q) equals marginal costs g′(Q).

In the emissions game, the benefits of reducing emissions by
1 Gt CO2-equivalents in period t correspond to all avoided welfare
losses that would have been caused at times after t by that additional
1 Gt of emissions, properly discounted to reflect the corresponding
time difference, and using any suitable welfare measure such as con-
sumption, income, gross domestic product (GDP), etc. (20–22). The
above form of the costs ci seems justified when we assume an in-
ternational emissions market between firms, similar to the European
Union Emission Trading Scheme (EU ETS). A simple example cost-
benefit structure is that of linear benefits and linear marginal costs
(23): fi(Q) = βiQ with βi > 0, g(Q) = Q2 for Q > 0, and
g(Q) = 0 for Q 6 0. For other examples, see SI: Examples.

We explicitly allow individual contributions qi to be any real
number in principle, positive or negative. However, as Q gets large,
costs get prohibitively high, and as Q gets small, benefits get pro-
hibitively negative. Hence total period payoffs, P (t) = B(t)−C(t),
are bounded from above but not from below, with P (t) → −∞ for
Q(t) → ±∞. In the emissions game, large positive or negative val-
ues for some qi can obtain if large amounts of emissions permits are
traded. Although the strategy we will propose below prescribes such
large values of qi only in cases where there has already been an ir-
rationally large earlier deviation, this might still lead to problems in
practice (for an alternative model, see SI: Bounded liabilities).

Players make the choices qi(t) individually and simultaneously
in each t, and all know that no player can commit himself bindingly
to some value of qi(t) at some time earlier than t. They also know
that each i has complete information about costs, benefits, and all
past contributions when choosing qi(t). Players are assumed to be
rational in that they aim at maximizing their long-term payoff, using
some strategy to choose qi(t) on the basis of this information, and
expect the others to do so as well. Regarding how much the players
value next period’s payoffs in comparison to this period’s, we assume
as usual that for some constant δ > 0 and all periods t, all prefer to
get one payoff unit in period t+ 1 to getting δ payoff units in t.

For some optimal amount Q? of total contributions, total (ex-
pected) payoff gets maximized, and marginal total costs equal
marginal total benefits but exceed marginal individual benefits:

f(Q?)− g(Q?) = max, g′(Q?) = f ′(Q?) > f ′i(Q
?). [1]

Optimal total payoffs are usually much larger than the total payoffs
the players would end up if they do not cooperate. E.g., in the simple
example with linear benefits and marginal costs, optimal total payoffs
are larger than the non-cooperative equilibrium payoffs by a factor
of approximately n2/4, showing that the potential gains of coopera-
tion can be very large and increase with the number of players (see
SI: One-shot game and SI: Examples).

Finally, let us assume that players can enter no legally binding
and enforceable agreements (since this is the worst case assumption
when studying the possibility of cooperation) but have somehow cho-
sen in advance (before period one) an allocation of the optimum tar-
get into individual targets q?i , with

∑
i q
?
i = Q?. This allocation will

be so that no group G of players has an incentive to contribute more
than what was agreed as their joint target Q?G =

∑
i∈G q

?
i .3

In the emissions game, targets might be negotiated using equity
criteria such as per capita emissions permits, per capita payoffs, his-
torical responsibility, etc. (31–33) (34, p. 915). In game-theoretic
terms, this initial negotiation poses a problem of equilibrium selec-

α compensation factor
B(t), bi(t) benefits in period t, total and for player i
βG marginal benefits at target, for a group of players G
C(t), ci(t) costs in period t, total and for player i
d̄(t), di(t) shortfalls in period t, average and of player i
δ lower bound for discounting factors
f(Q), fi(Q) benefit functions, total and for player i
g(Q) total cost function
γ(Q), γ? cost sensitivity function, and value at target Q?

`i(t) liability of player i in period t
Q(t), qi(t) contributions in period t, total and by player i
Q?, q?i target contributions, total and for player i
x size of potential shortfall by a group of players G

Table 2. Main symbols used in this article

tion that precedes the problem of cooperation which we are con-
cerned with in this article (see also SI: Cooperative analysis).

Free-riding and renegotiations. In this kind of public good game,
the problem of cooperation is now this: Although the negotiated tar-
gets provide the optimal total payoff and are often also profitable for
each individual player, they constitute no binding agreement. Hence
player i will hesitate to meet the target if he can hope that the oth-
ers will meet it, since contributing less reduces i’s costs more than
his benefits (see Eqn. [1]). If there is only one period of play, this
free-rider incentive is known to make cooperation almost impossible,
since rational players will then contribute a much smaller quantity,
which means that the agreement is not self-enforcing (for more on
this, see SI: Properties of the one-shot game).

In a repeated game, however, a player i can react to the other
players’ earlier actions by choosing qi(t) according to some strategy
si that takes into account all players’ individual contributions before
t. The immediate gains of free-riding might be offset by future losses
if others react suitably. The announcement to react in such a way can
then deter free-riding as long as that announcement is credible (see,
e.g., Robert Aumann’s Nobel Lecture (35)).

However, if those who react to free-riding would thereby reduce
their own long-term payoffs, and if they cannot bindingly commit
themselves beforehand to actually carry out the announced reaction
despite harming themselves in doing so, then such a threat would not
be credible since a potential free-rider could expect that a rational
player will not harm herself but rather overlook the free-riding. After
the fact, a free-rider of period t could then successfully renegotiate
with the others between periods t and t+ 1, convincing them to “let
bygones be bygones”. The effect is that his free-riding in t will be
ignored, since in t+ 1 everyone benefits from doing so (26).

A famous example of such a non-credible strategy, though in a
different game, is the strategy ‘tit for tat’, observed in various ver-
sions of the repeated Prisoners’ Dilemma when players can commit
themselves beforehand (36; 37). That strategy is to start with ‘cooper-
ate’ and then do whatever the other player did in the previous period,
thereby punishing defection with defection. But once this calls for
‘defect’ in some period, both would be better off at that point if they
instead both continued with ‘cooperate’. So the threat to defect after

3Formally:
∑
i∈G f

′
i(Q

?) < h′(0) where h(x) = (Q?G + x)g(Q? + x)/(Q? + x).
4 Unfortunately, experimental studies of repeated games have yet been rare and inconclusive
about the question of what the effect of credible threats on cooperation is. E.g., in (39) it is
concluded that the existence of equilibria with credible threats is a necessary but not sufficient
condition for cooperation in a certain type of game, while others, like (40), report that sometimes
cooperation can also be sustained without credible threats in the laboratory. In (41, p. 1502)
it is concluded from the experience with existing International Environmental Agreements that
only those treaties in which compliance could be enforced lead to a substantial amount of
cooperation, which can also be interpreted as supporting the necessity of credible threats.
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a defection is void and cannot deter free-riding under assumptions of
rationality and without commitment possibilities (38).4

Another problematic strategy is to simply treat free-riding as
some form of debt to be repaid with interest, as it is done, e.g., in
the Kyoto protocol, in which a country falling short in one period has
its liabilities in the following period increased by 1.3 times the size of
its shortfalls. In our framework, such a rule would lead to inefficient
contributions in t+1 that exceed the optimal valueQ?, making rene-
gotiations likely that lower all liabilities to an efficient value. Even
worse, if a player never fulfills his liabilities, he gets away with it.

Depending on the cost-benefit structure of a repeated game, there
might or might not be strategies that achieve a certain level of stabil-
ity against deviations such as free-riding and against incentives to
renegotiate. Fortunately, we can formally prove that in our assumed
framework, a rather simple, proportionate combination of the above
two ideas of punishing other’s and repaying one’s own shortfalls is
both efficient and highly stable, even when players make small errors
in implementing it. Table 1 summarizes our main assumptions and
the suggested solution that we present below.

Results
Avoiding renegotiations. Let us deal with the question of renegoti-
ations first. The crucial idea to avoid those in our kind of game is
to keep total contributions constant and only redistribute them as a
reaction to past behaviour. Consider a strategy s which, in each pe-
riod t, tells all players to choose their contributions qi(t) in a certain
way which makes sure that the total target is met, Q(t) = Q?. Then
no matter the actions before t, there can be no alternative strategy s̃
that achieves higher total payoffs than s from time t on. So, any al-
ternative strategy s̃ that leads to different payoffs than s would lead
to a strictly smaller payoff than s for at least one player. This holds
whether only payoffs in t are considered or also later payoffs with dis-
counting. Hence there is no possible situation in the game that would
cause all players to agree to change the strategy. In game-theoretic
terms, such a strategy is ‘strongly perfect’, i.e., Pareto-efficient in all
subgames. It will thus be strongly renegotiation-proof (26; 27) if we
manage to do the redistribution of contributions in t+ 1 in a way that
makes free-riding in t unprofitable in the long run. This we will do
next.5

Deterring simple free-riding by groups of players. Suppose in some
period t, all players contribute their targets, except that a set G of
players free-rides. This means they jointly contribute only a quantity
QG(t) =

∑
i∈G qi(t) that is by some amount x > 0 smaller than

their joint target contribution: QG(t) = Q?G − x. Note that G’s ben-
efits are given by fG(Q) =

∑
i∈G fi(Q), so that βG = f ′G(Q?) is

G’s target marginal benefit. Let γ? = γ(Q?) be the cost sensitivity
at the target contributions. Then G’s shortfalls reduce their joint ben-
efits in t by at least xβG, but saves them costs of at most xγ?. Hence
their joint payoff increases by at most

x(γ? − βG). [2]
How much redistribution in t + 1 is now needed to make this un-
profitable for G? Suppose the contributions in t+ 1 are redistributed
in such a way that everyone gets their target benefits but group G
has additional costs, and these additional costs times δ are no smaller
than the above x(γ? − βG). Then, in period t, it is not attractive for
G to free-ride, since in that period, they value their resulting losses in
t+ 1 higher than their gains in t. Such a redistribution can easily be
achieved: Just raise G’s joint contributions QG(t + 1) from Q?G by
at least x(γ? − βG)/γ?δ and reduce the other players’ contributions
accordingly.6 This leads to additional costs for G in t+ 1 of at least

x(γ? − βG)/δ. [3]
So, G’s joint gains in t are overcompensated by these losses in t+ 1.
Although free-riding for one period might be profitable for some in-
dividual members of G, there is always at least one member of G for

whom it is not. Fig. 1 illustrates the basic idea. We will show next
how the same kind of redistribution can be used to deter also every
conceivable sequence of deviations from the target path.

The strategy of Linear Compensation (LinC). A simple strategy that
does this assigns each player i in each period t a certain individual
liability `i(t) which that player should contribute in t. In period one,
liabilities equal the negotiated targets, `i(1) = q?i (1). Later, they
depend on the differences between last period’s liabilities and ac-
tual contributions of all players. After each period t, we first com-
pute everyone’s shortfalls in t, which are di(t) = `i(t) − qi(t) if
`i(t) > qi(t), and otherwise di(t) = 0, that is, we do not count ex-
cesses. Then we redistribute the targets in t+1 so that these shortfalls
are compensated linearly, but keeping the total target unchanged:

new liability = target + [own shortfall − mean shortfall] · factor

`i(t+ 1) = q?i + [di(t)− d̄(t)] · α. [4]

In this, d̄(t) =
∑
i di(t)/n is the mean shortfall and α is a certain

positive compensation factor we will discuss below. Obviously, if all
players comply with their liabilities by putting qi(t) = `i(t), then all
shortfalls are zero, and both liabilities and contributions stay equal to
the original targets so that the optimal path is implemented.

The compensation factor α has to be large enough for the argu-
ment of the previous section to apply in all possible situations, what-
ever the contributions have been before t. In the simple free-riding
situation discussed in the previous section, the group’s joint shortfall
equals x and the mean shortfall is d̄(t) = x/n. Hence G’s joint ad-
ditional liability in t + 1 is [x − |G|x/n] · α, where |G| < n is the
number of players in G. If this is at least x/δ, then having shortfalls
of size x is not profitable, independently of what the actual liabilities
in t were. Since only shortfalls but not excesses lead to a redistri-
bution, a group can neither profit from contributing more than their
liability.

In other words, to make sure no group of players has ever an in-
centive to deviate from their liability for one period, even if liabilities
are already different from the target, it suffices if

α >
n

γ?δ
·max

G

γ? − βG
n− |G| , [5]

where the maximum is taken over all possible groups of players G.
If it is known that the benefit functions of all players are equal,
then βG = C′(Q?)|G|/n > γ?|G|/n and Eqn. [5] simplifies to
α > [nγ? − C′(Q?)]/γ?δ(n − 1), so that in particular α > 1/δ
suffices. Note that liabilities do not depend on costs and benefits ex-
plicitly, only via the negotiated targets q?i and the factor α, so the
information about costs and benefits one needs to apply LinC is lim-
ited to the knowledge of the optimum contribution and the marginal
costs and benefits at the target. Now, a player i who complies with
the liabilities defined by Eqns. [4] and [5] by putting qi(t) = `i(t) is
said to apply the strategy of ‘Linear Compensation’ (LinC).

In game-theoretic terms, we have shown above that when all
players apply LinC, this forms a ‘one-shot subgame-perfect’ equi-
librium. It is then also never profitable to deviate from LinC for any
number of successive periods. The proof for this follows a standard

5If we drop the assumption that the global target Q? maximizes total payoff, e.g., because of
uncertainty in estimating the optimum, then such redistribution strategies are no longer Pareto-
efficient in all subgames. Renegotiations that improve total payoff may then happen, which is
desirable. Still, the same reasoning as above shows that there is never an incentive for all play-
ers to pretend past actions were different from what they really are, hence no group of players
can convince the rest to ignore their shortfalls. This is called ‘weak renegotiation-proofness’
(26; 27). See also SI: Renegotiations when targets are not optimal.
6If G consists of all n players, optimality of Q? implies that shortfalls give no gains for G in
period t.
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argument (42).7 In the Appendix, we prove that even no conceivable
infinite sequence of deviations is profitable for any group G of play-
ers. Hence for any given set of targets q?i , it builds a strong Nash
equilibrium in each subgame if all players apply LinC given these
targets. Roughly speaking, the reason is that if G continually falls
short, contributions of the other players will decrease fast enough, so
that, in the long run,G’s gains from saved costs are overcompensated
by their losses from decreased total contributions. Note that the oth-
ers do not need to use a threat of contributing nothing forever (which
would not be credible), but only threaten to respond to each period
of shortfalls with a period of punishment, one at a time. This gradual
escalation is credible when there is ‘common knowledge of rational-
ity,’ since G knows in advance that after each individual period t of
shortfalls, the others still expect them to follow their rational interest
and return to compliance in t + 1 instead of falling short again, no
matter how many shortfalls have happened already.8

Discussion
We have presented a simple strategy by which players in a public
good game can keep each other in check in the provision of agreed
target contributions. Our approach can be interpreted as a combi-
nation of a proportionate version of the punishment approach that
strategies like ‘tit for tat’ use in the Prisoners’ Dilemma, and the re-
payment approach that is already included in the Kyoto mechanism.
This combination has been formally shown here to have strong game-
theoretic stability properties in situations where some simplifying as-
sumptions hold, a feature that is not true of strategies that use only
one of the two ingredients. In Axelrod’s (36) terminology, our strat-
egy, LinC, is ‘nice’ in that it cooperates unless provoked, ‘retaliating’
when provoked, ‘forgiving’ when deviators repay, and uses ‘contri-
tion’ to avoid the echo effect.

We believe that very similar strategies will be valuable also in
contexts in which some of our assumptions are violated. E.g., fu-
ture work might use an improved model of the emissions game in
which the assumption of identical periods is replaced by certain
path-dependencies: Real-world benefit functions fi depend on GHG
stocks and hence on time and emission history, and also the cost func-
tion g depends on time and emission history because of technological
progress. Since past contributions will reduce future marginal costs,
this will lead to a non-constant optimal abatement path Q?(t). How-
ever, these effects will probably not weaken LinC’s stability when q?i
is replaced by a time-dependent target allocation q?i (t) of Q?(t) that
is computed according to some initially negotiated rule (e.g., in fixed
proportions). This is because then the Pareto-efficiency argument for
renegotiation-proofness still holds, while shortfalls would slow down
technological progress and lead to even higher marginal costs in the
punishment period.

A more critical assumption is that contributions are unbounded
which would make it possible in principle to punish even long se-
quences of large shortfalls by escalating emissions, a possible devel-
opment which rational players would then avoid. If emissions can not
exceed some upper bound, it would still suffice if welfare losses be-
came prohibitively large when emissions approach that bound. Only
if those losses are bounded as well, the question whether large short-
falls can be deterred depends on the actual cost-benefit structure and
on the value of δ, which is in line with general results on repeated
games with bounded payoffs (42) (see also SI: Bounded liabilities,
SI: Validity of assumptions).

In addition to such model refinements, future work should also (i)
assess the possibility of players to “bind their hands” ahead of time by
making long-term investment decisions that reduce their own ability
to choose qi(t) at t, (ii) study the influence of incomplete informa-
tion due to restricted monitoring capacities, finite planning horizons
and of other forms of ‘bounded rationality’ (43), (iii) link emissions
reductions with other issues (44), (iv) include possible altruism, rep-

utation, and status effects, also using experimental approaches such
as (45).

Since LinC uses a proportionate and timely measure-for-measure
reaction to shortfalls, it performs well also in situations in which
players cannot control their actions perfectly. It is easy to see from
Eqn. [4] that random errors do not add up or lead away from the tar-
get, nor do one-time deviations initiate a long sequence of reactions.9

The latter is avoided by comparing actual contributions not to the ini-
tial targets but to dynamic liabilities, which are similar to the ‘stand-
ings’ used in ‘contrite tit-for-tat’ for the repeated Prisoners’ Dilemma
(46). All the above stability properties of LinC hold independently
of the form and amount of discounting if the compensation factor α
is chosen properly.10 While many other games have no strong Nash
equilibria, the public good game studied here somewhat surprisingly
even allows players to sustain any allocation of the optimal total pay-
off with a strategy that is a strong Nash equilibrium even in each sub-
game (though leaving the coordination problem of equilibrium selec-
tion as a task for prior negotiations). Since deviations by groups have
been considered before only for non-repeated ‘normal-form’ games,
this new combination of ‘strong Nash’ and ‘subgame-perfect’ equi-
librium can also be considered a contribution to game theory itself.

In real-world climate politics, redistribution mechanism such as
ours could play a key role in the implementation of cap-and-trade
regimes, whose importance is stressed by many authors (see, e.g., the
impressively broad collection of articles in (2). While in domestic
emissions markets, caps can be issued by a central authority and com-
pliance might be enforced legally, both is more difficult in large inter-
national markets (47). If, like in the first two periods of the EU ETS,
each country in a market issues its own permit quantity qi, a strategy
like LinC might be used to ensure compliance with some agreed indi-
vidual caps that realize that market’s joint optimum, giving countries
incentives to issue only the agreed target amount of permits and to
ensure that domestic emissions are matched by permits after trading.
To choose a suitable compensation factor, only a conservative esti-
mate of the (expected) marginal costs and benefits at the target and
the short-term discounting factor is needed.

In this way, one could avoid using “sticks” such as trade sanc-
tions (48, p. 34) or tariffs (3), which are mostly considered to be diffi-
cult to push politically vis-a-vis partners, and focus on “carrots” (ben-
efitting from other players’ emissions reductions). Still, tariffs might
be helpful vis-a-vis non-participants, who might prefer to avoid them
by joining the market (49). Also, starting with a number of regional
markets with possibly sub-optimal caps, several such markets might
merge to decrease marginal costs (50; 51), eventually leading to a
global cap-and-trade system with a globally optimal cap. Whenever
caps need to be negotiated anew due to new participants or new cost-
benefit estimates, any pre-negotiation shortfalls would still be taken
into account in LinC, providing both continuity and flexibility as de-
manded in (48, p. 36). Likewise, compliance with the Kyoto protocol
might improve if its current compensation rule was modified to keep
total liabilities constant as in Eqn. [4] and if the current compensa-
tion factor of 1.3 was adjusted according to Eqn. [5]. In contrast, the
harsh punishment strategies on which earlier studies have focussed
are not only less strategically stable but also less practicable because
of their disproportionate reactions and their strict distinction between
‘normal’ and ‘punishment’ periods.

7If m successive deviations were profitable, but no shorter sequence was, then one-shot
subgame-perfectness would imply that after the first m − 1 deviations, the m-th is no longer
profitable. Hence already the first m − 1 deviations would have been profitable — a contra-
diction. Infinite sequences have to be considered separately since payoffs are unbounded.
8This expectation is common to all Nash-like equilibrium concepts. The much stronger de-
mand that compliance should be optimal regardless of the other players’ behavior would require
so-called ‘dominant’ strategies which, however, do rarely exist in repeated games.
9With implementation errors of variance σ2, the mean squared deviation of `i(t + 1) from
the target q?i will be at most σ2α2(n − 1)/n, hence the mean squared deviation between
actual and target contributions is of magnitude σ2(1 + α2(n− 1)/n).
10The value of δ however does play a role when, in addition to our assumptions, liabilities shall
be bounded. This is further explored in SI: Bounded liabilities.
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Appendix: Why infinite sequences of deviations do not pay

Suppose all players apply LinC by putting qi(t) = `i(t) except
that from some period t0 on, a group G of players play a deviation
strategy s that leads to joint shortfalls

∑
i∈G di(t) = xt in each pe-

riod t > t0. Since excess contributions never pay, we can assume
that xt > 0. Assume further that in each period t and for each in-
teger r > 0, all players consider getting one payoff unit in period
t+ r as equivalent to getting wt,r payoff units immediately in period
t, where the discounting weights wt,r fulfill the conditions

wt,0 = 1, wt,1 > δ, wt,r > 0,
∑∞
r=0 wt,r = Wt <∞. [6]

E.g., players could use exponential discounting with wt,r = εr ,
δ < ε < 1, and Wt = 1/(1− ε).11 G’s discounted long-term payoff
from t0 on is then UG(t0) =

∑
t>t0

wt0,t−t0PG(t) with joint pe-
riod payoffs PG(t) =

∑
i∈G(bi(t) − ci(t)). We will show that this

is no larger than if they had continued to apply LinC instead. Assume
∆(s,LinC) > 0 is the difference in UG(t0) between playing s and
playing LinC from t0 on, and consider the following two cases.

(i) Suppose the discounted total long-term shortfalls are finite,
i.e., the series

∑
t>t0

wt0,t−t0xt of non-negative terms converges.
Now consider the truncated deviation strategy s̃ that returns to com-
pliance in some period t1 > t0, i.e., consists in playing s for t0 6
t < t1 and playing LinC for t > t1. Let ∆(s, s̃) be the difference in
UG(t0) between playing s and s̃. This is at most the costs they save
in periods t > t1 when playing s instead of LinC, which is at most
xtγ

? according to Eqn. [2]. Hence ∆(s, s̃) 6
∑
t>t1

wt0,t−t0xtγ
?.

Because of the assumed series convergence, this goes to zero for
t1 →∞, so it is smaller than ∆(s,LinC) if t1 is large enough. Then
∆(s̃,LinC) = ∆(s,LinC)−∆(s, s̃) > 0 which means that already
the truncated deviation strategy s̃ is profitable. But we already proved
that no finite sequence of deviations is profitable, so neither is s.

(ii) Suppose the discounted total long-term shortfalls are infinite,∑
t>t0

wt0,t−t0xt = ∞. Because xt−1 > 0, the joint liability of G
in period t is no smaller than the target, LG(t) =

∑
i∈G `i(t) > Q?G.

Hence their joint costs CG(t) are either zero if xt > Q?, since
then total costs are zero, or they are by at most Q?γ? smaller
than in the case where LG(t) = Q?G. In other words, CG(t) is
bounded from below by some value Cmin

G . Concerning benefits, let
fG(Q) =

∑
i∈G fi(Q) and let βG = f ′G(Q?) be the target marginal

benefit of G. Then G’s joint benefits are fG(Q? − xt), which is at
most fG(Q?)− βGxt because marginal benefits are non-increasing.
ThusG’s joint payoffs are at most (Q?−Q?G)γ?+fG(Q?)−βGxt,
so that G’s discounted long-term payoff UG(t0) is then at most

Wt0 [fG(Q?)− Cmin
G ]− βG

∑
t>t0

wt0,t−t0xt. [7]

But the latter series diverges because of our assumption, hence
UG(t0) = −∞. In other words, an infinite sequence of shortfalls
growing this fast is infinitely bad.12
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