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Abstract. The analysis of palaeoclimate time series is usu-
ally affected by severe methodological problems, resulting
primarily from non-equidistant sampling and uncertain age
models. As an alternative to existing methods of time series
analysis, in this paper we argue that the statistical proper-
ties of recurrence networks – a recently developed approach
– are promising candidates for characterising the system’s
nonlinear dynamics and quantifying structural changes in its
reconstructed phase space as time evolves. In a first order
approximation, the results of recurrence network analysis are
invariant to changes in the age model and are not directly af-
fected by non-equidistant sampling of the data. Specifically,
we investigate the behaviour of recurrence network measures
for both paradigmatic model systems with non-stationary pa-
rameters and four marine records of long-term palaeoclimate
variations. We show that the obtained results are qualita-
tively robust under changes of the relevant parameters of our
method, including detrending, size of the running window
used for analysis, and embedding delay. We demonstrate that
recurrence network analysis is able to detect relevant regime
shifts in synthetic data as well as in problematic geoscien-
tific time series. This suggests its application as a general
exploratory tool of time series analysis complementing ex-
isting methods.

1 Introduction

Palaeoclimate proxy data representing past variations of en-
vironmental conditions can be obtained from various types of
geological archives distributed over the Earth’s surface. The
study of time series of such proxies, i.e. data that encode the
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temporal variability of physical, chemical, biological or sedi-
mentological properties, is a major source of information fos-
tering our understanding of the functioning of the complex
Earth system in the past, present, and future. However, non-
equidistant sampling, uncertain age models, multi-scale, and
multi-stable state variability as well as relatively high noise
levels render the study of these proxy records a challenging
problem for time series analysis.

Methods used for time series analysis can be roughly clas-
sified as linear or nonlinear. On the one hand, linear meth-
ods are based on the evaluation of certain classical statis-
tical characteristics and assume the presence of an under-
lying linear stochastic process with eventually some super-
imposed deterministic (e.g. periodic) components (Brock-
well and Davis, 1991, 2002; Hamilton, 1994). Prominent
examples that are frequently used for the analysis of real-
world time series, including such obtained from geological
archives (Schulz and Stattegger, 1997; Schulz and Mudelsee,
2002; Mudelsee et al., 2009; Rehfeld et al., 2011), are corre-
lation functions and power spectra. On the other hand, non-
linear methods follow a dynamical systems point of view,
implicitly assuming the presence of certain types of deter-
ministic behaviour (Abarbanel, 1996; Kantz and Schreiber,
1997; Donner and Barbosa, 2008).

The vast majority of existing linear or nonlinear methods
of time series analysis relies on the quantification of patterns
of temporal dependences between observationsx(t) made at
different timest , i.e. aims to quantify functional relationships
of the form

x(t) =

∑
τ>0

f (x(t −τ),τ,t)+η(t), (1)

where f (x,τ,t) is a general deterministic function, and
{η(t)} is a stochastic process (often assumed to be fully un-
correlated, i.e.δ-correlated, in time). For a stationary sys-
tem, the functional dependencef does not explicitly depend
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on timet . In standard linear methods of time series analysis,
f is often assumed to be a linear function; in this case, the
parameters off encode linear temporal correlations. More
generally, one may consider arbitrary (i.e. not explicitly spec-
ified) deterministic relationshipsf , which may be character-
ized using concepts such as mutual information (Kantz and
Schreiber, 1997).

In the following, we will refer to methods of time series
analysis that are based on the quantification of temporal in-
terrelationships between observations, e.g. correlation and
mutual information functions or power spectra, ascorrela-
tive methods. These clearly depend on how well the obser-
vation points are specified. In particular, in case of a non-
uniform sampling of the considered time series, estimates
of even simple linear characteristics can often not be ex-
pressed in a straightforward analytical way. For example,
if one wishes to avoid interpolation (which leads to addi-
tional uncertainties), power spectra can be estimated using
harmonic regression of the data (e.g. by means of the Lomb-
Scargle periodogram;Lomb, 1976; Scargle, 1982), projec-
tion methods (Foster, 1996a,b), or a variety of alternative
approaches (Babu and Stoica, 2010; Rehfeld et al., 2011).
However, in the specific case of palaeoclimate data where
typically not even the exact timing of the individual observa-
tions is sufficiently well known (Telford et al., 2004), correl-
ative methods can have strong conceptual disadvantages.

In contrast to this large class of methods (which char-
acterise time series from a more or less rigorous statistical
point of view), alternative concepts such as fractal dimen-
sions and generalisations thereof have been first developed
in different mathematical disciplines and later applied to the
characterisation of the properties of certain dynamical sys-
tems (Sprott, 2003). Statistical estimates of such measures
can be obtained by a variety of different approaches, most of
which take into account the spatial arrangement of observa-
tions in the (possibly reconstructed) phase space. From this
perspective, the mentioned methods do not directly require
knowledge about the timing of observations, i.e. can be con-
sidered as non-correlative orgeometricmethods, since they
rely on geometric attractor properties in phase space rather
than on dynamical information. In the case of palaeoclimate
data with uncertain age models, geometric methods may pro-
vide a considerable alternative for statistical analysis. How-
ever, as a particular disadvantage, we note that the proper
estimation of fractal dimensions usually requires a consider-
ably larger amount of data than necessary for most correla-
tive methods (Sprott, 2003), which are typically not available
in palaeoclimatology.

Some fundamental relationships between the geometric
properties of attractors in phase space (e.g. Hausdorff and
box dimensions) and important invariants of the associ-
ated dynamics (e.g. Lyapunov exponents) are known to ex-
ist (Chlouverakis and Sprott, 2005). Note that certain mea-
sures of dimensionality include both geometric and dynam-
ical information, i.e. all Ŕenyi dimensionsDq for q > 1

including the information dimensionD1 (Sprott, 2003).
However, besides fractal dimension estimates based on at-
tractor topology there are only very few suitable and purely
geometric methods available. Recently, it has been suggested
to characterise the mutual proximity relationships of all pairs
of state vectors from the sampled attractor in phase space
by means of complex network methods (Zhang and Small,
2006; Yang and Yang, 2008; Xu et al., 2008; Marwan et al.,
2009; Donner et al., 2010a). Among others, the concept
of recurrence networks (RNs) (Marwan et al., 2009; Don-
ner et al., 2010a,b) has been proven particularly useful for
this purpose. Since such complex network representations of
time series take only spatial information into account, they
can be considered as important examples of geometric meth-
ods of time series analysis. RNs provide a set of nonlinear
measures characterising the complexity of dynamical sys-
tems (Donner et al., 2010a, 2011a), e.g. allowing to distin-
guish periodic from chaotic dynamics. While recent find-
ings demonstrate close interrelationships between certain RN
properties and fractal dimensions (Donner et al., 2011b), the
graph-theoretical measures can often be estimated with high
confidence from much shorter time series than fractal dimen-
sions. This warrants their application as a tool for window-
based analysis of non-stationary data (Marwan et al., 2009;
Donner et al., 2011a). In contrast to the aforementioned ap-
proaches, transition networks (Nicolis et al., 2005) and visi-
bility graphs (Lacasa et al., 2008) are correlative methods in
the sense that they depend explicitly on the temporal ordering
of observations.

When considering network-based methods of time series
analysis, only RNs (Marwan et al., 2009; Donner et al.,
2011a; Hirata et al., 2011) and visibility graphs (Elsner et al.,
2009) have been used to analyse geoscientific data. So far
RN analysis is the only network-based technique that has
been applied to investigate palaeoclimate proxy records. In
this work, we discuss the application of RNs to studies of
palaeoclimate records, with a special focus on the identifica-
tion of structural changes in the dynamics that are not easily
found when relying on simple linear statistics. As a bench-
mark example, we will mainly utilise three marine records of
aeolian dust flux from Northern Africa during the last 5 Myr
(million years) (Trauth et al., 2009; Marwan et al., 2009;
Donner et al., 2011a; Donges et al., 2011). In Sect.2, we
present a detailed description of the considered data sets, the
necessary preprocessing steps, and the general idea of RNs
and their quantitative analysis. Application to typical non-
linear model systems with a systematic drift of the control
parameters in Sect.3 suggests that network statistics are well
suited for identifying dynamical transitions from finite time
series. Finally, in Sect.4, we describe the results of our inves-
tigations obtained for the different palaeoclimate time series
and discuss their robustness with respect to the fundamental
parameters of our method.
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Fig. 1. Map displaying the locations of the three ODP drilling sites
considered in this study (Tiedemann et al., 1994; deMenocal, 1995,
2004; Larrasoaña et al., 2003).

2 Data and methods

2.1 Description of the data

Marine records of terrigenous dust flux from North Africa are
an important source of information on the long-term aridifi-
cation of the continent during the Plio-Pleistocene (Trauth
et al., 2009). Continuous time series {xi = x(ti)}Ni=1

sampled at times ti, where i is an index variable and
N the number of samples, are available from three sedi-
ment cores: ODP 659 (Atlantic Ocean offshore subtropical
West Africa) (Tiedemann et al., 1994), ODP 721/722 (Ara-
bian Sea) (deMenocal, 1995, 2004), and ODP 967 (Eastern
Mediterranean Sea) (Larrasoaña et al., 2003) (Fig. 1). In ad-
dition, the benthic oxygen isotope (δ18O) record from ODP
site 659 (Tiedemann et al., 1994) will be studied as a proxy
for variations in global ice volume, which can be assumed
to have a considerable impact on the continental aridifica-
tion via a southward displacement of climate and vegetation
zones. All time series are shown in Fig. 2.

2.2 Detrending

All considered time series {xi} show a nonlinear trend of in-
creasing amplitude and variance towards the present. This
trend reflects the successive aridification of North and East
Africa and the intensification of Northern hemisphere glacial
cycles during the Plio-Pleistocene (Trauth et al., 2009). To
prevent corruption of the results of our analysis and signifi-
cance test due to this nonlinear trend, we attempt to remove
it to first order by subtracting from xi the mean of a sliding
window of size WD(ti) centered at ti for all time points ti,
i.e.,

x̂i =xi−
1

2bWD(ti)/2c+1

bWD(ti)/2c∑
j=−bWD(ti)/2c

xi+j , (2)

Fig. 2. Plio-Pleistocene variability of (A) δ18O at ODP site 659
(Tiedemann et al., 1994), and of terrigenous dust flux from North
Africa at ODP sites (B) 659 (Tiedemann et al., 1994), (C) 721/722
(deMenocal, 1995, 2004), and (D) 967 (Larrasoaña et al., 2003).
The horizontal red bars in panel (A) indicate two consecutive recur-
rence windows of length W ∗ = 410 kyr and mutual offset ∆W ∗ =
41 kyr as used in the analysis of Sec. 4 and in Figs. 9–12.

where for a chosen detrending window size WD,

WD(ti) =

 2(i−1) for i<WD,
WD for WD ≤ i≤N−WD,

2(N− i) for i>N−WD.
(3)

That is, the effective detrending window size decreases to-
wards the time series’ boundaries, resulting in x̂1 = x̂N = 0.
This simple approach avoids the complication of locally or
globally fitting higher-order polynomials or performing high-
pass filtering given irregular sampling and uncertain dating of
measurements to remove the nonlinear trend. Since RN anal-
ysis as our method of choice is a non-correlative technique
and its results are permutation invariant (Sec. 2.6), spurious
autocorrelations which may be introduced by the sliding win-
dow detrending do not pose a serious problem here. We will
show in Sec. 4.2 that our results are robust with respect to
a large range of reasonable choices of WD. Except of the
detrending, no further preprocessing was applied to the data.
Particularly, we do not resample the time series to obtain an
evenly spaced record in the time domain, since the necessary
interpolation would corrupt the results of the further analysis
to be performed below (see, e.g., Rehfeld et al. (2011)).
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for variations in global ice volume, which can be assumed
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tion via a southward displacement of climate and vegetation
zones. All time series are shown in Fig.2.
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Fig. 2. Plio-Pleistocene variability of (A) δ18O at ODP site 659
(Tiedemann et al., 1994), and of terrigenous dust flux from North
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This simple approach avoids the complication of locally or
globally fitting higher-order polynomials or performing high-
pass filtering given irregular sampling and uncertain dating of
measurements to remove the nonlinear trend. Since RN anal-
ysis as our method of choice is a non-correlative technique
and its results are permutation invariant (Sec. 2.6), spurious
autocorrelations which may be introduced by the sliding win-
dow detrending do not pose a serious problem here. We will
show in Sec. 4.2 that our results are robust with respect to
a large range of reasonable choices of WD. Except of the
detrending, no further preprocessing was applied to the data.
Particularly, we do not resample the time series to obtain an
evenly spaced record in the time domain, since the necessary
interpolation would corrupt the results of the further analysis
to be performed below (see, e.g., Rehfeld et al. (2011)).

Fig. 2. Plio-Pleistocene variability of(A) δ18O at ODP site 659
(Tiedemann et al., 1994), and of terrigenous dust flux from North
Africa at ODP sites(B) 659 (Tiedemann et al., 1994), (C) 721/722
(deMenocal, 1995, 2004), and (D) 967 (Larrasoãna et al., 2003).
The horizontal red bars in panel(A) indicate two consecutive recur-
rence windows of lengthW∗

= 410 kyr and mutual offset1W∗
=

41 kyr as used in the analysis of Sect.4 and in Figs.9–12.

WD(ti) =

 2(i −1) for i <WD,

WD for WD ≤ i ≤ N −WD,

2(N − i) for i >N −WD.

(3)

That is, the effective detrending window size decreases to-
wards the time series’ boundaries, resulting inx̂1 = x̂N = 0.
This simple approach avoids the complication of locally or
globally fitting higher-order polynomials or performing high-
pass filtering given irregular sampling and uncertain dating of
measurements to remove the nonlinear trend. Since RN anal-
ysis as our method of choice is a non-correlative technique
and its results are permutation invariant (Sect.2.6), spuri-
ous autocorrelations which may be introduced by the sliding
window detrending do not pose a serious problem here. We
will show in Sect.4.2 that our results are robust with respect
to a large range of reasonable choices ofWD. Except of the
detrending, no further preprocessing was applied to the data.
Particularly, we do not resample the time series to obtain an
evenly spaced record in the time domain, since the necessary
interpolation would corrupt the results of the further analysis
to be performed below (see, e.g.Rehfeld et al., 2011).

2.3 Embedding

Univariate time series often reflect the dynamics of a higher-
dimensional complex system as viewed through some ob-
servation function. In typical situations it is possible to
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reconstruct the phase space trajectory using time-delay em-
bedding, i.e. considering state vectors

y
(m,τ)
i =

(
x̂i,x̂i+τ ,...,x̂i+(m−1)τ

)
(4)

instead of the univariate observationsx̂i themselves (Packard
et al., 1980; Takens, 1981). Due to the finite length of the
available time series, the indexi is now restricted to the range
i = 1,...,N − (m−1)τ . The embedding parameters embed-
ding dimensionm and delayτ have to be appropriately de-
termined from the available data, e.g. using approaches such
as the false nearest-neighbours (Kennel et al., 1992) and av-
erage mutual information (Fraser and Swinney, 1986) meth-
ods, respectively. Although there are good reasons for ap-
plying embedding techniques, it is known that this approach
also has conceptual disadvantages and may induce spurious
structures in recurrence plots and corresponding misleading
results of recurrence quantification analysis (RQA) (Thiel
et al., 2006). In contrast, many important dynamical in-
variants can be estimated from non-embedded time series as
well, especially using recurrence plot-based methods (Thiel
et al., 2004a). From here on we will use the simplified nota-
tion yi for reconstructed state vectors and assign to them the
agesti , respectively.

While the standard approaches for determining the opti-
mum embedding parameters typically provide feasible re-
sults in the case of many applications, the situation is con-
siderably more challenging for palaeoclimate records: on
the one hand, traditional embedding methods require equally
spaced observations, so that interpolation of the available
data might become necessary with all corresponding concep-
tual disadvantages. On the other hand, in the presence of dat-
ing uncertainties, even such interpolation is hardly possible
and would lead to an enormous enhancement of uncertainty
in the embedded record.

Given these methodological difficulties we attempt a com-
promise: (i) the embedding dimensionm = 3 is a trade-
off given the relatively short time series forbidding larger
embedding dimensions (Eckmann et al., 1992; Kantz and
Schreiber, 1997) and the underlying high-dimensional dy-
namics as estimated by the false nearest-neighbours crite-
rion (Kennel et al., 1992; Marwan et al., 2009). (ii) Us-
ing a Gaussian kernel-based estimator of the autocorrelation
function adapted to irregularly sampled time series (Rehfeld
et al., 2011), we find that the autocorrelation of all four time
series has decayed markedly after 10 kyr (Fig.3). Hence,
we choose the delayτ to cover approximately the same time
scaleτ ∗

= 10 kyr for all considered records, i.e.

τ = bτ ∗/〈1T 〉c, (5)

where〈1T 〉 is the average sampling time (Table1) andbxc

denotes the integer part ofx. This yieldsτ1 = 2 for ODP
site 659,τ2 = 5 for site 721/722, andτ3 = 27 for site 967. A
promising technique for consistent embedding of irregularly
sampled time series is based on Legendre polynomials (Gib-
son et al., 1992) and should be explored in future studies.

4 J. F. Donges et al.: Identification of dynamical transitions in marine palaeoclimate records by RN analysis

2.3 Embedding

Univariate time series often reflect the dynamics of a higher-
dimensional complex system as viewed through some ob-
servation function. In typical situations it is possible to re-
construct the phase space trajectory using time-delay embed-
ding, i.e., considering state vectors

y
(m,τ)
i =

(
x̂i,x̂i+τ ,...,x̂i+(m−1)τ

)
(4)

instead of the univariate observations x̂i themselves (Packard
et al., 1980; Takens, 1981). Due to the finite length of the
available time series, the index i is now restricted to the range
i= 1,...,N− (m−1)τ . The embedding parameters embed-
ding dimensionm and delay τ have to be appropriately deter-
mined from the available data, e.g., using approaches such as
the false nearest-neighbours (Kennel et al., 1992) and aver-
age mutual information (Fraser and Swinney, 1986) methods,
respectively. Although there are good reasons for applying
embedding techniques, it is known that this approach also has
conceptual disadvantages and may induce spurious structures
in recurrence plots and corresponding misleading results of
recurrence quantification analysis (RQA) (Thiel et al., 2006).
In contrast, many important dynamical invariants can be es-
timated from non-embedded time series as well, especially
using recurrence plot-based methods (Thiel et al., 2004a).
From here on we will use the simplified notation yi for re-
constructed state vectors and assign to them the ages ti, re-
spectively.

Whereas the standard approaches for determining the op-
timum embedding parameters typically provide feasible re-
sults in the case of many applications, the situation is con-
siderably more challenging for palaeoclimate records: On
the one hand, traditional embedding methods require equally
spaced observations, so that interpolation of the available
data might become necessary with all corresponding concep-
tual disadvantages. On the other hand, in the presence of dat-
ing uncertainties, even such interpolation is hardly possible
and would lead to an enormous enhancement of uncertainty
in the embedded record.

Given these methodological difficulties we attempt a com-
promise: (i) The embedding dimension m= 3 is a trade-
off given the relatively short time series forbidding larger
embedding dimensions (Eckmann et al., 1992; Kantz and
Schreiber, 1997) and the underlying high-dimensional dy-
namics as estimated by the false nearest-neighbours crite-
rion (Kennel et al., 1992; Marwan et al., 2009). (ii) Us-
ing a Gaussian kernel-based estimator of the autocorrelation
function adapted to irregularly sampled time series (Rehfeld
et al., 2011), we find that the autocorrelation of all four time
series has decayed markedly after 10 kyr (Fig. 3). Hence,
we choose the delay τ to cover approximately the same time
scale τ∗= 10 kyr for all considered records, i.e.

τ = bτ∗/〈∆T 〉c, (5)

fig:coincidence_test_results

Fig. 3. Linear autocorrelation functions C(τ) for (A) the δ18O
record at ODP site 659 and the dust flux records from ODP sites
(B) 659, (C) 721/722, and (D) 967. The autocorrelation functions
were estimated using a Gaussian kernel-based estimator (Rehfeld
et al., 2011) adapted to irregularly sampled data (solid line) and di-
rectly from time series linearly interpolated to a regular sampling
with sampling time 〈∆T 〉 (dash-dotted line). For the Gaussian
kernel-based estimator we used the recommended optimum band-
width h= 〈∆T 〉/4 (Rehfeld et al., 2011), where h is the standard
deviation of the Gaussian kernel.

where 〈∆T 〉 is the average sampling time (Tab. 1). This
yields τ1 = 2 for ODP site 659, τ2 = 5 for site 721/722, and
τ3 = 27 for site 967 corresponding to τ∗= 10 kyr. A promis-
ing technique for consistent embedding of irregularly sam-
pled time series is based on Legendre polynomials (Gibson
et al., 1992) and should be explored in future studies.

2.4 Windowed analysis

For detecting structural changes in the dynamics encoded by
the time series, we slide a window over the embedded record
{yi} and perform the subsequent analysis for the data con-
tained in each window separately. However, the records un-
der study are quite heterogeneous with respect to their ba-
sic sampling properties (Tab. 1). The average sampling time
〈∆T 〉 differs widely across the records. In order to assure
comparability of our results uncovered from the different
time series, the most natural approach is to choose windows
of a fixed size W ∗ in units of time. However, this approach
has two disadvantages: The exact timing ti of the available
observations is not known as is the case for most geological
proxy records, and due to the non-uniform sampling rates,
different windows would contain different amounts of data.
While the latter is not problematic for statistical tests against
homogeneity of the distribution of values in different win-
dows, a quantitative comparison of statistical characteristics
of the associated RNs (see Sec. 2.5) is not possible. There-
fore, in the following, we will proceed in a different way by
prescribing both the window size W and step size ∆W for
RN analysis measured in units of sampling points. In order

Fig. 3. Linear autocorrelation functionsC(τ) for (A) the δ18O
record at ODP site 659 and the dust flux records from ODP sites
(B) 659, (C) 721/722, and(D) 967. The autocorrelation functions
were estimated using a Gaussian kernel-based estimator (Rehfeld
et al., 2011) adapted to irregularly sampled data (solid line) and di-
rectly from time series linearly interpolated to a regular sampling
with sampling time〈1T 〉 (dash-dotted line). For the Gaussian
kernel-based estimator we used the recommended optimum band-
width h = 〈1T 〉/4 (Rehfeld et al., 2011), whereh is the standard
deviation of the Gaussian kernel.

2.4 Windowed analysis

For detecting structural changes in the dynamics encoded by
the time series, we slide a window over the embedded record
{yi} and perform the subsequent analysis for the data con-
tained in each window separately. However, the records un-
der study are quite heterogeneous with respect to their basic
sampling properties (Table1). The average sampling time
〈1T 〉 differs widely across the records. In order to assure
comparability of our results uncovered from the different
time series, the most natural approach is to choose windows
of a fixed sizeW ∗ in units of time. However, this approach
has two disadvantages: The exact timingti of the available
observations is not known as is the case for most geological
proxy records, and due to the non-uniform sampling rates,
different windows would contain different amounts of data.
While the latter is not problematic for statistical tests against
homogeneity of the distribution of values in different win-
dows, a quantitative comparison of statistical characteristics
of the associated RNs (see Sect.2.5) is not possible. There-
fore, in the following, we will proceed in a different way by
prescribing both the window sizeW and step size1W for
RN analysis measured in units of sampling points. In order
to deriveW and1W from the desired quantities in units of
time,W ∗ and1W ∗, we divide by the average sampling time,

W = bW ∗/〈1T 〉c, (6)

1W = b1W ∗/〈1T 〉c. (7)

In turn, the actual window sizeW ∗(ti) is determined by the
average sampling time in the size-W window centred around
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ti . For a particular choice ofW ∗ and the associated step size
1W ∗ in units of time, the resulting values ofW and1W ,
the mean window widths, and step sizes as well as the corre-
sponding standard deviations are given in Table1.

The simple approach for determining the window size de-
scribed above guarantees that the windows cover approx-
imately the same time span for all records and positions
within the time series. While most sampling intervals take
values close to the mean, there are distinct outliers, which
most likely correspond to missing data due to incomplete
core recovery, hiata or disturbances of the sediment such as
turbidites (Fig.4). Nevertheless, the standard deviation of
window sizeσ(W ∗) is still small in comparison to the aver-
age window size〈W ∗〉 (Table1), which suggests that statis-
tical characteristics computed for different windows can still
be quantitatively compared in a reasonable way.

Formally, the data series{yµ
i } within the µ-th window,

µ = 1,2,...,bN−W
1W

c, is given by

{y
µ
i } = {y(µ−1)1W+i}, (8)

where from here oni = 1,...,W . We use the window’s mid-
point’s timing

tµ = t(µ−1)1W+bW/2c (9)

to attach an age to the scalar network measuresgµ calculated
from the data within theµ-th window.

2.5 Recurrence network analysis

Recurrence in phase space is a basic property of complex dy-
namical systems. Since the seminal work ofPoincaŕe(1890),
it is known that under rather general conditions, dynamical
systems tend to return arbitrarily close to their previous states
in the long-term limit. In the last decades, the recurrence
property has attracted considerable interest, since it has been
shown that essential information about the main dynamical
properties is contained in the temporal pattern of mutual re-
currences of a state (Thiel et al., 2004b; Robinson and Thiel,
2009). Particularly, the visual representations of recurrence
plots (Eckmann et al., 1987; Marwan et al., 2007) have found
wide use, which are most commonly expressed by a binary
recurrence matrix

R
µ
ij (ε) = 2(ε−‖y

µ
i −y

µ
j ‖), (10)

where for theµ-th window,ε is the recurrence threshold and
2(·) denotes the Heaviside function. In the following we
use the supremum norm‖ ·‖ to measure distances in the re-
constructed phase space of the considered observabley (see
Fig.5 for examples). The appropriate choice of the important
parameterε is discussed below.

It turned out that recurrence plots show distinct line struc-
tures, whose length distribution can be used for defining
suitable measures of complexity in terms of RQA, or for
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to derive W and ∆W from the desired quantities in units
of time, W ∗ and ∆W ∗, we divide by the average sampling
time,

W = bW ∗/〈∆T 〉c, (6)
∆W = b∆W ∗/〈∆T 〉c, (7)

where bxc denotes the integer part of x. In turn, the actual
window size W ∗(ti) is determined by the average sampling
time in the size-W window centred around ti. For a par-
ticular choice of W ∗ and the associated step size ∆W ∗ in
units of time, the resulting values of W and ∆W , the mean
window widths, and step sizes as well as the corresponding
standard deviations are given in Tab. 1.

The simple approach for determining the window size de-
scribed above guarantees that the windows cover approx-
imately the same time span for all records and positions
within the time series. While most sampling intervals take
values close to the mean, there are distinct outliers, which
most likely correspond to missing data due to incomplete
core recovery, hiata or disturbances of the sediment such as
turbidites (Fig. 4A). Nevertheless, the standard deviation of
window size σ(∆W ∗) is still small in comparison to the av-
erage window size 〈∆W ∗〉 (Tab. 1), which suggests that sta-
tistical characteristics computed for different windows can
still be quantitatively compared in a reasonable way.

Formally, the data series {yµi } within the µ-th window,
µ= 1,2,..., is given by

{yµi }= {y(µ−1)∆W+i}, (8)

where from here on i= 1,...,W . We use the window’s mid-
point’s timing

tµ = t(µ−1)∆W+bW/2c (9)

to attach an age to the scalar network measures gµ calculated
from the data within the µ-th window.

2.5 Recurrence network analysis

Recurrence in phase space is a basic property of complex dy-
namical systems. Since the seminal work of Poincaré (1890),
it is known that under rather general conditions, dynamical
systems tend to return arbitrarily close to their previous states
in the long-term limit. In the last decades, the recurrence
property has attracted considerable interest, since it has been
shown that essential information about the main dynamical
properties is contained in the temporal pattern of mutual re-
currences of a state (Thiel et al., 2004b; Robinson and Thiel,
2009). Particularly, the visual representations of recurrence
plots (Eckmann et al., 1987; Marwan et al., 2007) have found
wide use, which are most commonly expressed by a binary
recurrence matrix

Rµij(ε) = Θ(ε−‖yµi −y
µ
j ‖), (10)

where for the µ-th window, ε is the recurrence threshold and
Θ(·) denotes the Heaviside function. In the following we

Fig. 4. (A) Probability distribution (PDF) p(∆T ) of the sampling
intervals of the three dust flux records according to their established
age models (ODP sites 659: solid line, 721/722: dash-dotted, 967:
dashed). The distribution for the δ18O record at ODP site 659 is vi-
sually almost indistinguishable from that of the corresponding dust
flux record and therefore not shown. The PDFs were estimated
using a Gaussian kernel with bandwidth h= σ(∆T )(N −1)−1/5

(Tab. 1) following Scott’s rule (Scott, 1982). (B,C,D) Temporal
variation of the sampling times for the three dust flux records.

use the supremum norm ‖ ·‖ to measure distances in the re-
constructed phase space of the considered observable y (see
Fig. 5 for examples). The appropriate choice of the important
parameter ε is discussed below.

It turned out that recurrence plots show distinct line struc-
tures, whose length distribution can be used for defining
suitable measures of complexity in terms of RQA, or for
estimating dynamical invariants such as correlation dimen-
sion, 2nd-order Rényi entropy, or generalised mutual infor-
mation (Marwan et al., 2007). In the context of palaeoclimate
research, recurrence plots and RQA have been successfully
applied for tracing dynamical changes (Trauth et al., 2003;
Marwan et al., 2003) and aligning records with different age-
depth models (Marwan et al., 2002). RQA is a correlative
method of time series analysis, as it explicitly relies on tem-
poral structures in the form of diagonal and vertical lines.

Recently, it has been suggested to approach recurrence

Fig. 4. (A) Probability distribution (PDF)p(1T ) of the sampling
intervals of the three dust flux records according to their established
age models (ODP sites 659: solid line, 721/722: dash-dotted, 967:
dashed). The distribution for theδ18O record at ODP site 659 is vi-
sually almost indistinguishable from that of the corresponding dust
flux record and therefore not shown. The PDFs were estimated us-
ing a Gaussian kernel with bandwidthh = σ(1T )(N −1)−1/5 (Ta-
ble 1) following Scott’s rule (Scott, 1982). (B, C, D) Temporal
variation of the sampling times for the three dust flux records.

estimating dynamical invariants such as correlation dimen-
sion, 2nd-order Ŕenyi entropy, or generalised mutual infor-
mation (Marwan et al., 2007). In the context of palaeoclimate
research, recurrence plots and RQA have been successfully
applied for tracing dynamical changes (Trauth et al., 2003;
Marwan et al., 2003) and aligning records with different age-
depth models (Marwan et al., 2002). RQA is a correlative
method of time series analysis, as it explicitly relies on tem-
poral structures in the form of diagonal and vertical lines.

Recently, it has been suggested to approach recurrence
matrices from a complex network perspective by identifying

A
µ
ij (ε) = R

µ
ij (ε)−δij (11)

(δij denoting Kronecker’s delta) with the adjacency matrix
of a complex network associated to the underlying time se-
ries (Marwan et al., 2009; Donner et al., 2010a)1. This

1Note that similar approaches can also be found in other
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Table 1. Basic properties of the analysed palaeoclimate time series.N is the number of samples contained in the time series,〈1T 〉

the mean sampling interval, andσ(1T ) the standard deviation of sampling intervals. For a desired window sizeW∗
= 410 kyr and step

size1W∗
= 41 kyr (as chosen in Sect.4.1 for RN analysis),W and1W give the corresponding window and step size (in numbers of

observations),
〈
W∗

〉
and

〈
1W∗

〉
the average effective window and step size, andσ(W∗) andσ(1W∗) the associated standard deviations (in

units of time).

N 〈1T 〉 σ(1T ) W 1W
〈
W∗

〉
σ(W∗)

〈
1W∗

〉
σ(1W∗)

(kyr) (kyr) (kyr) (kyr) (kyr) (kyr)

ODP 659δ18O 1170 4.28 2.88 95 9 400.37 46.58 38.37 4.36
ODP 659 dust 1221 4.10 2.69 100 10 408.16 33.09 41.25 3.22
ODP 721/722 dust 2757 1.81 1.52 226 22 401.97 62.66 39.29 6.09
ODP 967 dust 8417 0.36 0.31 1139 113 409.10 78.04 40.67 7.51
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Table 1. Basic properties of the analysed palaeoclimate time series. N is the number of samples contained in the time series, 〈∆T 〉
the mean sampling interval, and σ(∆T ) the standard deviation of sampling intervals. For a desired window size W ∗ = 410 kyr and step
size ∆W ∗ = 41 kyr (as chosen in Sec. 4.1 for RN analysis), W and ∆W give the corresponding window and step size (in numbers of
observations), 〈W ∗〉 and 〈∆W ∗〉 the average effective window and step size, and σ(W ∗) and σ(∆W ∗) the associated standard deviations
(in units of time).

N 〈∆T 〉 (kyr) σ(∆T ) (kyr) W ∆W 〈W ∗〉 (kyr) σ(W ∗) (kyr) 〈∆W ∗〉 (kyr) σ(∆W ∗) (kyr)
ODP 659 δ18O 1170 4.28 2.88 95 9 400.37 46.58 38.37 4.36
ODP 659 dust 1221 4.10 2.69 100 10 408.16 33.09 41.25 3.22
ODP 721/722 dust 2757 1.81 1.52 226 22 401.97 62.66 39.29 6.09
ODP 967 dust 8417 0.36 0.31 1139 113 409.10 78.04 40.67 7.51
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Fig. 5. Recurrence plots (equivalently adjacency matrices of the RNs shown in Fig. 6) obtained from the dust flux record at ODP site 659,
centred around (A) 1.2, (B) 2.2, and (C) 3.2 Myr BP, using window sizeW ∗ = 410 kyr, step size ∆W ∗ = 41 kyr, and embedding parameters
m= 3, τ∗ = 10 kyr. ε was chosen in a data-adaptive way to yield a fixed edge density ρ(ε) = 0.05 for each window.

matrices from a complex network perspective by identifying

Aµij(ε) =Rµij(ε)−δij (11)

(δij denoting Kronecker’s delta) with the adjacency matrix
of a complex network associated to the underlying time se-
ries (Marwan et al., 2009; Donner et al., 2010a)1. This
analogy implies that each sampled state vector is assigned
a vertex in the RN, where two vertices are linked if the cor-
responding state vectors are recurrent, i.e., mutually close,
in phase space (Fig. 6). According to the conventions of
Sec. 2.3, each vertex i in the µ-th window has an age tµi =
t(µ−1)∆W+i attached to it. To simplify the notation when
defining network measures, we will drop the window index
µ in the following.

The edge density

ρ(ε) =
1

W (W −1)

∑
i,j

Aij(ε) (12)

1Note that similar approaches can also be found in other geo-
scientifically relevant applications of data analysis, such as dendro-
grams in agglomerative cluster analysis, or nonlinear decomposi-
tion of multivariate data using isometric feature mapping (Gámez
et al., 2004).

measures which fraction of the maximum theoretically pos-
sible number W (W −1)/2 of undirected edges is present in
the RN, where the number of vertices W is determined by
the chosen recurrence window size. ρ(ε) is equivalent to the
recurrence rate in traditional RQA. The properties of the re-
sulting RNs (parameterised by the single parameter ε) have
been shown to trace structures in phase space correspond-
ing to dynamically invariant objects (Donner et al., 2010a, in
press) as well as changes in the dynamical behaviour of arbi-
trary time series (Marwan et al., 2009; Donner et al., 2011).
For detecting bifurcations in time series, global-scale net-
work characteristics of complex network theory are of main
interest (Newman, 2003; Boccaletti et al., 2006; da Costa
et al., 2007). Here we will focus on the following four mea-
sures:

(i) Transitivity T : The transitivity

T =

∑
i,j,kAijAjkAki∑
i,j,kAkiAkj

(13)

of an unweighted and undirected network characterises
the overall probability that two randomly chosen neigh-
bours of an also randomly chosen vertex are connected

Fig. 5. Recurrence plots (equivalently adjacency matrices of the RNs shown in Fig.6) obtained from the dust flux record at ODP site 659,
centred around(A) 1.2,(B) 2.2, and(C) 3.2 Myr BP, using window sizeW∗

= 410 kyr, step size1W∗
= 41 kyr, and embedding parameters

m = 3, τ∗
= 10 kyr. ε was chosen in a data-adaptive way to yield a fixed edge densityρ(ε) = 0.05 for each window.

analogy implies that each sampled state vector is assigned a
vertex in the RN, where two vertices are linked if the cor-
responding state vectors are recurrent, i.e. mutually close,
in phase space (Fig.6). According to the conventions of
Sect. 2.3, each vertexi in the µ-th window has an age
t
µ
i = t(µ−1)1W+i attached to it. To simplify the notation

when defining network measures, we will drop the window
indexµ in the following.

The edge density

ρ(ε) =
1

W(W −1)

∑
i,j

Aij (ε) (12)

measures which fraction of the maximum theoretically pos-
sible numberW(W −1)/2 of undirected edges is present in
the RN, where the number of verticesW is determined by
the chosen recurrence window size.ρ(ε) is equivalent to the
recurrence ratein traditional RQA.

geoscientifically relevant applications of data analysis, such as den-
drograms in agglomerative cluster analysis, or nonlinear decompo-
sition of multivariate data using isometric feature mapping (Gámez
et al., 2004).

The properties of the resulting RNs (parameterised by
the single parameterε) have been shown to trace structures
in phase space corresponding to dynamically invariant ob-
jects (Donner et al., 2010a, 2011b) as well as changes in the
dynamical behaviour of arbitrary time series (Marwan et al.,
2009; Donner et al., 2011a). For detecting bifurcations in
time series, global-scale network characteristics of complex
network theory are of main interest (Newman, 2003; Boc-
caletti et al., 2006; Costa et al., 2007). Here we will focus on
the following four measures:

i. TransitivityT : thetransitivity

T =

∑
i,j,kAijAjkAki∑

i,j,kAkiAkj

(13)

of an unweighted and undirected network characterises
the overall probability that two randomly chosen neigh-
bours of an also randomly chosen vertex are connected
(Newman, 2003). In case of RNs,T serves as a mea-
sure for the regularity of the dynamics as encoded in
the RN’s mesoscopic structure (Donner et al., 2010a).
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A B C

Fig. 6. Recurrence networks obtained from the dust flux record at ODP site 659, centred around (A) 1.2, (B) 2.2, and (C) 3.2 Myr BP and
corresponding to the recurrence plots of Fig. 5. Vertex color indicates the age tµi associated to single state vectors µ (from blue [=old] to red
[=young]). The two-dimensional graph visualisation has been obtained with the software package GUESS using a force-directed placement
algorithm (http://graphexploration.cond.org). It is important to note that in this visualisation, node positions are determined
by the aforementioned algorithm and do not correspond to a projection of the node coordinates in the reconstructed three-dimensional phase
space.

(Newman, 2003). In case of RNs, T serves as a mea-
sure for the regularity of the dynamics as encoded in
the RN’s mesoscopic structure (Donner et al., 2010a).
Specifically, regular dynamics (e.g., on a periodic or-
bit) is typically characterised by higher values of the
transitivity T than chaotic dynamics. T can further-
more be interpreted as a global measure of the underly-
ing attractive set’s effective dimensionality d (Donner
et al., in press), i.e., the theoretical result is T = (3/4)d

when using the supremum norm in phase space. For
continuous-time systems, this implies T = 3/4 for a
periodic orbit and T < 3/4 for chaotic dynamics. How-
ever, for small numbers of vertices (state vectors) W as
used in this work the estimated values of T will devi-
ate from these theoretical expectations (Donner et al.,
in press).

When dealing with short time series (segments) as it
is the case in this work, transitivity is a more robust
measure than the related global clustering coefficient
C (Watts and Strogatz, 1998; Newman, 2003), since
the latter gives relatively more weight to sparsely sam-
pled regions in phase space (vertices with low degree
k) (Donner et al., 2010a, 2011).

(ii) Average path length L: The average path length

L= 〈lij〉i,j (14)

is defined as the mean value of the shortest path lengths
lij between all mutually reachable pairs of vertices
(i,j) (measured in terms of geodesic graph distance,
i.e., the minimum number of edges that have to be tra-
versed on any path connecting the vertices i and j)
(Watts and Strogatz, 1998; Newman, 2003). A pair of
vertices (i,j) is called mutually reachable if there exists
at least one path connecting i and j. Since for compa-
rable values of ε, the average distances along different
types of orbits typically differ significantly, changes in
L can be used as sensitive indicators of dynamical tran-
sitions (Marwan et al., 2009; Donner et al., 2010a).

(iii) Assortativity R: A complex network is called assor-
tative if vertices tend to connect preferentially to ver-
tices of a similar number of connections (degree ki =∑
jAij). On the other hand, it is called disassortative if

vertices of high degree prefer to link to vertices of low
degree, and vice versa (Newman, 2002). This assorta-

Fig. 6. Recurrence networks obtained from the dust flux record at ODP site 659, centred around(A) 1.2, (B) 2.2, and(C) 3.2 Myr BP and
corresponding to the recurrence plots of Fig.5. Vertex color indicates the agetµ

i
associated to single state vectorsµ (from blue [= old]

to red [= young]). The two-dimensional graph visualisation has been obtained with the software packageGUESSusing a force-directed
placement algorithm (http://graphexploration.cond.org). It is important to note that in this visualisation, node positions are determined by the
aforementioned algorithm and do not correspond to a projection of the node coordinates in the reconstructed three-dimensional phase space.

Specifically, regular dynamics (e.g. on a periodic orbit)
is typically characterised by higher values of the tran-
sitivity T than chaotic dynamics.T can furthermore
be interpreted as a global measure of the underlying at-
tractive set’s effective dimensionalityd (Donner et al.,
2011b), i.e. the theoretical result isT = (3/4)d when us-
ing the supremum norm in phase space. For continuous-
time systems, this impliesT = 3/4 for a periodic orbit
andT < 3/4 for chaotic dynamics. However, for small
numbers of vertices (state vectors)W as used in this
work the estimated values ofT will deviate from these
theoretical expectations (Donner et al., 2011b).

When dealing with short time series (segments) as it
is the case in this work, transitivity is a more robust
measure than the related global clustering coefficient
C (Watts and Strogatz, 1998; Newman, 2003), since
the latter gives relatively more weight to sparsely sam-
pled regions in phase space (vertices with low degree
k) (Donner et al., 2010a, 2011a).

ii. Average path lengthL: theaverage path length

L=
〈
lij

〉
i,j

(14)

is defined as the mean value of the shortest path lengths
lij between all mutually reachable pairs of vertices(i,j)

(measured in terms of geodesic graph distance, i.e. the
minimum number of edges that have to be traversed on
any path connecting the verticesi and j ) (Watts and

Strogatz, 1998; Newman, 2003). A pair of vertices(i,j)

is calledmutually reachableif there exists at least one
path connectingi andj . Since for comparable values of
ε, the average distances along different types of orbits
typically differ significantly, changes inL can be used
as sensitive indicators of dynamical transitions (Mar-
wan et al., 2009; Donner et al., 2010a).

iii. AssortativityR: a complex network is called assortative
if vertices tend to connect preferentially to vertices with
a similar number of connections (degreeki =

∑
j Aij ).

On the other hand, it is called disassortative if vertices of
high degree prefer to link to vertices of low degree, and
vice versa (Newman, 2002). This assortativity property
can be quantified by the Pearson correlation coefficient

R=

1
L

∑
j>i kikjAij −

〈
1
2(ki +kj )

〉2
i,j

1
L

∑
j>i

1
2(k2

i +k2
j )Aij −

〈
1
2(ki +kj )

〉2
i,j

(15)

between the degreeski,kj of the vertices on both ends
of all L =

∑
j>i Aij edges(i,j), where〈

1

2
(ki +kj )

〉
i,j

=
1

L

∑
j>i

1

2
(ki +kj )Aij (16)

is the mean of the average edge end-point degree(ki +

kj )/2 (Costa et al., 2007). In the RN context,R can
be considered as a measure for the local continuity of

www.nonlin-processes-geophys.net/18/545/2011/ Nonlin. Processes Geophys., 18, 545–562, 2011

http://graphexploration.cond.org


552 J. F. Donges et al.: Identification of dynamical transitions in marine palaeoclimate records by RN analysis

the phase space density of state vectors (Donner et al.,
2010a).

iv. Network diameterD: thenetwork diameter

D= max
i,j

(
lij

)
(17)

is the maximum geodesic (shortest-path) distance be-
tween all mutually reachable pairs of vertices in the net-
work (Newman, 2003). From this definition, there are
obvious relationships with the average path lengthL,
which are expected to lead to strong correlations be-
tween both measures (Donner et al., 2010a).

In order to apply RNs in a sliding window analysis, a ref-
erence framework is necessary. Here, we consider a data-
adaptive choice ofε that guarantees for a fixed edge density
ρ of 5 %, which has been found a reasonable choice in pre-
vious studies (Donner et al., 2010b). One should note, how-
ever, that even with this choice the characteristics of RNs
can only be compared in a meaningful way if the network
sizeW is kept fixed (see Sect.2.1). Among the considered
complex network measures,T andR are mainly affected by
finite-sample problems otherwise, whereasL andD explic-
itly depend onε andW (Donner et al., 2010a).

2.6 Significance test

We perform a relatively simple statistical test of whether the
network characteristics in a certain time interval differ sig-
nificantly from the general network characteristics expected
given the phase space distribution of state vectorsyi from
the whole detrended and embedded record and a certain re-
currence window sizeW . The corresponding null hypothesis
is that the network measures observed for a certain window
are consistent with being calculated from a random draw of
W state vectors from the prescribed phase space distribution
induced by the complete detrended time series. We can justly
assume a thus randomised embedded time series without
losing essential information, because all network measures
g(·) considered here are permutation-invariant when consid-
ering a fixed subset of state vectorsy1,...,yW . More for-
mally, g(y1,...,yW ) = g(yπ(1),...,yπ(W)) for arbitrary per-
mutationsπ . A similar test for RQA measures requires a
more advanced method (Schinkel et al., 2009). In order to
create an appropriate null-model, we use the following ap-
proach: (i) draw randomlyW state vectors from the embed-
ded time series (corresponding to the window size chosen for
the original data), (ii) construct a RN from this set of state
vectors, and (iii) calculate the network measures of interest.
Repeating this procedure sufficiently many times, we obtain
a test distribution for each of the network measures and es-
timate its 0.05 and 0.95 quantiles that can be interpreted as
90 % confidence bounds. The proposed significance test can

be viewed as a test against stationarity of the higher-order ge-
ometrical properties of the time series that are quantified by
qualitatively different RN measures.

2.7 Implementation

We implemented the above described methods using the
programming languagePython (van Rossum and Drake,
2006), the packagesNumPy (Oliphant, 2006) and SciPy
(Jones et al., 2011) as well as embeddedC++ code. Com-
plex network measures have been calculated employing the
Python packageigraph (Cśardi and Nepusz, 2006).

3 Dynamical transitions in model systems

To validate the proposed methodology for detecting transi-
tions in time series based on RNs, we apply it to the logistic
map and the Lorenz system with drifting bifurcation parame-
ter as paradigmatic examples of discrete and continuous-time
dynamical systems, respectively. While step-like changes of
bifurcation parameters have already been studied for discrete
(Marwan et al., 2009) and continuous-time dynamical sys-
tems (Zou et al., 2010; Donner et al., 2011a), here we are
particularly interested in the effect of transients, which are
expected to be present in real-world systems and, hence, data
extracted from them. We will check whether the global net-
work quantifiers described above are able to detect transi-
tions in the system’s dynamics induced by bifurcations due
to a slowly changing control parameter. For this purpose
we are specifically looking for time intervals (or equivalently
values of the bifurcation parameter) where one or more of
the considered network quantifiers undergo sudden changes.
This requires taking into account the measures’ interpreta-
tion in terms of dynamical systems theory (Sect.2.5). Fur-
thermore, we will study how their performance and the level
of resolved detail depend on the window sizeW . This anal-
ysis particularly shows that the window sizesW chosen for
the RN analysis of terrigenous dust flux records (Table1) are
indeed appropriate for detecting bifurcations.

3.1 Logistic map

We iterate the logistic map

xi+1 = rixi(1−xi)

ri+1 = ri +1r (18)

while varying the bifurcation parameter linearly fromr1 =

3.8 to rM = 3.9 in M = 10 000 equidistant steps setting
1r = 1×10−5 (Fig. 7), similar to Trulla et al.(1996). We
analyse the resulting time series{xi} without embedding or
detrending. The transition from chaotic to 3-periodic dynam-
ics after an interior crisis atr = 1+

√
8≈ 3.8284 (Wacker-

bauer et al., 1994) is clearly displayed by all four measures.
As expected from theoretical considerations for discrete-time
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Transitivity Average path length

Assortativity Diameter

Fig. 7. (A) Transitivity T , (B) average path length L, (C) assortativityR, and (D) diameterD for varying recurrence window size W for the
logistic map (Eq. (18)) with drifting bifurcation parameter r (see text) and initial condition x1 = 0.7. W was varied linearly in the interval
[100,600], the recurrence window step size was fixed to ∆W = 10 time steps. No embedding was used and the threshold set to ε= 0.05σ
(Marwan et al., 2009), where σ denotes the standard deviation of the time series segment within the recurrence window. Vertical dashed lines
indicate the critial values of r discussed in the main text.

danger of confusing statistical fluctuations with proper dy-
namical changes substantially. Time series from geological
archives are typically characterised by a variety of different
types of nonstationarities, including (i) changes in the long-
term mean or variance of the recorded proxies, (ii) variations
in the amplitudes of almost periodic variability components
(e.g., such attributed to Milankovich-type variations caused
by periodic changes in the Earth’s orbit), or (iii) even mul-
timodal behaviour (e.g., transitions between glacial and in-
terglacial periods). All these three types of nonstationarities
are contained in our data (Fig. 2 and Trauth et al. (2009)).
While these different phenomena can be analysed using more
specific methodological approaches, we propose RN analy-
sis as a general exploratory tool for detecting time intervals
containing changes in the dominating type of dynamical be-
haviour. In the following, we will illustrate the robustness

of this approach for the four marine records introduced in
Sec. 2.1 and briefly discuss the possible climatological back-
ground of the observed dynamical changes.

4.1 Time-dependence of network properties

We consider the four marine palaeoclimate records embed-
ded in a three-dimensional reconstructed phase space with a
time delay of approximately τ∗= 10 kyr, resulting in the em-
bedding parameters described in Sec. 2.3. For an initial in-
spection, we use recurrence windows of size W ∗ = 410 kyr
with a mutual offset of subsequent windows ∆W ∗= 41 kyr.
Note that the latter two parameter choices correspond to
those used in previous work on the ODP site 659 dust flux
record (Marwan et al., 2009; Donner et al., 2011). The selec-
tion of both parameters results from a compromise between

Fig. 7. (A) Transitivity T , (B) average path lengthL, (C) assortativityR, and(D) diameterD for varying recurrence window sizeW for
the logistic map (Eq.18) with drifting bifurcation parameterr (see text) and initial conditionx1 = 0.7. W was varied linearly in the interval
[100,600], the recurrence window step size was fixed to1W = 10 time steps. No embedding was used and the threshold set toε = 0.05σ
(Marwan et al., 2009), whereσ denotes the standard deviation of the time series segment within the recurrence window. Vertical dashed
lines indicate the critial values ofr discussed in the main text.

systems (Marwan et al., 2009; Donner et al., 2010a, 2011b),
T andR abruptly increase to their maximum value of 1 fol-
lowing this transition, whereas at the same timeL andD
sharply decrease to their minimum value of 1. Among all
the four measures,T andR most clearly detect the termi-
nation of the period-doubling cascade following the period-3
behaviour at the accumulation pointr ≈ 3.849, whileT , L
andD highlight the merger of the subsequently formed three
chaotic bands at the interior crisis atr ≈ 3.857 (Wackerbauer
et al., 1994). The latter transition is only weakly visible in
R. Additionally, much fine-structure is resolved by the net-
work measures, e.g. a narrow period-4 window atr . 3.89
that is most clearly indicated by an increased transitivityT
across allW . Generally, the transitions appear more and
more blurred asW increases, which is due to the growing
number of samples from both periodic and chaotic dynamical
regimes contained in the recurrence windows when sliding
over the bifurcation point. In consequence, some of the nar-
row periodic windows appearing forr < 3.83 andr > 3.86
are only visible for small recurrence window sizesW . As a
rule of thumb, we can expect a periodic/chaotic window of
width wr embedded within a chaotic/periodic background to
be detectable ifwr &W1r.

Another notable feature is that bothL andD show a clear
tendency to increase with growingW in the chaotic param-
eter ranges (Fig.7b and d). This is theoretically expected,
since both measures are extensive, i.e. they depend explic-
itly and nonlinearly on the number of verticesW in the RN
for a general phase space distribution of state vectors as in-
duced by chaotic dynamics (Donner et al., 2010a). In con-
trast,L andD do not change withW in the periodic windows,
most notably in the large period-3 window of the logistic map
(Fig. 7b and d). We can explain this behaviour by recalling
that for discrete-time systems in ap-periodic regime, the RN
reduces to a set ofp fully connected components (Donner
et al., 2010a). Following the definitions in Sect.2.5, this in
turn leads toL=D= 1 in any periodic regime and indepen-
dent ofW .

3.2 Lorenz system

To illustrate the performance of windowed RN analysis for
detecting transitions in continuous-time dynamical systems,
we consider the Lorenz system with a time-dependent bifur-
cation parameterr = r(t),
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Transitivity Average path length

Assortativity Diameter

Fig. 8. (A) Transitivity T , (B) average path length L, (C) assortativity R, and (D) diameter D for varying recurrence window size W for
the Lorenz system (Eq. (19)) with drifting bifurcation parameter r (see text) and initial condition (x0,y0,z0) = (10,10,10). Because we are
interested in the performance of our method for scalar time series, we chose the x-component of the trajectory sampled with sampling time
∆t= 0.05 and embed it with embedding dimensionm= 3 and delay τ = 15. W was varied linearly in the interval [100,600], the recurrence
window step size was fixed to ∆W = 10 samples. We varied the recurrence threshold ε to yield a fixed edge density ρ= 0.05 (Donner et al.,
2010b). Vertical dashed lines indicate the critial values of r discussed in the main text.

high temporal resolution of the finally produced RN mea-
sures (small W ∗, ∆W ∗) and larger statistical confidence in
the results (large W ∗). The choice of W ∗ is more critical
than that of ∆W ∗, because the former directly influences the
number of vertices W in the RNs via Eq. (6). Since a formal
criterion for determining an optimal choice ofW ∗ and ∆W ∗

is not available so far, we study the robustness of our results
with respect to variations in the more critical parameter W ∗

in Sec. 4.2.

We additionally apply local detrending by removing the
long-term average taken over windows of W ∗D = 500 kyr,
where

WD = bW ∗D/〈∆T 〉c, (21)

which has not been considered in the aforementioned stud-
ies. As we will show in the following, the main features re-
covered by our analysis are not qualitatively changed when
applying detrending. However, this step appears relevant
in other kinds of statistical analyses, e.g., for estimating
spectrograms or time-dependent coefficients of autoregres-
sive processes, since the data show considerable long-term
trends in both mean and variance (Fig. 2).

Regarding the transitivity (Fig. 9), we find a synchronous
behaviour of the two geographically distinct records at ODP
sites 659 and 721/722 during the Pliocene (∼5.3-2.6 Myr BP
(before present)) and Early Pleistocene (2.6-1.0 Myr BP)2,

2Here “Early Pleistocene” does not refer to any of the archetyp-
ical stages (Upper, Middle and Lower Pleistocene). Its timing 2.6-

Fig. 8. (A) Transitivity T , (B) average path lengthL, (C) assortativityR, and(D) diameterD for varying recurrence window sizeW for
the Lorenz system (Eq.19) with drifting bifurcation parameterr (see text) and initial condition(x0,y0,z0) = (10,10,10). Because we are
interested in the performance of our method for scalar time series, we chose thex-component of the trajectory sampled with sampling time
1t = 0.05 and embed it with embedding dimensionm = 3 and delayτ = 15. W was varied linearly in the interval[100,600], the recurrence
window step size was fixed to1W = 10 samples. We varied the recurrence thresholdε to yield a fixed edge densityρ = 0.05 (Donner et al.,
2010b). Vertical dashed lines indicate the critial values ofr discussed in the main text.

d

dt
(x,y,z) =

(
10(y −x),x(r −z)−y,xy −

8

3
z

)
. (19)

While the system is evolving,r increases linearly fromr0 =

160 at timet0 = 0 to rf = 170 at timetf = 500, i.e.

r(t) = r0+
rf −r0

tf − t0
(t − t0). (20)

For consistency with the analysis of scalar palaeoclimate
time series to be performed below, we use an embedding of
the x-component time series for RN analysis without prior
detrending (see caption of Fig.8 for details). The RN mea-
sures indicate two major transitions towards increasingly ir-
regular dynamics atr ≈ 161 andr ≈ 166.5 (Fig.8). The for-
mer possibly reflects an initial transient due to the chosen
initial condition. The latter agrees well with the major shift
from periodic (largeT , largeL andD for continuous-time
systems;Donner et al., 2010a, 2011b; Zou et al., 2010) to
chaotic (smallT , smallL andD) behaviour which is present
in the Lorenz system’s non-transient bifurcation scenario at
r ≈ 166 (Barrio and Serrano, 2007; Donner et al., 2011a). On
a shorter time scale, the path-based measuresL andD among

others detect weaker transitions atr ≈ 163.5, r ≈ 164.5 and
r ≈ 166. Note that one has to be careful when comparing
these results to bifurcation studies where distinct realisations
of the Lorenz system with fixed parameterr (not varying in
time) are studied (e.g.Donner et al., 2011a), since transients
influence the results and cannot be excluded by construc-
tion whenr is continuously varied in time. However, our
results are consistent with the work ofTrulla et al. (1996)
who observed that in transient scenarios bifurcations may
appear for larger bifurcation parameters than in their non-
transient equivalents. The dependence of the results on the
recurrence window sizeW is more pronounced than that de-
scribed above for the logistic map. This is likely due to the
fact that transients play a larger role in continuous-time sys-
tems like the Lorenz model than in discrete-time systems.

4 Dynamical transitions in palaeoclimate records

Our studies in the previous section demonstrated that RN
analysis can be meaningfully applied for detecting dynam-
ical transitions in non-stationary time series from different
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model systems by applying this kind of analysis to running
windows. This is a necessary, but not sufficient condition for
ensuring the feasibility of RN analysis for detecting regime
shifts in palaeoclimate records as well. However, the appli-
cation of our simple significance test (Sect.2.6) diminishes
the danger of confusing statistical fluctuations with proper
dynamical changes substantially. Time series from geolog-
ical archives are typically characterised by a variety of dif-
ferent types of nonstationarities, including (i) changes in the
long-term mean or variance of the recorded proxies, (ii) vari-
ations in the amplitudes of almost periodic variability com-
ponents (e.g. such attributed to Milankovich-type variations
caused by periodic changes in the Earth’s orbit), or (iii) even
multimodal behaviour (e.g. transitions between glacial and
interglacial periods). All these three types of nonstationari-
ties are contained in our data (Fig.2 andTrauth et al., 2009).
While these different phenomena can be analysed using more
specific methodological approaches, we propose RN analy-
sis as a general exploratory tool for detecting time intervals
containing changes in the dominating type of dynamical be-
haviour. In the following, we will illustrate the robustness
of this approach for the four marine records introduced in
Sect.2.1and briefly discuss the possible climatological back-
ground of the observed dynamical changes.

4.1 Time-dependence of network properties

We consider the four marine palaeoclimate records embed-
ded in a three-dimensional reconstructed phase space with
a time delay of approximatelyτ ∗

= 10 kyr, resulting in the
embedding parameters described in Sect.2.3. For an initial
inspection, we use recurrence windows of sizeW ∗

= 410 kyr
with a mutual offset of subsequent windows of1W ∗

=

41 kyr. Note that the latter two parameter choices corre-
spond to those used in previous work on the ODP site 659
dust flux record (Marwan et al., 2009; Donner et al., 2011a).
The selection of both parameters results from a compromise
between high temporal resolution of the finally produced RN
measures (smallW ∗, 1W ∗) and larger statistical confidence
in the results (largeW ∗). The choice ofW ∗ is more critical
than that of1W ∗, because the former directly influences the
number of verticesW in the RNs via Eq. (6). Since a formal
criterion for determining an optimal choice ofW ∗ and1W ∗

is not available so far, we study the robustness of our results
with respect to variations in the more critical parameterW ∗

in Sect.4.2.
We additionally apply local detrending by removing the

long-term average taken over windows ofW ∗

D = 500 kyr,
where

WD = bW ∗

D/〈1T 〉c, (21)

which has not been considered in the aforementioned stud-
ies. As we will show in the following, the main features re-
covered by our analysis are not qualitatively changed when
applying detrending. However, this step appears relevant in
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Fig. 9. Evolution of RN transitivity T for (A) the δ18O record from
ODP site 659, and the dust flux records from ODP sites (B) 659, (C)
721, and (D) 967. T reveals changes in the regularity of African cli-
mate during the Plio-Pleistocene. Here we used a detrending win-
dow size W ∗

D = 500 kyr, recurrence window size W ∗ = 410 kyr
and step size ∆W ∗ = 41 kyr, embedding dimension m= 3 and de-
lay τ∗ = 10 kyr. The recurrence threshold ε was chosen adaptively
to yield a fixed edge density ρ= 0.05. The grey bars represent the
5% and 95% quantiles with respect to the test distribution obtained
from 10,000 realisations of our null-model for each record sepa-
rately. Vertical dashed lines indicate the detected epochs of transi-
tions discussed in the main text.

including two periods of extraordinarily large values of T at
about 3.45-3.05 and 2.2-2.1 Myr BP, related to pronounced
clusters of vertices shown in Figs. 6B,C. The first of these pe-
riods results from a time interval of strongly suppressed and
almost constant dust flux in the Mid Pliocene (see Fig. 2),
while the latter one coincides with a period of almost peri-
odic Milankovich-type variations (Trauth et al., 2009). We
note that it is known (and empirically understood) that both
types of dynamics typically lead to large values of T (Mar-
wan et al., 2009; Donner et al., 2010a, in press; Zou et al.,
2010), so that this result is consistent with theoretical expec-
tations. During the Early Pleistocene, the signatures at both
sites decouple from each other, which could be the result of
an enhancement of the atmospheric Walker circulation (Rav-
elo et al., 2004). For the last about 1.5 Myr, the variations of
transitivity become more similar between ODP sites 721/722
and 967, particularly highlighting the Mid Pleistocene tran-
sition between 1.2 and 0.7 Myr BP (Fig. 6A), which corre-

1.0 Myr BP is not motivated stratigraphically, but climatologically,
i.e., by the onset of the Mid-Pleistocene transition around 1.0 Myr
BP.

Fig. 10. Evolution of RN average path length L for (A) the δ18O
record from ODP site 659, and the dust flux records from ODP sites
(B) 659, (C) 721, and (D) 967, indicating transitions in African
climate dynamics during the Plio-Pleistocene. Parameters, signif-
icance test, and vertical lines are the same as in Fig. 9.

sponds to a change in the dominating Milankovich-type pe-
riodicity. The results obtained for the average path length L
(Fig. 10) are mostly consistent with these findings, also high-
lighting the Mid Pliocene, Early Pleistocene, and Mid Pleis-
tocene as periods with changes in the long-term dust flux
variability. Specifically, L tends to show significant peaks
at abrupt change points between regular and more erratic cli-
mate variability, as indicated by T (see Marwan et al. (2009)
for a theoretical explanation of this behaviour).

The oxygen isotope anomaly obtained from the analysis
of benthic foraminifera characterises a distinctively differ-
ent climatic parameter (i.e., global ice volume) than terrige-
nous dust flux, so that it can be expected that the variabil-
ity recorded by this proxy differs from that of the dust flux.
An inspection of the RN properties indeed confirms this ex-
pectation. Specifically, the transitivity T does not show any
systematic maxima at all (indicating time intervals with regu-
lar long-term dynamics) (Fig. 9A), which is in clear contrast
to the aeolian dust flux. The average path length L shows
significant maxima around 2.9 Myr BP (possibly being re-
lated to the intensification of Northern hemisphere glaciation
at around this time), between 1.8 and 1.3 Myr BP (consis-
tent with the corresponding results for the dust flux records,
suggesting a high-latitude mechanism behind the large-scale
climatic changes during this time period), and after about
900 kyr BP (possibly resulting from the glacial terminations
and inceptions with a rather long – roughly 100 kyr – period-

Fig. 9. Evolution of RN transitivityT for (A) theδ18O record from
ODP site 659, and the dust flux records from ODP sites(B) 659,
(C) 721, and(D) 967.T reveals changes in the regularity of African
climate during the Plio-Pleistocene for the latter three records. Here
we used a detrending window sizeW∗

D = 500 kyr, recurrence win-
dow sizeW∗

= 410 kyr and step size1W∗
= 41 kyr, embedding

dimensionm = 3 and delayτ∗
= 10 kyr. The recurrence thresh-

old ε was chosen adaptively to yield a fixed edge densityρ = 0.05.
The grey bars represent the 5 % and 95 % quantiles with respect to
the test distribution obtained from 10 000 realisations of our null-
model for each record separately. Vertical dashed lines indicate the
detected epochs of transitions discussed in the main text.

other kinds of statistical analyses, e.g. for estimating spectro-
grams or time-dependent coefficients of autoregressive pro-
cesses, since the data show considerable long-term trends in
both mean and variance (Fig.2).

Regarding the transitivity (Fig.9), we find a synchronous
behaviour of the two geographically distinct records at ODP
sites 659 and 721/722 during the Pliocene (∼5.3–2.6 Myr
BP; before present) and Early Pleistocene (2.6–1.0 Myr
BP)2, including two periods of extraordinarily large values
of T at about 3.45–3.05 and 2.2–2.1 Myr BP, related to pro-
nounced clusters of vertices shown in Figs.6b and c. The
first of these periods results from a time interval of strongly
suppressed and almost constant dust flux in the Mid Pliocene
(see Fig.2), while the latter one coincides with a period of
almost periodic Milankovich-type variations (Trauth et al.,
2009). We note that it is known (and empirically under-

2Here “Early Pleistocene” does not refer to any of the archetyp-
ical stages (Upper, Middle and Lower Pleistocene). Its timing 2.6–
1.0 Myr BP is not motivated stratigraphically, but climatologically,
i.e. by the onset of the Mid-Pleistocene transition around 1.0 Myr
BP.
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Fig. 9. Evolution of RN transitivity T for (A) the δ18O record from
ODP site 659, and the dust flux records from ODP sites (B) 659, (C)
721, and (D) 967. T reveals changes in the regularity of African cli-
mate during the Plio-Pleistocene. Here we used a detrending win-
dow size W ∗

D = 500 kyr, recurrence window size W ∗ = 410 kyr
and step size ∆W ∗ = 41 kyr, embedding dimension m= 3 and de-
lay τ∗ = 10 kyr. The recurrence threshold ε was chosen adaptively
to yield a fixed edge density ρ= 0.05. The grey bars represent the
5% and 95% quantiles with respect to the test distribution obtained
from 10,000 realisations of our null-model for each record sepa-
rately. Vertical dashed lines indicate the detected epochs of transi-
tions discussed in the main text.

including two periods of extraordinarily large values of T at
about 3.45-3.05 and 2.2-2.1 Myr BP, related to pronounced
clusters of vertices shown in Figs. 6B,C. The first of these pe-
riods results from a time interval of strongly suppressed and
almost constant dust flux in the Mid Pliocene (see Fig. 2),
while the latter one coincides with a period of almost peri-
odic Milankovich-type variations (Trauth et al., 2009). We
note that it is known (and empirically understood) that both
types of dynamics typically lead to large values of T (Mar-
wan et al., 2009; Donner et al., 2010a, in press; Zou et al.,
2010), so that this result is consistent with theoretical expec-
tations. During the Early Pleistocene, the signatures at both
sites decouple from each other, which could be the result of
an enhancement of the atmospheric Walker circulation (Rav-
elo et al., 2004). For the last about 1.5 Myr, the variations of
transitivity become more similar between ODP sites 721/722
and 967, particularly highlighting the Mid Pleistocene tran-
sition between 1.2 and 0.7 Myr BP (Fig. 6A), which corre-

1.0 Myr BP is not motivated stratigraphically, but climatologically,
i.e., by the onset of the Mid-Pleistocene transition around 1.0 Myr
BP.

Fig. 10. Evolution of RN average path length L for (A) the δ18O
record from ODP site 659, and the dust flux records from ODP sites
(B) 659, (C) 721, and (D) 967, indicating transitions in African
climate dynamics during the Plio-Pleistocene. Parameters, signif-
icance test, and vertical lines are the same as in Fig. 9.

sponds to a change in the dominating Milankovich-type pe-
riodicity. The results obtained for the average path length L
(Fig. 10) are mostly consistent with these findings, also high-
lighting the Mid Pliocene, Early Pleistocene, and Mid Pleis-
tocene as periods with changes in the long-term dust flux
variability. Specifically, L tends to show significant peaks
at abrupt change points between regular and more erratic cli-
mate variability, as indicated by T (see Marwan et al. (2009)
for a theoretical explanation of this behaviour).

The oxygen isotope anomaly obtained from the analysis
of benthic foraminifera characterises a distinctively differ-
ent climatic parameter (i.e., global ice volume) than terrige-
nous dust flux, so that it can be expected that the variabil-
ity recorded by this proxy differs from that of the dust flux.
An inspection of the RN properties indeed confirms this ex-
pectation. Specifically, the transitivity T does not show any
systematic maxima at all (indicating time intervals with regu-
lar long-term dynamics) (Fig. 9A), which is in clear contrast
to the aeolian dust flux. The average path length L shows
significant maxima around 2.9 Myr BP (possibly being re-
lated to the intensification of Northern hemisphere glaciation
at around this time), between 1.8 and 1.3 Myr BP (consis-
tent with the corresponding results for the dust flux records,
suggesting a high-latitude mechanism behind the large-scale
climatic changes during this time period), and after about
900 kyr BP (possibly resulting from the glacial terminations
and inceptions with a rather long – roughly 100 kyr – period-

Fig. 10. Evolution of RN average path lengthL for (A) the δ18O
record from ODP site 659, and the dust flux records from ODP sites
(B) 659, (C) 721, and(D) 967, indicating transitions in African
climate dynamics during the Plio-Pleistocene. Parameters, signifi-
cance test, and vertical lines are the same as in Fig.9.

stood) that both types of dynamics typically lead to large
values ofT (Marwan et al., 2009; Donner et al., 2010a,
2011b; Zou et al., 2010), so that this result is consistent
with theoretical expectations. During the Early Pleistocene,
the signatures at both sites decouple from each other, which
could be the result of an enhancement of the atmospheric
Walker circulation (Ravelo et al., 2004). For the last about
1.5 Myr, the variations of transitivity become more similar
between ODP sites 721/722 and 967, particularly highlight-
ing the Mid Pleistocene transition between 1.2 and 0.7 Myr
BP (Fig. 6a), which corresponds to a change in the dom-
inating Milankovich-type periodicity. The results obtained
for the average path lengthL (Fig. 10) are mostly consistent
with these findings, also highlighting the Mid Pliocene, Early
Pleistocene, and Mid Pleistocene as periods with changes in
the long-term dust flux variability. Specifically,L tends to
show significant peaks at abrupt change points between reg-
ular and more erratic climate variability, as indicated byT
(seeMarwan et al.(2009) for a theoretical explanation of
this behaviour).

The oxygen isotope anomaly obtained from the analysis
of benthic foraminifera characterises a distinctively differ-
ent climatic parameter (i.e. global ice volume) than terrige-
nous dust flux, so that it can be expected that the variabil-
ity recorded by this proxy differs from that of the dust flux.
An inspection of the RN properties indeed confirms this ex-
pectation. Specifically, the transitivityT does not show any
systematic maxima at all (Fig.9a), which is in clear contrast
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Fig. 11. Evolution of RN assortativity R for (A) the δ18O record
from ODP site 659, and the dust flux records from ODP sites (B)
659, (C) 721, and (D) 967 during the Plio-Pleistocene. Parameters,
significance test, and vertical lines are the same as in Fig. 9.

Fig. 12. Evolution of RN diameter D for (A) the δ18O record from
ODP site 659, and the dust flux records from ODP sites (B) 659,
(C) 721, and (D) 967 during the Plio-Pleistocene. Parameters, sig-
nificance test, and vertical lines are the same as in Fig. 9.

icity) (Fig. 10A).
Figures 11 and 12 additionally show the time variability

Table 2. Spearman’s ρ measuring linear correlations in the time
evolution of RN measures for (A) the ODP site 659 δ18O record,
and the dust flux records from ODP sites (B) 659, (C) 721/722, and
(D) 967. Significant correlations having a p-value smaller than 0.05
under the assumption of uncorrelated data of the same length are
marked in bold.

(A)

T L R D
T 1.00 -0.08 0.38 0.00
L -0.08 1.00 -0.06 0.92
R 0.38 -0.06 1.00 0.03
D 0.00 0.92 0.03 1.00

(B)

T L R D
T 1.00 -0.05 0.12 0.03
L -0.05 1.00 -0.08 0.77
R 0.12 -0.08 1.00 0.23
D 0.03 0.77 0.23 1.00

(C)

T L R D
T 1.00 0.50 0.40 0.37
L 0.50 1.00 0.37 0.74
R 0.40 0.37 1.00 0.35
D 0.37 0.74 0.35 1.00

(D)

T L R D
T 1.00 0.65 0.61 0.23
L 0.65 1.00 0.54 0.78
R 0.61 0.54 1.00 0.16
D 0.23 0.78 0.16 1.00

of the two other RN properties assortativity R and diam-
eter D. Since the latter one is closely related to the av-
erage path length L (Donner et al., 2010a), the variability
of both measures is very similar. Moreover, we also find
some much weaker similarities between the temporal vari-
ability patterns of transitivity T and assortativity R, which
are less pronounced, since both properties characterise not so
obviously related aspects of the network geometry in phase
space. Specifically, the time interval of suppressed dust flux
in ODP 659 and 721/722 during the Mid Pliocene results not
only in an increased transitivity, but also a high assortativity.
The latter feature can be explained by the fact that a relatively
large cluster of state vectors representing this laminar regime
emerges in the network, which is rather densely connected
(Fig. 6C).

We conclude that the RN measures are not statistically
independent in their time evolution (Tab. 2). For the ODP
site 659 δ18O and dust flux records, the correlations between
transitivity T and assortativity R as well as between aver-
age path length L and diameter D as measured by Spear-
man’s ρ are most pronounced, which is consistent with theo-
retical expectations (Donner et al., 2010a). Correlations are
more clearly developed between all four measures in case of
the more highly sampled dust flux records from ODP sites
721/722 and 967 (Tab. 1). However, for all records the four

Fig. 11. Evolution of RN assortativityR for (A) the δ18O record
from ODP site 659, and the dust flux records from ODP sites
(B) 659,(C) 721, and(D) 967 during the Plio-Pleistocene. Param-
eters, significance test, and vertical lines are the same as in Fig.9.

to the aeolian dust flux. The average path lengthL shows
significant maxima around 2.9 Myr BP (possibly being re-
lated to the intensification of Northern hemisphere glaciation
at around this time), between 1.8 and 1.3 Myr BP (consis-
tent with the corresponding results for the dust flux records,
suggesting a high-latitude mechanism behind the large-scale
climatic changes during this time period), and after about
900 kyr BP (possibly resulting from the glacial terminations
and inceptions with a rather long – roughly 100 kyr – period-
icity) (Fig. 10a).

Figures11 and12 additionally show the time variability
of the two other RN properties assortativityR and diam-
eterD. Since the latter one is closely related to the av-
erage path lengthL (Donner et al., 2010a), the variability
of both measures is very similar. Moreover, we also find
some much weaker similarities between the temporal vari-
ability patterns of transitivityT and assortativityR, which
are less pronounced, since both properties characterise less
obviously related aspects of the network geometry in phase
space. Specifically, the time interval of suppressed dust flux
in ODP 659 and 721/722 during the Mid Pliocene results not
only in an increased transitivity, but also a high assortativity.
The latter feature can be explained by the fact that a relatively
large cluster of state vectors representing this laminar regime
emerges in the network, which is rather densely connected
(Fig. 6c).

We conclude that the RN measures are not statistically in-
dependent in their time evolution (Table2). For the ODP
site 659δ18O and dust flux records, the correlations between
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Fig. 11. Evolution of RN assortativity R for (A) the δ18O record
from ODP site 659, and the dust flux records from ODP sites (B)
659, (C) 721, and (D) 967 during the Plio-Pleistocene. Parameters,
significance test, and vertical lines are the same as in Fig. 9.

Fig. 12. Evolution of RN diameter D for (A) the δ18O record from
ODP site 659, and the dust flux records from ODP sites (B) 659,
(C) 721, and (D) 967 during the Plio-Pleistocene. Parameters, sig-
nificance test, and vertical lines are the same as in Fig. 9.

icity) (Fig. 10A).
Figures 11 and 12 additionally show the time variability

Table 2. Spearman’s ρ measuring linear correlations in the time
evolution of RN measures for (A) the ODP site 659 δ18O record,
and the dust flux records from ODP sites (B) 659, (C) 721/722, and
(D) 967. Significant correlations having a p-value smaller than 0.05
under the assumption of uncorrelated data of the same length are
marked in bold.

(A)

T L R D
T 1.00 -0.08 0.38 0.00
L -0.08 1.00 -0.06 0.92
R 0.38 -0.06 1.00 0.03
D 0.00 0.92 0.03 1.00

(B)

T L R D
T 1.00 -0.05 0.12 0.03
L -0.05 1.00 -0.08 0.77
R 0.12 -0.08 1.00 0.23
D 0.03 0.77 0.23 1.00

(C)

T L R D
T 1.00 0.50 0.40 0.37
L 0.50 1.00 0.37 0.74
R 0.40 0.37 1.00 0.35
D 0.37 0.74 0.35 1.00

(D)

T L R D
T 1.00 0.65 0.61 0.23
L 0.65 1.00 0.54 0.78
R 0.61 0.54 1.00 0.16
D 0.23 0.78 0.16 1.00

of the two other RN properties assortativity R and diam-
eter D. Since the latter one is closely related to the av-
erage path length L (Donner et al., 2010a), the variability
of both measures is very similar. Moreover, we also find
some much weaker similarities between the temporal vari-
ability patterns of transitivity T and assortativity R, which
are less pronounced, since both properties characterise not so
obviously related aspects of the network geometry in phase
space. Specifically, the time interval of suppressed dust flux
in ODP 659 and 721/722 during the Mid Pliocene results not
only in an increased transitivity, but also a high assortativity.
The latter feature can be explained by the fact that a relatively
large cluster of state vectors representing this laminar regime
emerges in the network, which is rather densely connected
(Fig. 6C).

We conclude that the RN measures are not statistically
independent in their time evolution (Tab. 2). For the ODP
site 659 δ18O and dust flux records, the correlations between
transitivity T and assortativity R as well as between aver-
age path length L and diameter D as measured by Spear-
man’s ρ are most pronounced, which is consistent with theo-
retical expectations (Donner et al., 2010a). Correlations are
more clearly developed between all four measures in case of
the more highly sampled dust flux records from ODP sites
721/722 and 967 (Tab. 1). However, for all records the four

Fig. 12. Evolution of RN diameterD for (A) theδ18O record from
ODP site 659, and the dust flux records from ODP sites(B) 659,
(C) 721, and(D) 967 during the Plio-Pleistocene. Parameters, sig-
nificance test, and vertical lines are the same as in Fig.9.

transitivity T and assortativityR as well as between aver-
age path lengthL and diameterD as measured by Spear-
man’sρ are most pronounced, which is consistent with the-
oretical expectations (Donner et al., 2010a). Correlations are
more clearly developed between all four measures in case of
the more highly sampled dust flux records from ODP sites
721/722 and 967 (Table1). However, for all records the four
measures can be considered sufficiently independent to jus-
tify including all of them for a broad and thorough nonlinear
time series analysis of oxygen isotope and terrigenous dust
flux variability.

4.2 Robustness of the results

To assure the reliability and robustness of our results, we
systematically study their dependence on the relevant algo-
rithmic parameters of our method, in particular, the widths
of the recurrence window (W ∗) and the detrending window
(W ∗

D) as well as the embedding delay (τ ∗). In Figs.13–15,
the results of the significance test are presented as contours
at two prescribed significance levels obtained from the ob-
served measure’s quantiles with respect to the correspond-
ing test distribution. Green contours represent the lower
prescribed quantile (5 %), while black contours indicate the
upper one (95 %). This implies that values of the measure
under study enclosed by green contours can be considered
as exceptionally low, while those lying within black con-
tours are exceptionally large, recalling the interpretation of
the applied null-model given in Sect.2.6. It is, however,

Table 2. Spearman’sρ measuring rank-order correlations in the
time evolution of RN measures for (A) the ODP site 659δ18O
record, and the dust flux records from ODP sites (B) 659, (C)
721/722, and (D) 967. Significant correlations having a p-value
smaller than 0.05 under the assumption of uncorrelated data of the
same length are marked in bold.

T L R D

T 1.00 −0.08 0.38 0.00
(A) L −0.08 1.00 −0.06 0.92

R 0.38 −0.06 1.00 0.03
D 0.00 0.92 0.03 1.00

T L R D

T 1.00 −0.05 0.12 0.03
(B) L −0.05 1.00 −0.08 0.77

R 0.12 −0.08 1.00 0.23
D 0.03 0.77 0.23 1.00

T L R D

T 1.00 0.50 0.40 0.37
(C) L 0.50 1.00 0.37 0.74

R 0.40 0.37 1.00 0.35
D 0.37 0.74 0.35 1.00

T L R D

T 1.00 0.65 0.61 0.23
(D) L 0.65 1.00 0.54 0.78

R 0.61 0.54 1.00 0.16
D 0.23 0.78 0.16 1.00

important to recognise that the null-hypothesis of station-
arity has been tested pointwise, while physical significance
requires the null-hypothesis to be rejected over a certain pe-
riod of time, i.e. for several subsequent time points (Maraun
et al., 2007). Therefore, certain line-like structures, particu-
larly those seen in Fig.15, are likely to reflect statistical fluc-
tuations rather than physically significant dynamical transi-
tions. In the following, we will only present the results for
the ODP site 659 dust flux record.

i. Recurrence window sizeW ∗: as for the model systems
in Sect.3, we first discuss the sensitivity of our results to
the changing width of the recurrence windowW ∗. The
corresponding results for the four chosen RN measures
are shown in Fig.13. We recognise that the most sig-
nificant features persist under varyingW ∗, although the
relevant structures become broader and less significant
for larger windows. This is to be expected since more
and more data from time intervals not directly affected
by the origin of specific network properties (e.g. a lami-
nar phase in the dynamics) contribute to the longer win-
dows. As the window width is increased linearly, cone-
like structures emerge (which is especially well visible
for the Mid Pliocene transitivity maximum as the most
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Transitivity Average path length
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Fig. 13. Dependence of (A) transitivity T , (B) average path length L, (C) assortativity R, and (D) diameter D on the recurrence window
size W ∗ for the dust flux record from ODP site 659. The recurrence window step size is fixed to ∆W ∗ = 41 kyr, the detrending window
size to W ∗

D = 500 kyr. Green and black contours correspond to the 5% and 95% quantiles with respect to the test distribution obtained from
10,000 realisations of our null-model. Other parameters were: embedding dimensionm= 3 and delay τ∗ = 10 kyr, the threshold was chosen
to yield a fixed edge density ρ= 0.05. The white bands indicating “no value” at the left and right margins of each panel appear because we
plot the network measures gµ,W

∗
at the mid-points tµ of the windows µ used for RN analysis (Sec. 2.4). As the mid-points of the first (last)

window move further into the past (present) for increasing W ∗, the white bands grow linearly for linearly increasing W ∗.

of time series analysis, the consideration of embedding with
properly chosen parameters is necessary in order to obtain
feasible results.

In contrast to other techniques, RN analysis does not
characterise temporal interrelationships within the analysed
records (although time information enters indirectly through
embedding parameters, however, mostly on short time scales
as typically mτ∗�N 〈∆T 〉), but quantifies geometric prop-
erties of the sampled dynamical system in its (reconstructed)
phase space. The only implicit assumption is that the avail-
able sample of observed state vectors {yµi } represents the
spatial distribution of the true state vectors in the (properly
reconstructed) phase space of the underlying dynamical sys-
tem sufficiently well.

In this respect, our approach is very generally applica-
ble and has comparably moderate requirements in terms of
the requested number of data (i.e., windows with O(100)
data points are sufficient for a reasonable analysis of non-
stationary systems). In case of palaeoclimate records, this
complementary way for characterising time series avoids
conceptual problems of other approaches due to uncertain
age models and non-uniform sampling. E.g., the results of
RN analysis {gµ} are invariant to changes in the age model
{ti}, only the associated windows’ mid-points {tµ} change
with variations in {ti} (Eq. (9)). However, the aforemen-
tioned problems indirectly persist in terms of the necessary
embedding of the data and have to be finally resolved in cor-
responding future work. While the present work focussed on

Fig. 13. Dependence of(A) transitivity T , (B) average path lengthL, (C) assortativityR, and(D) diameterD on the recurrence window
sizeW∗ for the dust flux record from ODP site 659. The recurrence window step size is fixed to1W∗

= 41 kyr, the detrending window
size toW∗

D = 500 kyr. Green and black contours correspond to the 5 % and 95 % quantiles with respect to the test distribution obtained from
10 000 realisations of our null-model. Other parameters were: embedding dimensionm = 3 and delayτ∗

= 10 kyr, the threshold was chosen
to yield a fixed edge densityρ = 0.05. The white bands indicating “no value” at the left and right margins of each panel appear because we
plot the network measuresgµ,W ∗

at the mid-pointstµ of the windowsµ used for RN analysis (Sect.2.4). As the mid-points of the first (last)
window move further into the past (present) for increasingW∗, the white bands grow linearly for linearly increasingW∗.

relevant feature). In general, we observe that for our
example the transitivity is most robust with respect to
changes ofW ∗, whereas the other network measures
may lose significance if this parameter of our analysis
method is varied. We note, however, that the periods
of interest identified in Sect.4.1 are robust for a wide
range of recurrence window sizes, presenting a trade-off
between good localisation of identified features (small
windows) and reasonable statistical confidence of the
calculated network properties (large windows).

ii. Detrending window sizeW ∗

D: regarding the dependence
of our observations on the choice of the detrending win-
dow, Fig.14 shows that the general temporal variabil-
ity pattern of the different network measures remains
unchanged asW ∗

D is altered, whereas the actual signif-
icance levels are more strongly influenced. In general,
we can conclude, however, that the most significant time

periods persist under variations ofW ∗

D, which is par-
ticularly well expressed for the transitivity during the
Mid Pliocene. Together with the fact that RN analysis
of the three dust flux records without detrending pro-
duces consistent results (Donges et al., 2011) this sug-
gests that trends do not have a significant influence on
the outcomes of RN analysis as long asW ∗

� N 〈1T 〉.
However, this should be checked in any particular appli-
cation by comparing the results for the time series data
before and after detrending. Note that the results for
undetrended time series are approximated by those dis-
played in Fig.14 for W ∗

D ≈ N 〈1T 〉, since RN analysis
is invariant to nearly uniform translations of the data.

iii. Embedding delayτ ∗: our results are also seen to be
robust with respect to reasonable variations of the em-
bedding delayτ ∗ around the previously chosen de-
lay time τ ∗

= 10 kyr (Fig. 15). However, for the
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Transitivity Average path length

Assortativity Diameter

Fig. 14. Dependence of (A) transitivity T , (B) average path length L, (C) assortativityR, and (D) diameterD on the detrending window size
W ∗
D for the dust flux record from ODP site 659. The recurrence window size is fixed to W ∗ = 410 kyr with a step size of ∆W ∗ = 41 kyr.

Green and black contours correspond to the 5% and 95% quantiles with respect to the test distribution obtained from 10,000 realisations
of our null-model. Other parameters were: embedding dimension m= 3 and delay τ∗ = 10 kyr, the threshold was chosen to yield a fixed
edge density ρ= 0.05. In regions outside the black dashed lines the results are influenced by boundary effects, since the effective detrending
window size WD(t) has to decrease towards the time series’ limits (Eq. (3)). The white bands indicating “no value” at the left and right
margins of each panel appear because we plot the network measures gµ,W

∗
at the mid-points tµ of the windows µ used for RN analysis (Sec.

2.4). In contrast to Fig. 13 their width does not change as W ∗ is fixed here.

the technical aspects of applying RN analysis to palaeocli-
mate time series, an in-depth discussion of the results ob-
tained for the three dust flux records in the light of addi-
tional proxy records and palaeontological evidence is given
in Donges et al. (subm.).
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Fig. 15. Dependence of (A) transitivity T , (B) average path length L, (C) assortativityR, and (D) diameter D on the embedding delay time
τ∗ for the dust flux record from ODP site 659. The recurrence window size is fixed to W ∗ = 410 kyr with a step size of ∆W ∗ = 41 kyr,
the detrending window size to W ∗

D = 500 kyr. Green and black contours correspond to the 5% and 95% quantiles with respect to the
test distribution obtained from 10,000 realisations of our null-model. Vertical line-shaped contours are likely to correspond to statistical
fluctuations rather than physically significant time intervals (see text). Other parameters were: embedding dimension m= 3, the threshold
was chosen to yield a fixed edge density ρ= 0.05.
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properties of the sampled dynamical system in its (recon-
structed) phase space. The only implicit assumption is that
the available sample of observed state vectors{y

µ
i } repre-

sents the spatial distribution of thetrue state vectors in the
(properly reconstructed) phase space of the underlying dy-
namical system sufficiently well.

In this respect, our approach is very generally applica-
ble and has comparably moderate requirements in terms of
the requested number of data (i.e. windows withO(100)
data points are sufficient for a reasonable analysis of non-
stationary systems). In case of palaeoclimate records, this
complementary way for characterising time series avoids
conceptual problems of other approaches due to uncertain
age models and non-uniform sampling. E.g. the results of RN
analysis{gµ

} are invariant to changes in the age model{ti},
only the associated windows’ mid-points{tµ} change with
variations in{ti} (Eq.9). However, the aforementioned prob-
lems indirectly persist in terms of the necessary embedding
of the data and have to be finally resolved in correspond-
ing future work. While the present work focussed on the

technical aspects of applying RN analysis to palaeoclimate
time series, an in-depth discussion of the results obtained for
the three dust flux records in the light of additional proxy
records and palaeontological evidence is given inDonges
et al.(2011).
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