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Abstract 

 

Globally, areas that are equipped for irrigation have almost doubled in size over the past 

50 years and further expansions are expected for the future, to meet a growing food 

demand. For developing countries, the Food and Agriculture Organization of the United 

Nations (FAO) expects these areas to be expanded by 40 million ha, by 2030. Knowledge 

about the constraints to irrigation and spatially explicit information about the potential for 

irrigation expansion, however, are lacking on a global scale. The objective of our study 

was to explain the global pattern of irrigated croplands and to identify cropping regions 

where irrigation is likely to be expanded. We accounted for biophysical determinants, 

such as humidity and slope, mainly at grid-cell level. Socio-economic and governance 

determinants, for example, Gross Domestic Product (GDP) and control of corruption, 

were primarily considered on a country level, given the limitations in availability of sub-

national data and the role of national level governance in irrigation decisions. To identify 

the variability of the determinants within these two spatial levels, we conducted a 

multilevel analysis. This is a method employing regression models that explicitly account 

for hierarchically structured data. Results show significant variability in terms of 

irrigation. While 56% of the global variance in irrigation occurs between countries, 44% 

occurs within countries. Our results suggest that it is necessary to consider biophysical, 

socio-economic and governance information for identifying cropland areas that are likely 

to be under irrigation. Under current conditions, conversion from rainfed to irrigated 

cropland is most likely in eastern China, northern Africa, and parts of the Mediterranean 

region. 
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1 Introduction 

 

Globally, the area size with irrigation facilities in place has almost doubled, over the past 

half century. At present, 301 million hectares of land are equipped for irrigation (Siebert 

et al., 2010). Twenty-four per cent of the total harvested cropland is under irrigation 

(Portmann et al., 2010) and more than 40% of the global cereal production takes place on 

irrigated land (Siebert and Döll, 2010). The immense importance of irrigated cropland to 

the global food supply has been stressed repeatedly (Kendall and Pimentel, 1994; Matson 

et al., 1997; Rosegrant et al., 2009; Sauer et al., 2010). The global irrigation pattern, 

however, is very diverse, with more than two thirds of the world’s irrigated land being 

located in Asia, with hardly any irrigation in Sub-Saharan Africa (Molden, 2007). 

Latitudinal distribution of irrigated area peaks between 20 and 45 degrees north (Wisser 

et al., 2008). The highest level of irrigation required for achieving optimal crop growth 

has been recorded for India, Pakistan (Indus basin), Uzbekistan, Iraq, Turkey, and Egypt, 

with levels of over 500 mm/yr. When inefficient use of irrigation water is also taken into 

account the required amounts of water even triple in some of these regions (Doell and 

Siebert, 2002). Irrigation requirements are likely to increase in some cropping regions 

where precipitation levels are expected to decline in the future. If current crops such as 

dates, rice, cotton, citrus and sugar cane were not irrigated, their production would 

decrease by up to 60% (Siebert and Döll, 2010). Moreover, many countries with expected 

serious water scarcity in the future (e.g., in the semi-arid regions of Asia, the Middle 

East, Sub-Saharan Africa), will see their food production from irrigated land threatened 

(Seckler et al., 1999; Zeitoun et al., 2010). Given their importance to global food supply, 
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irrigated areas are expected to expand in the future. Economic growth and urbanisation in 

many developing countries may lead to dietary shifts from staple food towards more 

green vegetables and fruit; for example, in China, which requires more irrigation 

(Molden, 2007). The area equipped for irrigation is expected to expand in developing 

countries by 40 million ha, up to 2030 (FAO, 2003). This expansion represents an annual 

growth rate of 0.6%, which is lower than the 1.9% achieved over the past four decades. 

The lower growth rate reflects a decrease in suitable areas and water resource availability 

in some countries, as well as increased investment costs for irrigation. The largest 

expansion in irrigated areas is expected in the land-scarce regions in South Asia, East 

Asia, the Near East and northern Africa (FAO, 2003). 

 

Although a few attempts have been made to map irrigated areas at a continental or global 

scale (Siebert et al., 2005; Siebert et al., 2006; Portmann et al., 2008; Thenkabail et al., 

2009; Wriedt et al., 2009; You et al., 2009), projected expansions in irrigated areas have 

not been mapped. Moreover, spatially explicit, global information about irrigation 

potential is lacking, as well as an understanding of its drivers and constraints. This may 

be traced back to limited data availability, at the global scale. An earlier study has 

indicated large regional differences in irrigation across Europe, namely as a consequence 

of spatial and temporal variability in climate and water availability (Hartmann, 1979). 

However, political changes also play a role in the development or maintenance of 

irrigation facilities, as O'Hara and Hannan (1999) and Fraser and Stringer (2009) have 

shown for Turkmenistan and Romania. Such studies, however, are restricted to regional 

and national scales. One attempt to identify suitable areas for irrigation was made by 

Heistermann et al. (2006). The authors simulated an expansion in irrigated areas in 
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Africa, based on the results from a multi-criteria analysis. Barreteau and Bousquet (2000) 

developed a regional multi-agent model to assess the viability of irrigated agriculture in 

the Senegal River Valley, based on access to credit for crop management, water 

distribution among famers, cropping periods, and farm management.  

All these studies illustrate the importance of irrigation for agriculture and highlight 

regional differences. A globally consistent analysis of irrigation and its determining 

factors, however, is lacking. The objective of our study is to explain global patterns of 

irrigated cropland. Furthermore, we aim to identify cropping regions where a conversion 

from rainfed to irrigated cropland is likely. The latter play a central role in exploring the 

potential for meeting the future food demand of a growing global population. We took 

location factors into account at two different spatial levels: countries and grid cells (5 arc 

minutes, which are approximately 9.2 x 9.2 km on the equator). To identify the variability 

of the constraints, we conducted a multilevel analysis. Multilevel analysis is a statistical 

method, in which regression models are applied that explicitly account for data at 

different (spatial) levels. We considered biophysical aspects mainly at grid-cell level and 

socio-economic and governance aspects primarily at country level. Based on the results, 

we identified areas where irrigated cropland is likely to be expanded. 

 

2 Data and methods 

 

2.1 Data 

 

Grid-cell data 
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We obtained global, spatially explicit information on harvested areas that had been 

irrigated and those that were rainfed, from the MIRCA2000 data set (Portmann et al., 

2010). The MIRCA2000 data set indicates, for each 5 arc-minute grid cell, the areas of 

irrigated and rainfed cropland, referring to the year 2000. MIRCA2000 was developed by 

combining spatially explicit information on cropland (Ramankutty et al., 2008), 

harvested cropland (Monfreda et al., 2008), and areas equipped for irrigation (Siebert et 

al., 2006), with census-based statistics on irrigated and rainfed crop areas and cropping 

calendars, collected from many different sources. The main improvement of MIRCA2000 

compared to earlier products (Siebert et al., 2005; Siebert et al., 2006) is that it presents 

areas actually under irrigation, instead of areas equipped for irrigation – globally, 84% of 

the equipped area is actually irrigated (Siebert et al., 2010). Another improvement is the 

explicit consideration of multi-cropping practices. We used the MIRCA2000 map to 

calculate the fraction of irrigated cropland as the ratio of harvested irrigated cropland and 

harvested total cropland (Figure 1, upper part). For our analysis, we excluded marginal 

cropping areas that covered less than 0.1% of a grid-cell area. To reduce errors of 

commission, all areas with at least 10% irrigated cropland were classified as irrigated 

(irrigation = 1) and all areas with less than 10% irrigated cropland were considered as 

rainfed (irrigation = 0). Figure 2 shows the distribution of grid cells containing irrigated 

cropland and how they are classified in this study. By applying this 10% threshold, 24% 

of all cropland cells included in our analysis represents cropland that is irrigated, which 

corresponds with the total global irrigated cropland area (Portmann et al., 2010). The 

resulting map of irrigated areas is shown in the lower map of Figure 1. From this data set 

we drew a random, balanced sample of 5%, in which irrigated and rainfed grid cells are 



 8 

represented in equal numbers. This random sampling reduced the potential bias in the 

estimation procedure, as a result of spatial autocorrelation.  

 

 

Insert Figure 1 approximately here 

 

Insert Figure 2 approximately here 

 

 

 

A set of gridded data available at a 5-arc-minute spatial resolution was obtained to 

explain the spatial variation in the occurrence of irrigation in cropland. We considered 

population density, market accessibility, slope, humidity, river discharge, evaporation, 

transpiration, potential evapotranspiration (PET), and run-off. Subsequently, Pearson 

correlation coefficients were calculated to assess relations between all grid-cell variables. 

Where variables were highly correlated (≥0.7), selected ones were excluded from further 

statistical analysis, to avoid multicollinearity. This section and Table 1 describe all grid-

cell data that were included in the analysis. We applied climate data from the Climate 

Research Unit (CRU) to calculate river discharge using the dynamic vegetation model 

LPJmL (Mitchell and Jones, 2005; Bondeau et al., 2007). River discharge, defined as 

channelled access water that could not infiltrate the soil or percolate to near-surface 

groundwater via a pre-defined river network, was simulated according to Rost et al. 

(2008), taking the given land-use pattern into account. In the simulation, daily 
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evaporation of water from bare soil occurred from the fraction of the grid cell not covered 

by vegetation. The size of this fraction depends on the plant-covered area and the daily 

status of the PFT(plant functional type)-specific leaf phenology. Evaporation is assumed 

to decline linearly as soil dries, a simple approach that is suitable for large scales (Huang 

et al., 1996; Gerten et al., 2004). Daily equilibrium evapotranspiration rate depends 

primarily on net radiation and temperature. Net radiation (net short-wave flux minus net 

long-wave flux) was calculated from latitude, day of the year, sunshine hours and air 

temperature (see Prentice et al., 1993; Gerten et al., 2004). PET was determined by 

multiplying daily equilibrium evapotranspiration with the Priestley–Taylor coefficient, 

a=1.32 (Priestley and Taylor, 1972). Humidity was calculated by normalising 

precipitation with PET, making irrigation potentially comparable across the globe. For 

the hydrological and climate variables, the average of their monthly mean values for the 

1990-2005 period were used. This 15-year period was chosen to account for the 

variability in the reference years of input data used for generating the global irrigation 

maps. This period furthermore allowed for obtaining representative hydrological 

information. We also included information on population density and market accessibility 

at the 5-arc-minute grid-cell level (Table 1).  

 

 

Insert Table 1 approximately here 

 

 

Country data 
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Given the lack of sufficient data at grid-cell level and the role of national governance in 

irrigation decisions, we considered additional socio-economic and political parameters at 

country level. For all countries, we obtained governance information from the Worldbank 

(2009) and the Polity IV Project (Marshall and Jaggers, 2009) for the year 2000, or, if 

that was not available, for a year close to 2000. Indicators considered were control of 

corruption, government effectiveness, political stability, GDP per capita, as well as level 

of democracy and autocracy (Table 1). These indicators, however, showed strong 

correlations, potentially causing multicollinearity in the multilevel analysis. To reduce 

redundancies in the data and to obtain independent variables, we conducted a factor 

analysis with principal component extraction and varimax rotation. Factor analysis is a 

frequently used tool in land-use studies to analyse correlations among a large number of 

land use-related variables, and to reduce the information contained in these variables to a 

smaller set of factors with a minimal loss of information (e.g., Veldkamp and Fresco, 

1997; Lise, 2000; Dunjó et al., 2003; Herzog et al., 2006). The factor analysis resulted in 

two factors which explain most of the variance. Both factors together explain 87.7% of 

the total variance, with one factor contributing 69.1% and the other 18.7%. The factor 

communalities (Table 2) shows that between 78 and 95% of the variance occurring in 

each variable is accounted for. The rotated component matrix in Table 2 presents the 

factor loadings for each of the variables. The variables ‘control of corruption’, 

‘government effectiveness, ‘GDP’, and ‘political stability’ were highly correlated with 

the first factor. ‘Autocracy’ and ‘democracy’ were highly correlated with the second 

factor. Therefore, the first factor could be interpreted as a factor mainly comprising 

aspects of government performance and was labelled ‘government_performance’. The 
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second factor essentially expressed the level of autocracy and democracy and, therefore, 

was called ‘government_type’. These two new country-specific factors were then used in 

the multilevel analysis. 

We also included the total natural renewable water resources as an independent variable 

at country level (AQUASTAT, 2010). An overview of all independent variables and their 

mean values per country is provided in Table 1 of the online supplementary material. 

 

 

Insert Table 2 approximately here 

 

 

 

2.2 Methodology 

 

The aim of our study is to explain the presence of global irrigated cropland using 

biophysical and socio-economic information. While global biophysical information is 

widely available at grid-cell level, the availability of socio-economic information is 

largely limited to the national level. Hence, multi-scale approaches need to be applied to 

account for these structural data differences, as emphasised by several authors (Kok and 

Veldkamp, 2001; Veldkamp et al., 2001; Evans and Kelley, 2004; Verburg et al., 2008; 

Neumann et al., 2011). In this study, we applied different logistic models as described in 

the remainder of the methodology section. First, we conducted a multilevel analysis with 

all grid-cell level variables to explore how available grid-cell data (which is largely 
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restricted to biophysical information) explain irrigation patterns. Second, we conducted a 

multilevel analysis using all grid-cell and country-level variables to also account for 

national socio-economic and political factors. Finally, results from the multilevel analysis 

were compared with results from a logistic regression to assess the added value of the 

multilevel analysis. 

 

Multilevel analysis 

 

Hierarchically structured data, such as the presented grid-cell and country-level data, are 

preferably analysed by accounting for statistical within-group and between-group 

relationships within a single analysis. Multilevel analysis (Snijders and Bosker, 1999) is a 

method particularly suited for this. A ‘group’ is an aggregated unit (e.g., country) and is 

referred to as a level-two (or higher) unit. Units at the lowest hierarchical level are called 

‘individuals’ (e.g., grid cells) and are being referred to as level-one units. In multilevel 

models, each of these levels are represented by their own sub-models, which represent 

relationships between variables of the respective levels but also specify how variables at 

this level influence relationships occurring at other levels (Raudenbush and Bryk, 2002). 

Although multilevel models mostly have been used in disciplines such as educational 

research, they have recently become more popular in analyses of environmental issues, 

such as land use (Polsky and Easterling, 2001; Pan and Bilsborrow, 2005; Overmars and 

Verburg, 2006; Vance and Iovanna, 2006; Gray et al., 2008; Reidsma et al., 2009).  
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Multilevel analyses are explained in detail by Snijders and Bosker (1999) and 

Raudenbush and Bryk (2002). In this study we have applied an important tool for 

multilevel analysis: the hierarchical linear model, which is an advanced type of 

regression model (Snijders and Bosker, 1999). As with all regression models, its 

objective is to explain one dependent variable Y  by a set of independent variables. As the 

hierarchical linear model explains a process or situation at the most detailed level (e.g. 

grid cells), the dependent variable must be a variable at that level. Therefore, the essence 

of multilevel modelling is that the dependent variable Y has both a group and an 

individual element. The same applies to the other level-one variable X which may also 

contain a group element (Snijders and Bosker, 1999).  

 

 

Specifying the multilevel models  

 

In this study we distinguish between two levels, the grid-cell level (level one) and the 

country level (level two). Variables at the grid-cell level, such as slope and humidity, 

may explain part of the grid-cell variability in irrigated cropland. Grid-cell variables, in 

addition, may explain part of the country level variability in irrigated cropland, if the 

respective variables (e.g., humidity) in some countries are significantly higher or lower 

than their mean. Variables at country level, that is, government type and performance, 

may explain differences in irrigation between countries. Equation 1 shows a simple two-

level model containing one independent variable at each level. 
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Equation 1 

 

 

The probability of presence of irrigation is pij, The independent variable x refers to the 

grid-cell level and the independent variable z refers to the country level. Grid-cell-level 

effects are marked with the index i while all country-level effects have the index j. The 

regression coefficients to be estimated are βn. Equation 1 implies that the grid-cell-

dependent residuals are assumed to be mutually independent with a mean of zero. To 

account for between-country variability, country-dependent intercepts are included in the 

model as indicated by β0j. Hence, the probability of the presence of irrigation, in this case, 

not only depends on the grid-cell variabilities, but also on the countries (Snijders and 

Bosker, 1999).  

The country-dependent intercept β0j can be split into an average intercept γ00 and the 

country-dependent deviation U0j.   

 

jj
Uγβ 0000

         

Equation 2 

 

 

U0j are the unexplained group effects, so-called group residuals, which control for the 

effects of variable x. U0j are mutually independent and with zero mean. In our study, U0j 
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represents the country-specific deviation of the probability of finding irrigation (assuming 

all other conditions equal). If we exchange the relevant part of Equation 1 with Equation 

2, and exclude all explanatory variables x and z, we obtain the simplest case of the 

hierarchical model, the so-called unconditional or empty model (Equation 3).  

 

j

ij

ij
Uγ

p

p
000

1
log         

Equation 3 

 

The unconditional model (multilevel model 0) only contains random effects. As it 

analyses which part of the total variance results from between and within level 

components, it is a good starting point for multilevel analysis. With this model, we can 

estimate whether the variance at country level is significant. The intra-class correlation 

coefficient (ρI ) is used for separating the variance on country level from the total variance 

(Snijders and Bosker, 1999). In our study ρI  represents the proportional variance between 

countries.  

 

Multilevel model 1 includes all independent biophysical grid-cell variables: slope, 

discharge, humidity, evaporation and evapotranspiration (Table 1), to explain the 

variance at grid-cell level (Equation 4). Because linear hierarchical models require 

normality, the slope and discharge were log transformed. All other variables show 

normally distributed values. 
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Equation 4 

 

In addition to these variables, multilevel model 2 (Equation 5) also includes the socio-

economic grid-cell variables (access and population), as well as all country-level 

variables (water, government_performance and government_type; Table 1). A log 

transformation was necessary for access, population and water, to achieve normally 

distributed variables. 
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Equation 5 

 

All independent variables were centred prior to the multilevel analysis, to control for 

correlations amongst random components and to stabilise the model (Kreft and De 

Leeuw, 2002; Paccagnella, 2006; Bickel, 2007). We centred the grid-cell-level variables 

around their respective country means. Hence, the scale of the variables was shifted by 

subtracting the country mean from the data points. The country-level variables were 

grand-mean centred, that is, they were centred around the respective global mean 

(Raudenbush and Bryk, 2002). We used the hierarchical linear and nonlinear modelling 
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(HLM6) software for estimating the different models (http://www.ssicentral.com). All 

parameters were estimated using the restricted maximum likelihood (RML) method and 

the penalised quasi-likelihood (PQL) approach (Raudenbush and Bryk, 2002). The 

calculated regression coefficients can be interpreted in the same way as regression 

coefficients obtained from ordinary logistic regression.  

To evaluate the goodness-of-fit, we conducted a relative operating characteristic (ROC) 

analysis. The ROC measure indicates how well the estimated model explains the 

dependent variable. A ROC value of 0.5 indicates a pure random model, whereas a ROC 

value equal to 1 indicates a perfect fit (Swets, 1988). 

To assess whether multilevel models perform better than ordinary least squares analyses, 

we applied a logistic regression to all biophysical and socio-economic variables at grid-

cell level. All grid cells of the global 5% sample were included in the regression analysis 

(Equation 6). 
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Equation 6 

 

The probability of the presence of irrigated cropland is pi. The regression coefficients to 

be estimated are βn, the intercept is β0. Similar to the multilevel analysis, a ROC analysis 

was conducted to assess the goodness-of-fit. 
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Based on the estimated regression models, the probabilities predicted for the presence of 

irrigated cropland also is calculated to indicate areas where conversion from rainfed to 

irrigated cropland is likely if all considered constraints remain constant. For this purpose, 

we mapped the estimated probabilities and compared these to the location of currently 

irrigated areas. 

 

 

3 Results 

 

3.1 Currently irrigated areas 

 

Results from the multilevel analysis show that the unconditional model (multilevel model 

0) has a highly significant variance component (P< 0.001). This means there is a 

significant variability between countries in terms of irrigation. The intra-class correlation 

coefficient ρI is 0.56, indicating that 56% of the variance occurs between countries while 

44% of the variance occurs within countries. Table 3 presents the results from the grid-

cell-level model, multilevel model 1, and multilevel model 2. Multilevel model 1 results 

show that humidity and river discharge significantly explain the variability at grid-cell 

level (P<0.001 for both). Hence, the probability of cropland being irrigated is higher 

under arid conditions and if river water resources are available. Slope, evaporation and 

evapotranspiration have no significant influence on the probability of irrigated cropland 

(P>0.05 for all). The intra-class correlation coefficient ρI is comparable to the 

unconditional model, indicating that these variables cannot explain the variance at 
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country level, as identified by the unconditional model. The results from multilevel 

model 2 show that irrigation is significantly correlated with population density (P<0.01) 

and market accessibility (P<0.001). The variables government_performance and 

government_type also make a significant contribution to the model at national level 

(P<0.05 and P<0.01, respectively). The likelihood of cropland being irrigated increases in 

economically strong and politically stable countries (i.e., countries with a higher 

government performance). Availability of renewable water resources per country cannot 

explain variability in irrigated cropland at country level. Results from the logistic 

regression analysis indicate that all grid-cell-level variables contribute to the explanation 

of the variation in irrigation in cropland areas. The Wald test (Table 3) indicates that 

population density explains most of the global irrigation pattern. Population density alone 

explains 63% of the variation in irrigation, while all independent variables together 

explain only slightly more (66% of the total variation). High population densities and 

short travel times to markets often result in intensive agriculture, including irrigation 

practices. The ROC value increases from multilevel model 0 (ROC = 0.786) and 

multilevel model 1 (ROC=0.801) to multilevel model 2 (ROC = 0.812). This indicates 

that, in spite of the significant contribution of the variables, they only have a limited 

effect on the overall explained variance. The model fit of the logistic regression analysis 

is 0.724, which is below those of the three multilevel models. 

 

 

Insert Table 3 approximately here 
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Figures 3 and 4 show the likelihood of current croplands being irrigated, based on 

multilevel model 1 and multilevel model 2 calculations. The likelihood of cropland being 

irrigated is high in most arid areas, such as northern Africa, Arabian Peninsula, India, 

Central Asia, Sub-Saharan Africa, South Africa and the western parts of North and South 

America. Croplands in many humid countries, for example, those in northern Europe and 

Southeast Asia, have a low probability for being irrigated. Accounting for socio-

economic and governance constraints increases the likelihood of croplands being 

irrigated in countries with a generally better government_performance (e.g. France, 

Germany, the United States, Japan, parts of China, Australia) (Figure 4). The opposite 

trend is observed for some countries which are characterised by lower political and 

economic stability, with a decrease in the likelihood of irrigation (e.g. in Bolivia, Central 

America, Nigeria, Zambia, Angola, the Ukraine). Hence, unfavourable socio-economic 

and political conditions are a barrier to irrigated agriculture in certain countries. 

Differences between multilevel model 1 and multilevel model 2 results are not only 

remarkable between countries but also within them. Figure 4 shows that probabilities of 

irrigation in the multilevel model 2 calculation are higher than in multilevel model 1, for 

many metropolitan areas with high population densities and better market accessibility, 

representing the capital investment needed to establish irrigation (e.g. in California, 

eastern United States, around Lake Victoria, Java, eastern China). The likelihood of 

irrigation in the United States and eastern China, according to the multilevel 1 

calculation, is dominated by the occurrence of river discharges. In multilevel model 2 
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calculations, the contribution of socio-economic and political factors significantly 

changes the regional pattern of irrigation likelihood. 

 

 

Insert Figure 3 approximately here 

 

 

Insert Figure 4 approximately here 

 

 

3.2 Potential irrigation expansion areas 

 

The predicted probabilities for the presence of irrigated cropland may also indicate areas 

where irrigation is likely to be expanded. Therefore, a map of these areas currently not 

irrigated was made by applying multilevel model 2 (Figure 5). This map shows cropping 

regions where irrigation is likely to be applied if demand for irrigation increases given the 

considered biophysical, socio-economic and governance conditions. Under these 

circumstances, expansion is most likely near already irrigated areas, for example, in 

eastern China, northern Africa, and parts of the Mediterranean region. Expansion, 

furthermore, is most probable close to urban areas, for example, in the eastern United 

States.  

 

Insert Figure 5 approximately here 
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4 Discussion 

 

This study has shown how different logistic models can be applied in the spatial analysis 

of land-use management, such as irrigation, accounting for processes operating on 

different spatial scales. This section first discusses the methodological issues related to 

this analysis, followed by a discussion on the findings. 

 

4.1 Cropland currently irrigated 

 

Figures 3 and 4 show the remarkable difference in irrigation probabilities between 

multilevel model 1 and multilevel model 2 calculations. While the former model accounts 

for biophysical information only, the latter accounts for biophysical, socio-economic and 

governance information. The socio-economic variables that were included at national 

level, however, explain only some of the differences in irrigated cropland between 

countries. We consider there to be two main reasons for this. To some degree it may be 

explained by recent political changes. Irrigation systems were often established decades 

ago when economic and political conditions may have been different from those of today. 

Hence, the current global irrigation pattern is inherited from earlier circumstances, which 

makes it difficult to explain on the basis of current political and economic information. 

For example, heavy investments in irrigation systems in Central Asia, made by the 

former Soviet government as an important part of its agricultural development policy, 
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resulted in an expansion of irrigated areas during the Soviet period (Saiko and Zonn, 

2000). Irrigation is still largely applied in the Republic of Uzbekistan, formerly part of 

the Soviet Union, irrespective of drastically changed political and economic conditions. 

The different circumstances at the time of the construction of the irrigation systems and 

the independent variables prevent a complete explanation of the current situation. The 

same applies to the constraints on grid-cell level, such as market accessibility and 

population density. However, many of the variables on grid-cell level are assumed to be 

less dynamic over time. 

 

A second explanation for the limited influence of variables on country level is the large 

size of a number of countries. Using country average socio-economic data for large 

countries, such as the United States, Brazil or China, may be less appropriate. For 

example, Akita (2003) has shown that there are significant differences in GDP per capita 

between different regions within China. To capture such regional disparities, intermediate 

levels would be necessary, such as the province level. However, globally consistent and 

complete socio-economic data at such levels is not available. 

Results from the logistic regression analysis show that all independent grid-cell variables 

contribute to the explanation of the presence of irrigated cropland. This contrasts the 

results from the multilevel analyses, from which is concluded that slope, evaporation and 

evapotranspiration do not significantly contribute to the explanation of the irrigated 

cropland pattern. Moreover, individual contributions of the significant independent 

variables differ between the two applied methodologies. Multilevel analysis variables at 

grid-cell level can explain variability both within and between countries. Certain grid-cell 
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variables may largely vary across the globe. However, they may vary less within certain 

countries where biophysical effects play a role, due to these countries’ geographic 

location. This may result in non-significant variables in the multilevel analysis. 

Furthermore, it may also explain the small increases in ROC values over the three 

multilevel models.  

 

4.2 Probabilities of irrigation expansion 

 

The regions identified as very likely areas for irrigation expansion largely coincide with 

potential areas for irrigation as identified by the FAO (2003). An exception is Southeast 

Asia (Indonesia, Papua New Guinea, Malaysia, the Philippines), for which we have 

identified low probabilities of irrigation expansion, given the high humidity in this 

region. The estimates of the FAO considered the importance of irrigated paddy fields in 

this region, which was not explicitly taken into account in this study. The calculated 

probabilities not only indicate grid cells containing rainfed areas where irrigation may be 

introduced. They also indicate grid cells containing already irrigated areas where the 

percentage of irrigation may be increased. Only 12% of all grid cells classified as 

irrigated cropland were fully irrigated, while the majority of grid cells contained at least 

some rainfed areas. Hence, potential for irrigation expansion may also exist within 

already irrigated regions. However, it has to be noted that large parts of the variation 

could not be explained (Table 3). Therefore, high probabilities of irrigation in rainfed 

areas either indicate that this potential has not been used, or that other constraining 

factors play a role. 
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The presented probabilities of irrigation expansion for croplands reflect current 

biophysical, socio-economic and governance constraints that are included in the 

statistical analysis. The results do not necessarily imply that these factors alone will 

trigger an expansion of irrigated croplands. Public investments in market and irrigation 

infrastructure, technological progress and water rights can be important stimuli, as well. 

Biophysical, socio-economical and governance constraints and the expected temporal 

changes are to be accounted for when assessing potential future irrigation expansion. 

However, such analysis was beyond the scope of our study, given the limited availability 

of spatially explicit projections of socio-economic parameters. 

Increasing demand for agricultural products on local, regional and global levels may 

trigger irrigation. However, the effect of a growing global food demand on local 

irrigation is complex and difficult to assess, as it is influenced by agricultural trade 

policies, market orientation and competitiveness between regions and countries. 

Chapagain et al. (2006) estimate that more than half of the water that is used for irrigation 

in Pakistan, China, Uzbekistan and India, is used in the production of exported cotton 

products. The amount of water used not only depends on local availability. Import and 

consumption of water-intensive agricultural commodities (e.g., coffee, tea, rice, cotton) 

largely influences the amount of water used in irrigation in the producing regions and 

may trigger further investments in irrigation infrastructure (Kumar and Singh, 2005; 

Hoekstra and Chapagain, 2007). Information on all these issues is required for a thorough 

assessment of the potential for expansion of irrigated croplands. Given the lack of 

detailed and consistent global data sets, their exploration was beyond the scope of this 

paper (see also Section 4.3). 
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To make an assessment of the potential for future irrigated areas, climate change also is 

an important parameter. It influences precipitation, evapotranspiration, snowpacks, 

groundwater recharge, and other factors of water resources and water demand. This, in 

turn, will affect both the demand for irrigation and the availability of water (Döll, 2002; 

Izaurralde et al., 2003; Rosenzweig et al., 2004). Hence, to further investigate potential 

new areas for irrigation, scenarios on future climate change are recommended to be used 

for the projection of changes in irrigation water requirements. Rosegrant et al. (2009) 

argue that, up to 2050, irrigation will remain the world’s largest user of fresh water, 

although its share is projected to decline compared to that used domestically and in 

industry. Our results indicate possible locations for irrigation expansion under current 

constraints. However, when modelling future expansions of irrigated areas, possible 

future water scarcities should be taken into account. The results from our study also 

indicate that political developments may influence investments in irrigation systems. For 

example, the recent land reforms in Zimbabwe have led to agricultural failure and a loss 

of nearly all irrigation systems throughout the country (Moss and Patrick, 2006). 

Furthermore, the collapse of communism in former Eastern Europe has caused a drastic 

decline in the number of irrigated areas (Fraser and Stringer, 2009; Theesfeld, 2004). In 

contrast, in the Republic of Uzbekistan, this collapse did not lead to a similar decline, as 

the production on irrigated cotton and rice fields has a strong tradition, and continues to 

be supported by the Uzbek government.  
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Besides the benefits of irrigation for food production it has also led to adverse 

environmental impacts in many places across the globe. Globally, water used for 

irrigation has caused drastic modification of the water flows of many rivers. In some 

cases, rivers no longer reach the sea during dry periods, and water tables are falling due 

to unsustainable extraction of groundwater (Foley et al., 2005). In addition, salinisation 

of irrigated land is causing an annual loss in arable land of approximately 1.5 million 

hectares (Wood et al., 2000). To evaluate the potential for expansion of irrigation areas 

and for the implementation of irrigation programmes, it is essential to assess potential 

environmental impacts. 

 

4.3 Data issues 

 

Water availability and climate are important drivers of irrigation. Therefore, in our study, 

we considered river discharge, evaporation, evapotranspiration and humidity at grid-cell 

level. These variables, however, may vary within and between years. For example, 

seasonal variations in precipitation levels within a particular year influence farmers’ 

decisions to irrigate, a factor difficult to capture in averaged monthly data. Furthermore, 

irrigation facilities are installed in many cropping regions in anticipation of periods of 

uncertain precipitation and to minimise the risk of crop losses in exceptionally dry 

periods. Often these irrigation facilities are used infrequently, and their presence cannot 

be explained by long-term average climate data as used in this study. This potentially 

causes statistical noise. 
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Another hydrological aspect to be considered when explaining the global distribution of 

irrigated areas is access to groundwater, as this is the main source of irrigation water for 

certain countries. Groundwater has been extracted for irrigation purposes for many years, 

in many countries, including the Unites States, India, Pakistan, China, Mexico and 

Yemen (Shah et al., 2000; Shah et al., 2006). Access to groundwater, therefore, is not 

only important for explaining the current pattern of irrigated areas, but also for 

identifying potential areas for irrigation. Global inventories of groundwater use for 

irrigation have only recently become available, but the spatial detail is not sufficient for 

conducting spatially explicit analyses at grid cell level. Furthermore,  information about 

access to groundwater resources and aquifer properties cannot be obtained (Siebert et al., 

2010). Therefore, aquifers properties were not explicitly included as an explanatory 

factor for irrigated cropland.  

 

The most spatially detailed units of analysis are 5 arc-minute grid cells. This resolution 

was chosen because irrigation data, as well as a number of socio-economic variables, 

were available at this resolution. The hydrological data, however, were only available at 

an 0.5 degree resolution. We directly applied the 0.5 degree data to the 5 arc-minute 

resolution, which may have introduced some bias. Including the 0.5 degree resolution as 

an extra level of analysis would not have been an adequate solution, as it is rather a 

spatial scale for representing the data and not a distinct spatial level. In addition, 

resampling the finer scale data to 0.5 degrees would have resulted in the loss of too many 

spatial details. Next to data resolution, there may be significant uncertainty in the data 

sets we used. The irrigation data are based on a large variation of sources from different 
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years, which are likely to have introduced uncertainties. Second, independent variables 

were collected from different sources and since these were not validated, their accuracies 

may differ. Thus, the data used in our study are inherently uncertain. They do, however, 

comprise a selection of the most appropriate data available. 

 

Land-management decisions such as irrigation are often made at household level. At this 

level, information on income sources, ethnicity, land ownership, water-sharing rules and 

access to funding, may be taken into accounted. Several authors have considered the 

household level in multilevel analyses in land-use studies (Overmars and Verburg, 2006; 

Pan and Bilsborrow, 2005; Vance and Iovanna, 2006). Considering the global context of 

this study, such aspects could not be included, as consistent, global data were 

unavailable.  

 

The data and methodology used in this study indicate probabilities of existing cropland 

being irrigated, but do not allow any estimates on the total extent of irrigated land. Under 

more humid and temperate climate conditions the probability of cropland being irrigated 

is low, because these lands are predominantly rainfed, but the total extent of irrigated 

land may be large because of the high cropland density. In contrast, almost all cropland in 

very arid regions is irrigated, resulting in high probabilities in our study (e.g., in Egypt or 

Central Asia), while the total extent of irrigated land may be low because of the low total 

cropland density. This difference needs to be taken into account when comparing 

estimates of the extension of irrigated land in absolute terms (e.g. FAO, 2003) to results 

of this study indicating probabilities that cropland is irrigated.       
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5 Conclusions 

 

The results from this study have shown that local biophysical factors alone may explain 

global irrigation patterns only to a limited degree. Taking socio-economic and 

governance information into account does improve the explanation. However, much 

socio-economic data and governance information is only available at country level. Given 

this lack of data at finer spatial scales and the role of national governance, multi-level 

analysis was used as a methodology to explain the global irrigation pattern explicitly 

accounting for the hierarchical structure of the data. Compared to the ordinary logistic 

regression, multilevel analysis allows for a better prediction of where irrigation is likely 

to expand.  

Information on areas with high probabilities of irrigation expansion is crucial for any 

analysis of the spatio-temporal dynamics of future food production. The current study is a 

first step to address irrigated land more explicitly in global analysis and models of land-

use change and food production, based on empirical analysis. A possible land-use 

modelling exercise would combine the spatially explicit information on cropland 

suitability for irrigation with quantitative projections on cropland expansion per country 

as, for example, those from the FAO (FAO, 2003). Hence, the identification of factors 

explaining global irrigation patterns and that of areas with high probability for expansion 

of irrigation are steps forward in exploring spatial-temporal dynamics of irrigated areas. 

Yet, the results are not only valuable for visualising possible dynamics of irrigated areas 
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on a global scale. They may further support the description and definition of international 

objectives for irrigation expansion. Respective policies, however, are often instrumented 

and implemented on a national or regional scale, considering the specific bio-physical, 

economic and/or political conditions. Hence, the suitability of such global data sets for 

underpinning national or regional policies on irrigation expansion is recommended to be 

carefully explored before data application. 
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Figure captions 

 
 

Figure 1: Fraction of irrigated cropland according to MIRCA2000 (upper map) and 

irrigated cropland and rainfed cropland as considered in this study (lower map). 
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Figure 2: Distribution of grid cells classified as irrigated cropland and their definition in 

this study. 
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Figure 3: Likelihood of current cropland being irrigated, considering biophysical 

information only (model 1). 
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Figure 4: Likelihood of current cropland being irrigated, considering biophysical, socio-

economic and governance information (model 2). 
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Figure 5: Potential areas for irrigation expansion. 


