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Abstract

Due to significant advances in information technology in the last decades complex
computer models have become a common tool in various disciplines. One application
is the modeling of global land use. A major challenge in modeling is the linking of
processes on different scales - such as in land use the local production of agricultural
commodities and their global trading. Neglecting these cross-scale interactions leads
to significant biases in model projections while a 1:1 representation is computational
infeasible. Therefore, a good balance between accuracy and abstraction is essential.
In this thesis I investigate efficient implementations of cross-scale interactions in

agricultural land-use models. Based on the global land-use model MAgPIE (“Model
of Agricultural Production and its Impact on the Environment“) I focus on two dom-
inant aspects: First, the inclusion of spatially explicit data in a global optimization
model; second, the proper representation of technological change as a major cross-
scale interaction and dominant driver for agricultural land use change.
As a consequence of limitations in complexity of global optimization models the

problem arises that spatially explicit, high-resolution data cannot be used directly
as model input. Typically, the spatially explicit data is upscaled by using a static
upscaling rule which leads to a significant loss of information. As an alternative I
discuss the use of clustering methods for upscaling. I provide a general framework
including the creation of clusters, the upscaling of inputs, and the downscaling
of outputs. My investigations show that the information loss due to upscaling in
the upscaled data itself, but also in the model outputs derived with upscaled data
decreases significantly compared to the information loss in upscaling with static
grids.
Technological change is another important cross-scale interaction. In agriculture

technological change means local yield growth induced by supra-regional investments
in Research and Development (R&D). Whereas in the past increases in agricultural
production were often mainly achieved by expansion of agricultural land, nowadays
most increases in total production are outcome of R&D. I present an implementa-
tion of this process in MAgPIE including a feedback of land-use intensity on the
effectiveness of R&D. To model this feedback I introduce an output-oriented mea-
sure for agricultural land-use intensity which takes all sources of intensification into
consideration. Based on this measure I show that the effectiveness of investments in
R&D decreases with the agricultural land-use intensity. I use this finding to provide
an implementation of technological change in MAgPIE.
My findings imply that apart from detailedness especially the implementation has

a significant impact on general model quality. Therefore, in model development the
framework used for implementation should be emphasized to a greater extent.
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Zusammenfassung

Die Fortschritte im IT-Sektor der letzten Jahrzehnte haben komplexe Computer-
modelle zu einem Standardwerkzeug in vielen wissenschaftlichen Disziplinen werden
lassen. Eines der Anwendungsgebiete ist die Modellierung globaler Landnutzung. Ein
Hauptzweck von Modellierung ist die Verknüpfung von Prozessen verschiedener Ska-
len, wie z.B. in der Landnutzung die lokale Produktion landwirtschaftlicher Güter
und ihr internationaler Handel. Verzichtet man auf die Verknüpfung dieser Prozesse
im Modell, so sind realistische Prognosen in vielen Fällen nahezu ausgeschlossen,
bildet man die Realität 1:1 nach, so ist das Modell aufgrund seiner Komplexität
nicht mehr lösbar. Kernbedürfnis ist daher eine gute Balance zwischen Genauigkeit
und Abstraktion.
In der vorliegenden Arbeit untersuche ich Möglichkeiten, Interaktionen zwischen

verschiedenen Skalen in der Modellierung von Landnutzung effizient zu implemen-
tieren. Ich fokussiere dabei Prozesse, welche die Dynamik am stärksten bestimmen.
Basierend auf dem globalen Landnutungsmodell MAgPIE (“Model of Agricultural
Production and its Impact on the Environment“) bearbeite ich zwei dominante Pro-
zesse zwischen Skalen: Zum einen die Nutzung hochaufgelöster, räumlich expliziter
Daten in einem globalen Modell zur Landnutzungsoptimierung, zum anderen die
Modellierung von technologischem Wandel als dominantem Treiber für Landnut-
zungswandel.
Aus der limitierten Modellkomplexität resultiert das Problem, dass hochaufgelös-

te, räumlich explizite Daten nicht direkt im Modell genutzt werden können. Meist
wird dieses Problem gelöst, indem die Daten nach einem statischen Aggregations-
schema hochskaliert werden, einhergehend mit einem starken Informationsverlust.
Als Alternative diskutiere ich die Verwendung von Clusteralgorithmen zur Hochska-
lierung. Ich präsentiere den vollständigen Skalierungsprozess samt der Bestimmung
der Cluster, der Aggregation und der nachfolgenden Disaggregation. Meine Untersu-
chungen zeigen, dass der durch die Hochskalierung verursachte Informationsverlust
für die skalierten Daten selbst, aber auch für die Ergebnisse, welche mithilfe der ag-
gregierten Daten simuliert wurden, unter der Verwendung von Clusteralgorithmen
signifikant geringer sind als bei der Verwendung statischer Aggregationsvorschriften.
Technologischer Wandel ist eine weitere dominante Interaktion zwischen Skalen

in der Landnutzungsmodellierung. In der Landwirtschaft bedeutet technologischer
Wandel, dass lokales Ertragswachstum durch überregionale Investitionen in For-
schung und Entwicklung (Research & Development - R&D) generiert wird. Wäh-
rend in der Vergangenheit Steigerungen in der Gesamtproduktion der Landwirt-
schaft zumeist durch Landexpansion erreicht wurden, so geschieht dies heutzutage
hauptsächlich durch R&D. Ich präsentiere eine Implementierung dieses Prozesses
in MAgPIE mitsamt der Rückkopplung der Landnutzungsintensität auf die Effek-
tivität von R&D. Grundlage dafür ist ein neuentwickeltes Maß für landwirtschaft-
liche Landnutungsintensität, welches eine umfassende Berücksichtigung aller Ein-
flussgrößen erlaubt. Basierend auf diesem Maß zeige ich, dass die Effektivität von
R&D-Investitionen mit steigender Landnutzungsintensität sinkt und stelle die ent-
sprechende Modellimplementierung in MAgPIE vor.
Meine Arbeit zeigt, dass außer dem Detailgrad eines Modells auch die Struktur

der verwendeten Implementierungen einen signifikanten Einfluss auf die generelle
Qualität der Simulation hat und insgesamt mehr Beachtung in der Modellierung
finden sollte.
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1 Preamble

1.1 Motivation
In my diploma thesis my former supervisor Prof. Bernd Blasius gave me the wonderful
opportunity to do research on a generalization of an extremely powerful data analysis
method called Phase Space Reconstruction [Dietrich, 2008]. I was starting my work
with huge optimism and motivation driven by the power of this method. But when I
had finished the methodology part of my thesis and was starting to search for applications
I noticed that despite the fact that this method was powerful I had serious problems to
find examples where I could apply it to.
At this point I realized that there often seems to exist a huge gap between theoretical

analysis methods and applications. Simplified and a bit overstated I would describe it
as follows: On one side there is a group of scientists (group A) who is inventing and
constructing clever data analysis methods which allow to receive information hidden in
the data. On the other side there are scientists (group B) who work directly at explicit
problems that they have to analyze. However, the interaction between both groups is
lacking. Group A has often problems to find proper applications for its methods whereas
group B does not know anything about the methods developed in group A. So the first
group is inventing powerful tools which are used only sporadic and the second group is
doing semi-optimal analysis of explicit problems because of a lacking expertise in the
usage of tools delevoped by the first group.
The experience to see that there is a powerful tool which offers excellent opportunities,

but which is probably never used because scientists who would benefit of this method
probably will never hear something about it, was very frustrating to me. So I decided to
search for options to overcome that gap. The solution I tried in my PhD time was just
to shift from group A to group B. I thought it could make sense for me as a theoretical
data analysis physicist to apply for a job in a group of applied scientists. My aim was
to use my knowledge about general data analysis methods to apply it for that special
problem my group was working on.
I am glad that I found a wonderful group of scientists which was willing to hire

me even though I was not fitting to the announced vacancy and which offered me the
opportunity to do that experiment. What I experienced was again that it is not as easy
as expected. Actually I found out that many of that analysis methods I learned about
have significant limitations. Probably the most problematic one was that most methods
need a huge amount of data which is not a problem applied on idealized systems, but in
many cases for real applications the accessible data is often strongly limited and of low
quality (this especially holds true when working with economic data).
Another problem are the scientific expectations: When applying for a job in a group

1



1 Preamble

doing research on tools and methods it is expected that one will invent new methods.
When applying in a group that is doing research on a explicit problem it is expected
that one will produce results concerning this explicit problem. But working in an ap-
plied group and doing work on implementing theoretical methods to increase the general
quality of outputs this kind of research is hard to sell. Because the quality of scien-
tific work is measured in papers and citations the benefit of a general internal quality
improvement is strongly limited. Hence most scientists in applied science groups have
to focus more on the direct output than on general quality improvements. For me as
a theoretical physicist in applied science it was a kind of balancing act: just switching
the side does not erase the gap. Instead there is often the risk to fall into the gap.
Instead of being part of both groups it can also happen that one does not belong to any
of them. Nevertheless I recommend everybody to switch sides because only in this way
it is possible to get behind the problems that are causing that gap and to understand
what both sides can deliver and what both sides need.

1.2 Thesis in context of Physics

This thesis deals with the development of an economic, agricultural land-use model. It
touches many disciplines like agriculture, economics, geography, ecology, hydrology, and
climatology, so one might ask: Where is the physics in it? What does it make to be a
PhD thesis in physics? The answer lies in the used methodology and applied perspective
that I used to analyze and tackle the problems. I used approaches that are common
for physicists but widely unknown or unusual in the field of land-use modeling. Typical
examples for these kind of approaches are information theory (the focus on information
conservation in an abstract, content-unrelated sense - see Chapter 3), mapping of pro-
cesses to scales (determination of scales on which an examined process plays a dominant
role - see Chapter 2.1), and the use of well-defined measures (see Chapter 4).
While I had to realize quite fast that many tools used in physics are not applicable

on research questions dealing with the econonmics of agricultural land-use, I also made
rather quickly the experience that several general concepts of physics are quite useful.
Especially the approach to simplify and generalize process descriptions is a so far mostly
unused concept in agricultural land-use modeling and a powerful counterpart to the
prevailing “more detail = more accuracy”-model. In general, focusing on the underlying
model processes from a model-theoretical point of view of a physicist while the rest of
the team is focusing on its contents emerged to be a quite complementary approach.
Not the topics make this thesis belonging primarily to Physics. It is the used point of
view and the applied methodologies and concepts which reason its relation.
One major difference between agricultural land-use modeling and other research top-

ics which are more closely connected to natural sciences is the degree of underlying
uncertainties. In land-use modeling one has to face a situation which is typical for re-
search closely connected to social sciences: Uncertainties are extremely high so that most
findings can only be seen as a best guess rather than a robust finding.
Being unaware of its origin one might interpret it as a consequence of bumbling re-

2



1.2 Thesis in context of Physics

search. However, there are several serious reasons which are explaining this fact ratio-
nally:
First of all, the model results and applied assumptions typically cannot be verified

with experiments. Most outputs describe supra-regional dynamics which can only be
verified by historic observations. This is equal to an experiment under inaccurately
defined boundary conditions which can only be performed once. Hence, this reference
can only deliver quite limited insights in terms of verification of the model results. There
are also real experiments taking place in agriculture, but the measured outputs, as for
instance yields, are typically significantly higher than yields observed in practice because
of ideal boundary conditions. So, their results have also a quite limited usefulness for
agricultural models.
Second, the agricultural model community has to face, as many other communities

related to social sciences, the situation of poor data availability and poor data quality.
Most parameters relevant for the model dynamic cannot be measured at all and therefore,
they are only results of other models. And even the few numbers that are not simulation
results, as for instance crop-specific production information on country level as supplied
by FAO [FAOSTAT, 2009], are often only indirect measurements or expert guesses.
Since this data typically bases on national statistics their quality varies from country to
country. Some countries deliver quite detailed and reliable data while data from other
countries has to be assessed by experts as these countries deliver no data at all. So even
data from the best available sources in agriculture already contains a high degree of
uncertainty on an aggregation level which is much coarser than the level the information
is actually required for.
Third, as any research connected to social sciences humans are part of the concept. In

general, this does not inhibit the finding of robust and general dynamics in the system,
but complicates it because any human being has its own will which is strongly influenced
by the current social environment one is living in. Furthermore, the publication of model
results can cause a feedback to the observed system which is then changing the dynamics
of it. However, this point can be disregarded in most cases at the current stage since it
is typically outshined by the other major sources of uncertainty in agricultural research
mentioned before.
In awareness of all these problems and uncertainties in agricultural modeling one might

ask if it makes sense to do further research on it since it seems to be impossible to achieve
robust insights. Unfortunately, this is not an option due to an urgent need by decision
makers. Unlike many other research fields in natural sciences, insights concerning the
agricultural sector are time-critical since necessary decisions have to and will be taken
now and cannot be delayed into the future. From this point of view a best guess, as
it can be supplied by agricultural land-use models, is worse than a robust finding, but
even better than no information concerning the agricultural sector at all.
Summarized, it is extremely important to have these issues in mind when dealing with

agricultural land-use models. It is the reasoning for some implementations that seem
to be odd, but it is also a warning of overrating statements derived from agricultural
models.
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2 Introduction
Abstract

In this chapter I give a brief review about the topics relevant for this thesis. Before
presenting the general outline I introduce the basic concepts and applied tools: After
explaining what the term “scale” means and what “land-use modeling” stands for
I present some basics about the mainly used agricultural land-use model “Model of
Agricultural Production and its Impact on the Environment“ (MAgPIE), the global
vegetation model “Lund-Potsdam-Jena with managed Land” (LPJmL), which is de-
livering several data sets used for the following analysis, and the “General Algebraic
Modeling System” (GAMS), the programming language in which the MAgPIE core
is written. Finally, I explain in the outline how these different topics are interrelated
and what corresponding research questions I tackle in this thesis.

2.1 The scale concept
An important step in the analysis of a process is its structuring into sub-process or sub-
objects. For the separation it is necessary to have some kind of classification scheme.
One very helpful approach is to classify processes or objects based on the scale they
are related to. According to Turner et al. [2001, p. 27] “scale refers to the spatial or
temporal dimension of an object or process”. In the case of objects it is related to their
size or life-time, in the case of processes it is related to a characteristic time span or
spatial extend, for instance the period time or period length of a periodic process.
To describe a band of several scales, for instance to characterize the range of scales

covered by a model, two further terms are used: grain and extend [Turner et al., 2001,
Krüger, 2007]. Grain is the smallest unit (temporal or spatial) of a data set, model, or
an observation, for instance the grid size of an spatial explicit data set. It marks the
lower end of the covered scales. Extend describes the total spatial or temporal coverage
and is the upper scale limit.
Another important term in this context is resolution, which stands for the precision

or detailedness of an measurement [Turner et al., 2001]. Often it is used interchangeably
with grain since grain is an indicator for the resolution of a measurement [Gibson et al.,
2000, Turner et al., 2001]. However, in some situations this relation does not hold. An
example are disturbances in a measurement, so that differences between adjacent cells
are outshined by the noise. In that case a further decrease in grain size does not deliver
additional detail and does not lead to an increased resolution. Grain size is always
related to the physical characteristics of a data set (size of a single data point), whereas
resolution refers to the quality of a data set (the detailedness in which the original system

5



2 Introduction

is reproduced by the data set). This differentiation is especially relevant for the work
presented in chapter 3 of this thesis.
To understand problems, that come along with the scale issue, it is also helpful to

distinguish between different kinds of scales. In literature typically three kinds of scales
are distinguished: the process scale, the observation scale and the modeling (or working)
scale [Blöschl and Sivapalan, 1995, Krüger, 2007]. The first one is the scale a process
can be identified with, based on its characteristics. This scale is predetermined by the
process. The second one is the scale on which observations are performed. This scale
can be chosen by the researcher and should in the ideal case agree with the process scale.
The last scale is the modeling scale on which processes are described by the researcher.
This scale is also customizable and is typically adjusted to process and observation scale,
but also based on the underlying research questions. Harmonizing these scales is one big
challenge modelers have to face (Chapter 3).
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Figure 2.1: Harmonic oscillators with different period times/lengths T and oscillations
from -1 to 1 shown for a system with grain size 1 and extend 100.

In the absence of nonlinear effects it is possible to detach processes acting on different
scales from each other completely and to analyze them separately. This is possible
because processes relevant at one scale become irrelevant for other scales. Harmonic
oscillators are a good example to explain this behavior.
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2.1 The scale concept

Figure 2.1 shows harmonic oscillators with different periods observed in a system with
grain size 1 and extend 100 (either temporal or spatial units). The marginal distance
between grain size and extend assures, that only a small band of scales is observed.
Starting with a very long period of T = 75000 the process value remains nearly constant.
The applied observation scale is too small to show any dynamics. For T = 750 an
increase of the value becomes visible. However, this is only a part of the full dynamic of
the harmonic oscillator, the observation scale is still much lower than the process scale.
In contrast, the harmonic oscillators with T = 75 and T = 25 are fully observable at the
applied observation scale, since at least one full period is performed within the extent.
The oscillator with T = 1.1 shows, what happens if the period is further decreased. In
that case the extend of the observation does no play any role, since it is big enough
to capture a full period. Instead the grain size, which is representing the lower end of
observed scales, comes into play. An observation at point x is the mean of the harmonic
oscillators values between x − 0.5 and x + 0.5. Having a periodicity close to the grain
size leads to the situation, that parts of the model dynamic are averaged out. The model
dynamic is falsified which is reflected by a reduced amplitude. Finally, a further decrease
to T = 0.1 leads to the same situation already observed for too long periods: no dynamic
is visible anymore. However, in this case the behavior is caused by dynamics with a too
high periodicity, which leads to a complete clearing of the dynamic at the observed scale.

The example shows a system in which only processes become relevant, which have a
process scale close to the chosen observation scale. For oscillators with process scales
much bigger oder smaller compared to the observation scale no dynamic is observable.
Thus, these processes can be neglected for further investigations. However, not all
processes can be separated only because they are occurring on different scales. Due
to nonlinearities processes of one scale can influence processes and results on another
scale. For instance, a burning match can cause a whole forest fire. These interactions
between scales (linear and nonlinear) are covered by the term cross-scale interactions.
Whereas linear cross-scale interactions are quite simple to handle, as the problems are
completely separable, nonlinear cross-scale interactions can lead to serious problems and
model biases.

Cross-scale interactions play an important role in global change research [Wessman,
1992, Cash and Moser, 2000, Harvey, 2000] for several reasons. First, the integration
of models and data from different disciplines, such as Physics, Biology, Geography or
Economy, is typically connected to the issue of different spatial and temporal scales
[Wessman, 1992]. Second, because of nonlinearities a proper treatment of cross-scale
interactions is often a requirement for accurate simulations [Cash and Moser, 2000,
Harvey, 2000]. Third, the interactions itself are of great interest to understand the
dynamics and to be able to assess the impact of policies at different scales [Cash and
Moser, 2000, Dirnböck et al., 2008].
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2.2 Land-use modeling

Land-use models are models which address the allocation of land to specific land-use
types. They are used to make projections of future land-use patterns and to simulate
land-use change under various scenarios. Today the most prominent land-use type is agri-
cultural land (38% of total land area in 2008) followed by forest area (31%) [FAOSTAT,
2011]. Approximately 1/3 of agricultural land is arable land used for crop production,
while the rest is pastureland used for livestock production. Based on the huge area under
agricultural production and the strong interrelation of population driven demands and
agricultural production the sub-class of agricultural land-use models evolved.
Agricultural land-use models are quite similar to general land-use models. The only

difference is, that the agricultural land is modeled in more detail compared to other
land-types, splitting cropland in several sub-types with different crops. Furthermore,
these models typically also provide a more detailed representation of the demand side for
agricultural commodities, as they are acting as drivers for agricultural land cover change.
Basic questions agricultural land-use models try to answer are: Can the agricultural
sector meet future demands under scenario X? What land cover change can we expect
under scenario Y? What does that mean in terms of deforestation? How will food prices
react? Which role will biofuels play in the future? How will climate change affect
agricultural production and land cover change?

2.3 The MAgPIE model

The model this thesis deals with, is called “Model of Agricultural Production and its Im-
pact on the Environment” (MAgPIE) . It is a nonlinear, recursive dynamic, agricultural
land-use model, that links regional economic information with grid-based biophysical
constraints [Lotze-Campen et al., 2008, 2010, Popp et al., 2010]. In each time step a
term describing the total costs of production is minimized. The results of a previous
time step are used as inputs for the current time step and supplemented by a set of time
depending and time independent parameters.
All model calculations are taking place at one of three spatial scales: A global scale

representing global markets, a regional scale of 10 world regions representing specific
economic development, demands, technology levels and trade, and a local scale with a
grain size of up to 0.5◦ × 0.5◦ representing farming decisions based on spatially varying
production parameters, such as potential yields or water availability. Figure 2.2 shows
the regional coverage of the 10 world regions, the corresponding mapping between world
regions and countries is attached in the appendix (Table 2).
Currently, there exist several MAgPIE derivatives with different focuses, such as global

trade, livestock production or emission policies. All of them base on a main MAgPIE
version (trunk), which is described in the following. Hence, most statements issued in
the following apply also for these derivatives. Furthermore, the model improvements,
described in the following chapters 3, 4, and 5 are also part of all currently developed
derivatives.
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2.3 The MAgPIE model

MAgPIE world regions

Regions
AFR
CPA
EUR
FSU
LAM
MEA
NAM
PAO
PAS
SAS

Figure 2.2: MAgPIE world regions: AFR = Sub-Sahara Africa, CPA = Centrally
Planned Asia (incl. China), EUR = Europe (incl. Turkey), FSU = For-
mer Soviet Union, LAM = Latin America, MEA = Middle East and North
Africa, NAM = North America, PAO = Pacific OECD (Australia, Japan
and New Zealand), PAS = Pacific Asia, SAS = South Asia (incl. India)

Mathematically a simulation run of MAgPIE in the simulation period T can be de-
scribed as a set of solutions Xt of a time depending minimization problem (Equation
2.1).

Xt = {xt | ∀y ∈ Ω ∧ t ∈ T : gt(xt) ≤ gt(y)} ⊆ Ω (2.1)

For every timestep t ∈ T the element xt minimizes the function value of the goal
function gt(xt), where the goal function at time step t depends on the solutions of the
previous time steps x(t−1), ..., x1 and a set of time depending parameters Pt (Equation
2.2).

gt(xt) = g(t, xt, x(t−1), ..., x1, Pt) (2.2)

2.3.1 Sets

The dimension of the domain Ω, on which for each timestep the minimization problem
is defined, and ΩT , on which the full system is defined, depend on the following sets:

• T = {time steps t}: Time - t stands for the current time step, t−1 for the previous
time step and so on. The first simulated time step is t = 1, which is currently the
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year 1995 with an increment of 10 years per time step. The latest time step, that
is currently simulated, is 2145.

• I = {world regions i}: Economic world regions in MAgPIE. Currently MAgPIE
contains 10 world regions (AFR = Sub-Sahara Africa, CPA = Centrally Planned
Asia (incl. China), EUR = Europe (incl. Turkey), FSU = Former Soviet Union,
LAM = Latin America, MEA = Middle East and North Africa, NAM = North
America, PAO = Pacific OECD (Australia, Japan and New Zealand), PAS =
Pacific Asia, SAS = South Asia (incl. India) - Figure 2.2).

• J = {spatial clusters j} : Highest disaggregation level used in the optimization.
The number of clusters can be chosen by the user. Typically simulation runs
are performed with 100 - 4000 clusters, depending on models run purpose (quick
scenario check, elaborated model run for a publication,...) and complexity of the
MAgPIE derivative. Before calculations, spatial-explicit input data with a grain
size of 0.5◦ × 0.5◦ is upscaled to these clusters. After optimization, clusters are
brought back to the input grain size by downscaling. The full process of up- and
downscaling and the generation of clusters was part of this thesis and is described
in chapter 3.

• K = {simulated products k} : Union of vegetal products V and livestock products
L (K = V ∪ L).

• L = {simulated livestock products l}: Products simulated within the livestock
sector of MAgPIE (≈ 5, varies between different model versions).

• V = {vegetal products v}: Products simulated within the crop sector of MAgPIE
(≈ 20, varies between different model versions).

• W = {water supply types w}: Currently two types are implemented: rainfed ’rf’
and irrigation ’ir’

• C = {crop rotation groups c}: Groups of crops, which produce similar effects in
terms of crop rotation (≈ 20, varies between different model versions).

The combined model variable xt consists of three sub-variables xareat , xprodt and xtct
representing different agricultural and economic contents.

xt =
(
xareat ∈ Ωarea, xprodt ∈ Ωprod, xtct ∈ Ωtc

)
∈ Ω, (2.3)

The respective domains can be identified as the following vector spaces:

Ωarea = R|J | × R|V | × R|W | (2.4)
Ωprod = R|J | × R|L| (2.5)

Ωtc = R|I| (2.6)
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2.3 The MAgPIE model

Based on this the solution space for each timestep Ω has the dimension dimΩ =
|J | · |V | · |W |+ |J | · |L|+ |I| . Furthermore, the total solution space of a full MAgPIE run
ΩT = Ω×T has the dimension dimΩT = |T |·dimΩ = |T |·(|J | · |V | · |W |+ |J | · |L|+ |I|).
In the following, variables and parameters are provided with subscripts to indicate the

dimension of the respective subdomains. Subscripts written in quotes are single elements
of a set. The order of subscripts in the variable, parameter and function definitions does
not change. The names of variables and parameters are written as superscript.

2.3.2 Variables

Since MAgPIE is a recursive dynamic optimization model, all variables refer to a certain
time step t ∈ T . In each optimization step, only the variables belonging to the current
time step are free variables. For all previous time steps, values were fixed in earlier
optimization steps. As I have shown above, we currently distinguish three variables
xareat , xprodt and xtct that can be described as follows:

• xareat,j,v,w : The total area of each vegetal production activity v for each water supply
type w, each cluster j and each time step t. This variable describes the spatial
and temporal land-use allocation dynamics. [106 ha]

• xprodt,j,l : The total production of each livestock product l, for each cluster j at each
time step t. It contains spatial and temporal livestock allocation dynamics [106

ton dry matter]

• xtct,i: The amount of yield growth for each time step t in each region i triggered by
investments in infrastructure, research and development. It is the counterpart of
land expansion. A more detailed discussion of it can be found in chapter 5 based
on concepts developed in chapter 4. [1]

2.3.3 Parameters

Besides variables, the model is fed with a set of parameters Pt. These parameters
are computed exogenously and are in contrast to variables of previous time steps fully
independent of any simulation output. Although most parameters are time independent,
there exist also some parameters which are time dependent.

• pyieldt,j,v,w: Yield potentials for each time step t, cluster j, crop v and water supply
w type taking only natural variations into account and excluding changes due to
technological change. Data is provided by the global dynamic vegetation model
LPJmL (Section 2.4). This parameter is time dependent, since LPJmL can deliver
yield potential projections based on various climate scenarios, which cause changes
in natural yield potentials over time. [ton/ha]

• pdemt,i,k : Regional food and material demand in each time step t for each product k.
This data as well as the data for the following parameters base on country-specific
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FAO data [FAOSTAT, 2009], which was processed and upscaled to MAgPIE regions
and production types. [106 ton]

• pfshri,l,k : Feed share describing the regional share of each product k of the total feed
production for livestock product l and corresponding transformation from GJ feed
in ton dry matter. [ton/GJ]

• pfeedi,l : Feed requirements for each livestock product l in each region i. [GJ/ton]

• pbyprodi,k,l : Feed energy delivered by the byproducts of k that are available as feedstock
for the livestock product l [GJ/ton]

• pfrvi,v : Area related factor requirements for each crop v and each region i based on
the technological development situation in the initial time step. This parameter
as well as the following ones base on outputs from the GTAP model [Narayanan
and Walmsley, 2008] and FAO data [FAOSTAT, 2009]. [US$/ha]

• pfrli,l : Production related factor requirements for livestock products for each live-
stock type l and each region i [US$/ton]

• plcci : Area related land conversion costs for each region i. This parameter describes
the costs which arise, when non-agricultural land is converted to land equipped for
agricultural production. [US$/ha]

• ptcc: Technological change costs factor containing an interest correction, an ex-
pected lifetime factor and a general cost factor (Chapter 5). [US$/ha]

• pτ1
i,v: τ -Factor representing the agricultural land use intensity in the first simulation

time step for each crop v in each region i (based on the research presented in chapter
4).[1]

• pcxp: Elasticity between τ -Factor and investment-yield ratio (Chapter 5) [1]

• pseedi,v : Share of production that is used as seed for the next period calculated for
each crop v in each region i [1]

• pxst,i,k: Regional excess supply for each product k and each time step t describing
the amount produced for export [106 ton]

• psfi,k: Regional self sufficiencies for each product k [1]

• ptb: Trade balance reduction factor. It describes the share of the total trade
volume, which is distributed according to a fixed trading scheme based on the
trade patterns observed in 1995. Increases in the trade volume caused by increases
in global demand are distributed proportionally between all exporting regions.
Relaxing the trade balance constraint allows the optimizer to deviate from this
trading scheme to find a more cost saving trading pattern. [1]
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2.3 The MAgPIE model

• plandj : Total amount of land available for crop production in each cluster j. Land
in this category does not belong to a competing land use class, such as forest,
pasture or urban land and its environmental conditions do not inhibit the use for
agricultural production. [106 ha]

• pir.landj : Total amount of land equipped for irrigation in each cluster j. These are
areas, which are equipped with an irrigation system. [106 ha]

• pwatreqj,k : Cluster-specific water requirements for each product k. For livestock
products this is the total amount of water required. In the case of vegetal products
it is the amount of water, that has to be added to the precipitation water, to achieve
optimal plant irrigation. [m3/ton/a]

• pwaterj : Amount of water available for production in each cluster j (for livestock
production and irrigation). [m3/a]

• prmaxc : Maximum share of crop groups in relation to total agricultural area [1]

• prminc : Minimum share of crop groups in relation to total agricultural area [1]

[all ton units in dry matter]

2.3.4 Sub-functions
To lighten the general model structure, some model components which appear more than
once in the model description and depend on the variables of the current time step t are
arranged as functions:

fgrowtht,i (xt) =
t∏

τ=1
(1 + xtcτ,i) (2.7)

fprodt,i,k (xt) =
∑
ji

{
xprodt,j,k : k ∈ L∑
w x

area
t,j,k,wp

yield
t,j,k,wf

growth
t,i (xt) : k ∈ V

(2.8)

fdemt,i,k (xt) = pdemt,i,k +
∑
l

pfshri,l,k

(
pfeedi,l fprodt,i,l (xt)−

∑
κ

pbyprodi,κ,l fprodt,i,κ (xt)
)
. (2.9)

• fgrowtht,i : Growth function describing the aggregated yield amplification due to
technological change (Chapter 5) compared to the level in the starting year 1995
for each year t and region i. [1]

• fprodt,i,k : Function representing the total regional production of a product k in region
i at timestep t. In the case of vegetal products, it is derived by multiplying the
current yield level with the total area used to produce this product. In the case of
livestock products, it is represented by the related production variable. [106 ton
dry matter]
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• fdemt,i,k : Function defining the demand for product k in region i at timestep t. It
consists of an exogenous demand for food and materials pdemt,i,k and an endogenous
demand for feed, which is calculated as the feed demand generated by the livestock
production minus the feed supply gained through byproducts. [106 ton dry matter]

2.3.5 Goal function

gt(xt) = g(t, xt, x(t−1), ..., x1, Pt) (2.10)

The goal function describes the value that is minimized during the optimization in
each time step. It is time-dependent, meaning that it looks different for each time step
depending on the solutions of the previous time steps and the time depending parameters.
The goal function gt(xt) is defined as follows:

gt(xt) =
∑
i,v

pfrvi,v f
growth
t,i (xt)

∑
ji,w

xareat,j,v,w

 (2.11)

+
∑
i,l

(
pfrli,l f

prod
t,i,l (xt)

)

+
∑
i

plcci ∑
ji,v,w

(
xareat,j,v,w − xareat−1,j,v,w

)
+ptcc

∑
i

xtct,i
(

1
|V |

∑
v

pτ1
i,vf

growth
t,i (xt)

)pcxp ∑
ji,v,w

xareat−1,j,v,w

 .
The function describes the total costs of agricultural production. The total costs can

be split in four terms: First, the area depending factor costs of vegetal production, which
increase with the yield gain due to technological development (Chapter 5). Second, the
factor costs of livestock production depending on the production output. Third, the
land conversion costs which arise when non-agricultural land is cleared and prepared
for agricultural production. Fourth, the costs, which arise by investing in technological
development to increase yields by new inventions and improvements in management
strategies (Chapter 5). The technological change costs are proportional to the total
cropland area of a region and increase disproportionate with the yield growth bought in
the current time step and the agricultural land-use intensity τ (Chapter 4).

2.3.6 Constraints

Constraints are used to describe the boundary conditions, under which the goal function
is minimized.
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Global demand constraint (for each activity k)

∑
i

fprodt,i,k (xt)
1 + pseedi,k

≥
∑
i

fdemt,i,k (xt) (2.12)

This constraint describes the global demand for agricultural commodities: The total
production of a commodity k adjusted by the seed share required for the next production
iteration has to meet the demand for this product.

Trade balance (for each region i and product k)

fprodt,i,k (xt)
1 + pseedi,k

≥ ptb
{
fdemt,i,k (xt) + pxst,i,k : psfi,k ≥ 1
fdemt,i,k (xt)psfi,k : psfi,k < 1

(2.13)

The trade balance constraint is similar to the global demand constraint, except that it
acts on a regional level. In the case of an exporting region (self sufficiency for the product
k is greater than 1), the production has to meet the domestic demand supplemented by
the demand caused due to export. In the case of importing regions (self sufficiency
less than 1), the domestic demand is multiplied with the self sufficiency to describe the
amount which has to be produced by the region itself. In both cases the demand is
multiplied with a so called “trade balance reduction factor”. This factor is always less or
equal 1 and is used to relax the trade balance constraints depending on the particular
trade scenario, that is run.

Land constraints (for each cluster j)

∑
v,w

xareat,j,v,w ≤ plandj (2.14)
∑
v

xareat,j,v,′ir′ ≤ pir.landj (2.15)

The land constraints guarantee, that no more land is used for production than avail-
able. The first land constraint (Equation 2.14) ensures the land availability for agricul-
tural production in general. The second one (Equation 2.15) secures, that irrigated crop
production is restricted to areas that are equipped for irrigation.

Water constraint (for each cluster j)

∑
v

xareat,j,v,′ir′p
yield
t,j,v,′ir′f

growth
t,i(j) (xt)pwatreqj,v +

∑
l

xprodt,j,l p
watreq
j,l ≤ pwaterj (2.16)

In MAgPIE, the production of animal commodities as well as vegetal goods produced
with irrigation requires water. The required amount of water is proportional to the
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production volume. The whole cluster-specific water demand must be less or equal to
the water available for production in this cluster.

Rotational constraints (for each crop group c, cluster j and irrigation type w)

∑
vc

xareat,j,v,w ≤ prmaxc

∑
v

xareat,j,v,w (2.17)∑
vc

xareat,j,v,w ≥ prminc

∑
v

xareat,j,v,w (2.18)

The rotational constraints are used to describe crop rotations, but also other aspects
such as cultural preferences or efforts towards autonomic food production systems. This
is achieved by defining for each vegetal product a maximum and minimum share relative
to total area under production in a cluster. While crop rotation structures are exclusively
described with the maximum share constraint, cultural preferences and autonomy efforts
are basically described with the minimum constraint.

2.4 The LPJmL model

The “Lund-Potsdam-Jena with managed Land” (LPJmL) model is a process-based,
global vegetation model, which simulates natural vegetation with 9 plant functional
types (PFTs) [Sitch et al., 2003] as well as agricultural vegetation with currently 16 crop
functional types (CFTs) [Bondeau et al., 2007]. The model has a grain size of 0.5◦×0.5◦
and works on a daily time step basis. An explicitly modeled carbon cycle with its relevant
processes such as photosynthesis, carbon allocation and respiration and the implemented
water cycle (runoff, discharge, interception, evaporation, transpiration) enables LPJmL
to estimate feedbacks of changes in atmospheric CO2 concentrations, precipitation and
temperature changes [Gerten et al., 2004, 2007, Rost et al., 2008]. The process-based
implementation of seasonal phenology (sowing and harvest dates) of CFTs allows for
adaptation of crop varieties and growing periods to climate change [Bondeau et al.,
2007, Waha et al., 2011].
LPJmL provides MAgPIE cellular data (0.5◦×0.5◦, yearly) on current and future yield

levels (for rainfed production and production with irrigation, crop-specific), crop-specific
water requirements for irrigation and cellular water availability based on simulated dis-
charge. The yield data is derived by using an artificial land use pattern giving each CFT
in each cell a non-vanishing land use share. Comparing the water use under activated
and deactivated water stress (limitation of water supply) gives the water demand needed
for irrigation. Water availability is simulated running a scenario with natural vegetation
only.
The data is preprocessed according to the MAgPIE format standards (10 year averages,

cells partitioned based on MAgPIE regions) and then upscaled using the methodology
described in chapter 3. The data is calculated for the time period from 1995 to 2095 based
on various climate scenarios. However, in MAgPIE it is also possible to run simulations
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assuming static yield levels using only the LPJmL values calculated for 1995.

2.5 General Algebraic Modeling System (GAMS)

Whereas LPJmL is written in C, MAgPIE is written in GAMS (“General Algebraic
Modeling System”), a special language designed to express optimization problems [Brook
et al., 1988, McCarl et al., 2008]. It is mostly used in economics and its typical appli-
cations are models based on cost minimization or profit maximization. In contrast to
classical programming languages the code is not executed step by step. Instead one has
to define the structure of the model with parameters, constants, variables, constraints
that have to be fulfilled and a goal function that has to be minimized or maximized.
Executing GAMS this model description is sent to an external solver which compiles
the problem and solves the constraints. Consequence of this setup is a strict separation
of the numerical part done by the solver and the general model description supplied
by the user. On one hand this allows the modeler to use highly efficient optimization
algorithms without spending time on it. On the other hand any kind of model modifi-
cation, that requires direct access to the solver, becomes unfeasible. This is especially
relevant for attempts to increase model performance or to analyze model outputs (e.g.
uncertainty analysis). Another aspect of GAMS is, that its syntax is kept quite simple,
which allows it to be learned fast. This even holds true for people, that are not used
to work with programming languages. Unfortunately, this feature is bought by a quite
limited versatility of the language. Many problems, such as dynamic sizes of vectors, or
advanced mathematical calculations, can only be done in an circuitous and unsatisfac-
tory way or cannot be performed with GAMS at all. This led in the case of MAgPIE
to an outsourcing of many model components to a collection of scripts written in R [R
Development Core Team, 2010], PHP [Bakken et al., 2000] and Python [van Rossum and
Drake Jr., 2001] embracing the GAMS core. One example of an outsourced component
is the clustering and further preprocessing of high-resolution model inputs described in
chapter 3. As solver MAgPIE currently uses CONOPT [Drud, 1994], a solver especially
designed for large, nonlinear problems.

2.6 Outline of this thesis

To allow policy makers to take reasonable decisions it is an urgent need, that scientists
deliver information about processes involved in the respective topic. One approach to
estimate and predict the role and impacts of processes is the development of models
represesenting the sector of interest. The basic duty of models is to identify the inter-
actions, that occur between different processes. A typical setup is: We know process A
and we know process B, but what do we get, if we combine both processes? Applied to
agriculture this can mean: We know the demand for several agricultural commodities at
the market level and we know the spatial yield variations of these agricultural commodi-
ties. What production patterns do we get, if we combine both findings? In most cases
this combination of processes comes along with the problem of different scales. In the
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mentioned example the agricultural yield is related to a local scale. It depends on local
factors such as water availability, weather and soil conditions. In contrast the demand
for an agricultural commodity is described at the market level at which the products are
traded. Combining these processes, all involved scales must be taken into account by the
model. Having only a local model the yield could be computed correctly, but the demand
could not be estimated properly. Having only a model acting at the market scale, the
demand estimation would be more reasonable, but relevant yield variations could not be
taken into account. Combining all relevant scales becomes a challenging task, especially
when many different scales are involved. Global land-use models, such as MAgPIE, are
prime examples of models facing these scale issues. While some processes occur at the
global scale, such as global trade, others are of a regional character, such as technological
development. The lower end is marked by processes occurring at the local scale, such
as farming decisions and plant growth. The ability to properly include all these scales
into a model is strongly limited by the availability of computational resources. The only
chance to get an accurate model, which is still computable, is therefore to condense
these cross-scale interactions effectively. Accordingly, the overall research question of
my thesis is: How can a condensation of cross-scale interactions in a land-use model be
achieved?
Applied on an existing model one can split this question into two parts: First, how can

existing cross-scale interactions be simplified and optimized? Second, how can important
cross-scale linkages be established, which are missing in the existing framework? The
answers to both questions significantly depend on the involved processes and boundary
conditions, such as the general model setup or the kind of information, which is available
for the corresponding topic. This eliminates the potential to give a generalized answer.
Therefore, I apply these research questions on the MAgPIE model and present solutions
for specific cross-scale interactions, which are of high importance for the general model
simulation. In this context both cases, the improvement of existing cross-scale linkages
and the establishment of missing linkages, are treated exemplary.
Chapter 3 deals with the issue how to optimize existing cross-scale implementations.

It is focused on the issue of data upscaling and its central question is: How can the
amount of information, which is lost in the upscaling process, be reduced? A selection of
clustering methods (k-means and hierarchical clustering) is applied for high-resolution
MAgPIE input data and compared to the common upscaling method using a static grid,
which is a upscaling rule independent of the underlying data. To estimate the quality
of the different methods and the corresponding resolution losses, two comparisons are
performed: First, the similarity between the original input data and its correspond-
ing upscaled data is measured and compared between the different upscaling methods.
This is used as an indicator for the general information loss in the upscaling procedure.
Second, the upscaled data is used as input for simulation runs with MAgPIE and the
corresponding model outputs are compared with model outputs derived with the orig-
inal, high-resolution input data. This comparison provides insights concerning the loss
of information which is most relevant for the model simulation itself.
Chapter 4 and 5 deal with the aspect of improving but also establishing important

cross-scale linkages in a model. The central question for these two chapter is: How can
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technological change be implemented properly in a global land-use model? Technological
change acts on two scales: Investments are done and research takes place at the regional
scale, whereas its outcome can be observed at the local scale in form of yield increases
and proposed management changes. As I started to work with MAgPIE this linking was
already - in contrast to most other agricultural land-use models - present in the model, so
that it was possible to induce yield increases due to investments in technological change.
However, technological change is a bidirectional cross-scale interaction: Regional in-
vestments in technological change can trigger yield increases at the local scale, but the
technological development level at the local scale also affects investment effectiveness
(investment-yield ratio) at the regional scale. The required investigations for this miss-
ing feedback link are split in two parts. In the first part a measure for agricultural
land-use intensity is developed. It measures the current level of yield increases due to
past technological developments in a simple and condensed manner (Chapter 4). This
measure is necessary for the mathematical representation of agricultural development
in each region at each timestep. In the second part this measure is used to investigate
the dependence of the investment-yield ratio (which is describing how much investment
is required for a certain amount of yield increase) on the current level of agricultural
land-use intensities. Thereafter, this relation is utilized for a condensed, bidirectional
implementation of technological change in MAgPIE (Chapter 5).
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3 Cluster-based upscaling
Abstract

1 Global land-use models have to deal with several spatial scales, ranging from the
global scale of 105km down to the farm level with scales of around 100m. Combined
with the increasing complexity of modern land-use models one faces the problem of
limited computational resources. One solution of this problem is a spatial upscaling
based on a static grid or administrative units as e.g. countries. Unfortunately this
type of upscaling flattens many regional differences and produces a homogenized
map of the world. In this chapter I present an alternative upscaling approach using
clustering methods. Clustering reduces the loss of information due to upscaling by
choosing an appropriate aggregation pattern.
In the following different clustering methods are investigated concerning their

quality in terms of information conservation. The results indicate that clustering is
always a good choice and preferable compared to grid-based upscaling. Although
all tested clustering methods delivered better results than grid-based upscaling, the
choice of clustering method is not arbitrary. Comparing original and upscaled data
directly shows, that k-means clustering is the best choice using a small number of
clusters, while bottom-up hierarchical clustering behaves best for light upscaling
with a number of clusters close to the original number of cells. Comparing outputs
of a model fed with original data and a model fed with upscaled data, bottom-up
clustering delivered the best results for all numbers of clusters tested (ranging from
14 to 3772 clustered of a data set containing 4669 cells).

3.1 Introduction
One characteristic of land-use models is their linking of elements from geography and
economics. Since the general approaches of both disciplines differ significantly several
scale related problems arise: In geography spatial information plays a major role. Data
is linked to a location and spatial explicitness is most desirable. In economics markets
and market equilibria are key elements. Spatial explicitness typically plays only a minor
role. Instead the focus lies on complex market dynamics and flows of inputs and outputs.
The challenge of agricultural land-use models is to take both aspects into account:

global markets and their market equilibria as one important feature of the agricultural
sector, but also spatial explicitness of agricultural production, since productivity in agri-
culture strongly depends on local environmental conditions. However, including high-
resolution data into an equilibrium model leads to significant problems of computability.
Increasing the number of simulated units typically leads to disproportionate increases

1This chapter is based on Dietrich et al. [2011a]
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in computation time and required amount of working memory. For instance, MAgPIE
(Chapter 2.3) shows quadratic increases in computation time with increasing number
of simulated cells. So a bisection of the grain side length, which means a quadrupling
of 2D-cells, leads to 16 times longer computation times. Furthermore, the increases in
working memory requirements limit the total number of cells to less than 5000.
In current agricultural research different approaches are used to deal with this problem.

Models focused on the economy often cover global agricultural markets, but only at a
coarse spatial resolution of a few world regions (e.g. AgLU [Sands and Leimbach, 2003],
FASOM [Adams et al., 1996], IMPACT [Rosegrant et al., 2008]), whereas models focused
on geographical or ecological processes are either only modeling certain regions of the
world, with exogenous global markets (e.g. CLUE [Verburg et al., 1999a,b, Wassenaar
et al., 2007]), or apply a rule-based approach (e.g. SALU [Stephenne and Lambin, 2001],
Syndromes [Cassel-Gintz and Petschel-Held, 2000] - a general land use model review was
done by Heistermann et al. [2006]). Hence, either the economic or the ecological part is
represented in a simplified manner bypassing or disregarding the issue of different scales.
One possibility to cope with this issue of cross-scale interactions is the use of cluster

algorithms for upscaling. In the following I present and compare a selection of cluster-
ing algorithms as methods to increase the spatial resolution of agricultural equilibrium
models. For the comparison the MAgPIE model is used. First, I have modified the
model structure to be able to simulate in any spatial aggregation, with a lower limit at
the grain size of the original input data. Second, I have implemented spatial upscaling
methods (grid-based and clustering-based) to merge input data to these aggregations
(together this allows running the model at various spatial aggregations). Third, I have
implemented an interpolation methodology to downscale clustered outputs back to the
grain size of the input data. Last, I have used this implementation to compare the
standard upscaling method using a static grid with hierarchical and non-hierarchical
clustering methods.

3.2 Methods

3.2.1 Model implementation

As described in chapter 2.3, MAgPIE is a model with three scales involved: A global
scale representing global markets, a regional scale of 10 world regions representing specific
economic development, demands and technology levels, and a local scale representing
farming decisions based on spatially varying production parameters, as for instance
potential yields and water availability. Since GAMS does not allow for calculating sets
and therefore cannot handle inputs in varying resolutions, a PHP script is executed
before GAMS is started (Chapter 2.5). The PHP script organizes the upscaling of the
original input data set and rewrites the sets in the GAMS source code according to the
chosen aggregation. The upscaling of input data itself is done in R, either by using a
static or a clustering grid. After finished execution of the GAMS model, the clustered
data is downscaled to the grain size and grid of the original input data using another R
and Python script.
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The unprocessed input data has a grain size of 0.5◦ (i.e. 30 arc-minutes longi- and
latitudinal). Each cell contains information on potential yields of 20 different crops
(rainfed and irrigated)2, crop-specific demands for irrigation water, the total amount of
water available for irrigation (all calculated with LPJmL - Chapter 2.4), total cropland
area and total land available for additional cropland expansion [Krause et al., 2009]. For
upscaling two approaches are implemented: (A) an upscaling based on static grids and
(B) an upscaling using clustering methods. In any case only cells that belong to the
same world region are aggregated together.
In the case of static grids a grain size in degree is chosen (coarser than the original

grain size of 0.5◦) and input data cells belonging to the same cluster are either summed
up or (weighted) averaged dependent on the type of data. Yields are averaged using the
total crop share of a cell as weight; the amount of available water per cell is summed up;
required amount of water for each crop is also crop-area weighted averaged; and crop
shares are cell-area weighted averaged.
For the clustering methods the target grid is chosen depending on the data to be

upscaled. All clustering methods have in common that clusters are built on some kind
of distance information between cells/clusters. Every cell is represented by its data and
the distance between cells is based on the similarity of data, for instance cells with similar
yields are close to each other, whereas big differences in yields lead to high distances
between cells (not to be mistaken for physical distance). Because of regional separation
every cluster belongs exactly to one region. In contrast to grid-based upscaling, clusters
are not connected to a well defined spatial location. It can even happen that one cluster
is split in several fractions distributed over the whole region. Furthermore, clustering
does not increase the grain size, since the smallest unit, which a clustered data set can
contain, is still one cell of the original data set. Instead of increasing the grain size,
cluster methods try to reduce the amount of resulting units by combining cells with
similar characteristics.

Figure 3.1: Schematic diagram showing the upscaling process using a static grid. 81 cells
are upscaled to 9 data elements.

Figure 3.1 and Figure 3.2 illustrate the different upscaling approaches schematically.
2wheat, rice, maize, millet, pulses, cotton, potato, sugar beet, sugar cane, cassava, sunflower, soybean,
groundnut, palm oil, rapeseed, bioenergy grasses, bioenergy trees, fodder, pasture, others
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Using a static grid the procedure is quite simple (Figure 3.1). In the shown example
the initial data set has 81 cells with a grain size of 1x1 and an extend of 9x9. The
values of each cell are indicated with colors. Increasing the grain size to 3x3 leads to the
static grid, which is used for upscaling. The colors of the new data set are derived by
averaging the colors of all elements within a segment. Depending on the homogeneity
of a segment the resulting color is either similar to the colors of the input data set
(lower-right segment) or quite different (upper-left segment). In the shown example the
initial color distribution is only hardly visible in the upscaled diagram, which indicates
a significant loss of resolution.

Figure 3.2: Schematic diagram showing the upscaling process using clustering tech-
niques. 81 cells are upscaled to 7 cluster.

Figure 3.2 schematically shows cluster-based upscaling starting with the same input
data set as in figure 3.1. Using clustering the grid is determined based on the input data
itself. In the grid creation step, cells are merged based on its similarity. In contrast
to static grid upscaling the cluster size is variable. This allows to build clusters with
only one cell (orange cell in the schematic diagram). The grain size of the data set is
not increased. Merged cells do not have to be neighbors. A distribution of one cluster
over the whole data set is possible (e.g. the green or the yellow cluster). However, this
eliminates the possibility to reasonably link a cluster with a single, spatial coordinate.
Therefore, the upscaled data typically has to be downscaled again, before it can be used
for spatially explicit calculations. The deviation between the input and the upscaled
data set shows, that some data is lost. However, the characteristics of the initial data
set are still visible, indicating a relatively high level of resolution conservation. In this
context it is also interesting to note, that the shown cluster example only used 7 cluster,
while the static grid upscaling was performed with 9 segmentation units.

3.2.2 Clustering
Two clustering methods are used in several variations: k-means clustering and hierarchi-
cal clustering. Using many dimensions (meaning many data sets involved) for clustering
will slow down the process and decrease the similarity of clustered cells concerning a spe-
cific property, as e.g. the rainfed maize yield. On the other hand excluding data from the
clustering process can produce significant biases. To decide which values should be in-
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cluded in the clustering I distinguished between two types of values: Values with spatial
inhomogeneity that significantly influence decisions made by the model and values with
spatial inhomogeneity that has no significant impact on the simulation. One example
for a significant value is the maize yield in each cell. Increasing the inhomogeneity in
yields also has an effect on farming decisions: An increase in inhomogeneity increases
the degree of specialization in an optimization model since one cell becomes more favor-
able than another. An increased homogeneity of yields reverses this effect, suitability
for production becomes more similar between clusters. As the degree of specialization is
also important at the global scale due to the described nonlinear cross-scale interaction,
this kind of information is relevant for the simulation. Typically a higher degree of spe-
cialization decreases overall production costs. So averaging highly inhomogeneous yields
should increase total production costs of the model, since potential for optimization is
lost.
An example for a non-significant variable is total cropland area. An increased inhomo-

geneity does not change general farming decisions. Land availability does not increase
or decrease only because of a homogeneous or inhomogeneous distribution. The degree
of specialization will remain the same, independent of the cropland homogeneity. At
least in first order the general model behavior is not influenced by the homogeneity of
cropland. For cropland area it is relatively obvious that its spatial inhomogeneity does
not affect the simulation significantly, but in other cases this distinction becomes much
more problematic. One may look, for example, at the irrigated yield of cotton. This
value can become important in some clusters, but in most cases it should be irrelevant
because the production of irrigated cotton will stay unattractive for a broad range of
yields. In this case one can expect to produce errors by excluding it from the clustering
process but it is not clear which type of error will be larger: the error caused by the
exclusion or the error that is caused by the fact, that the cotton yield will change the
clustering in many regions where cotton itself is irrelevant and therefore, should not
influence the clustering. Since, except of total cropland shares, no data set could be
clearly identified as non-significant all remaining data was used for the comparison of
the different upscaling types.

k-means clustering

k-means is a method to partition n cells with data x1, ..., xn into k clusters S1, ...,Sk
with mean values µ1, ..., µk by minimizing the within-cluster sum of squares (WCSS)
(Equation 3.1) [Hastie et al., 2005, Hartigan, 1975].

argS min
k∑
i=1

∑
xj∈Si

‖xj − µi‖2 (3.1)

The problem can be solved analytically, but because of its high computational intensity
typically heuristic algorithms are used. I have used the heuristic implementation offered
by the pycluster python module [de Hoon et al., 2004] which is based on the EM-
algorithm. It is an iterative algorithm which can be divided into three steps:
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1. Calculate the centroid (average value) of each cluster

2. For each item, determine which centroid is the closest

3. Reassign the item to that cluster

For initialization cluster centroids are distributed stochastically. The iteration is
stopped, when no items are reassigned anymore. This approach is relatively fast and
delivers accurate results. A disadvantage is that the algorithm is not fully deterministic,
because of its initialization. Therefore, reproducibility is limited, which can be prob-
lematic when comparing results of different runs. Furthermore, comparison of runs with
different numbers of clusters is impracticable because of its missing cluster hierarchy.
In the case of MAgPIE one has to face the additional constraint that all cells within

one cluster have to belong to the same world region. For k-means clustering this is
assured by initializing separate clustering processes for each region. The number of
clusters for each region is determined by multiplying the fraction of cells within a region
relative to total cells with the number of total clusters.

Hierarchical clustering

Hierarchical clustering methods can be classified in two types: top-down and bottom-up.
Both create a hierarchy based on the distances between cells/clusters. Top-down meth-
ods start with one cluster which is split step by step into smaller clusters until every
cluster contains exactly one cell. Bottom-up methods start on the cell level and aggregate
cells step by step to clusters until only one cluster remains. The distances between clus-
ters can be measured with various metrics and methods. I have used an euclidean metric
and the maximal-linkage method, which is measuring the distance between clusters as
the maximum distance between two cells of both clusters. Single linkage (minimum dis-
tance between cells of two clusters), average linkage (average distance between cells of
both clusters) and centroid linkage (distance between centroids of two clusters) were also
tested for bottom-up clustering. However, I excluded them, since they produced at best
equivalent but in most cases significantly inferior results compared to maximal-linkage
in terms of the used evaluation measures (Section 3.2.4).
Hierarchical clustering has the advantages that it is fully deterministic and that its

results produced with different numbers of clusters can be merged easily based on its
hierarchy. However, the hierarchy also limits the adaptivity of the clusters to the data,
because of lock-in effects: Clustering decisions made earlier in the hierarchy cannot be
reversed. Hence, my assumption is that top-down clustering becomes ineffective for
many clusters whereas bottom-up clustering shows the same effect for few clusters. For
comparison I use a bottom-up hierarchical clustering as implemented in the pycluster
module [de Hoon et al., 2004] and an own implementation of top-down clustering also
based on the maximal-linkage method.
The combination of two cells or clusters to a new cluster in the bottom-up approach

is well-defined, whereas the partition of one cluster into sub-clusters or cells in the
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top-down approach can be done in many ways. This condition makes top-down cluster-
ing less trivial and less adaptive compared to bottom-up. For instance, single-linkage
and average-linkage approaches applied for top-down clustering become computation-
ally highly intensive and hard to apply for large datasets. Only the maximal-linkage
approach can be applied in a straightforward way and is therefore implemented for the
comparison. First of all, a distance matrix is calculated containing all distances between
cells within the cluster, then this matrix is sorted by distances and iterated starting with
the longest distance. The first two cells in the sorted matrix are separated directly and
put to clusters 1 and 2. Starting with the second cell-linkage of the distance matrix, it
is tried to separate as many cells with long distances as possible: When a cell is already
mapped to a cluster the other cell is put into the opposite cluster. If no cell is mapped
to a cluster, both cells are mapped to two temporary clusters. If one cell belongs to an
output cluster and one to a temporary cluster, both connected temporary clusters are
merged with the output clusters. No action is taken if both cells are already mapped
to an output cluster. This procedure assures that as many long-distance connections as
possible are cut and that both cells with the longest distances between them belong two
different clusters (Appendix 1).
Hierarchical clustering results in a hierarchy tree which is describing in which order

cells are clustered based on the distance. To prevent clustering across region borders I
started separate clustering processes for each region. However, in contrast to k-means
clustering, I merged the results of all ten world regions to one hierarchy tree based on
distance information (clusters with smallest distances are combined first). This approach
allows for distributing clusters in a globally optimal way, while preventing cross-regional
clustering.

3.2.3 Downscaling

Two significant problems arise, when dealing with clustered data. First, the clustered
data does not necessarily have a spatial meaning, since clusters can be distributed over
the whole map. Second, only outputs directly derived from input data involved in the
clustering procedure have a proper meaning. With respect to values that were not part of
the clustering, model outputs in each cluster are only the mean of a potentially strongly
inhomogeneously distributed value and a significant amount of information is lost. Both
problems can be solved with downscaling. The problem of missing spatial information is
solved by inversion of the upscaling process, whereas the information loss in the second
case is compensated by additional knowledge about the distribution used within the
downscaling process.
The downscaling can be divided into two steps. In step one, data with trivial down-

scaling rules is processed. Trivial downscaling is either downscaling by giving each cell
the value of its belonging cluster or downscaling by partitioning a summed-up value
proportionate to data that is known already in the higher resolution. In all other cases
downscaling rules are non-trivial. Values, which require non-trivial downscaling, are not
processed directly. Instead, these values are split into components with trivial down-
scaling rules and recalculated in a second step at 0.5◦ grain size level based on these
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downscaled components.
One example is cellular, crop-specific data on cropland shares. First, these shares

are split into a term containing crop-specific total areas and a term containing the
total cluster areas. Second, crop-specific total areas are downscaled by partitioning it
proportionally to total cell area (total areas are constant and known at 0.5◦ grain size
and, therefore, do not need to be downscaled). Third, the crop-specific areas are divided
by the total area to reconstruct the original shares at 0.5◦ grain size.

3.2.4 Evaluation

The suitability of a clustering method strongly depends on the given task. There is no
“best” clustering algorithm in general [Hartigan, 1985, Jain and Dubes, 1988, pg. 142].
While some methods appear to be more often an appropriate choice than others, there
is no general ranking of the different approaches. To test the quality of the different
upscaling methods applied to the task given in this dissertation I have upscaled the
original 0.5◦ data with 59199 cells to a grain size of 2.0◦ with 4669 cells. This new data
was then upscaled to 17 different aggregation levels with 3772 to 14 clusters using static
grids, k-means clustering, hierarchical bottom-up clustering and hierarchical top-down
clustering. Afterwards the upscaled data and the related model output was downscaled
again by giving each 2.0◦ cell the values of its related cluster. In a second experiment the
same procedure was repeated holding the upscaling method fixed to hierarchical bottom-
up clustering with 400 and 1438 cells but changing this time the number and type of
data sets involved in the clustering. Besides the standard case of using all available data
except of cropland shares, also upscaling with each data set as single input and upscaling
with the 10 most relevant crop and 10 least relevant crops (based on quality measures
of single input upscalings) was performed.
To measure the quality of the different upscalings i = 1..n, two measures d1(i) and

d2(i) are applied. Both measures can be written in general as the mean of normalized
distances (Equation 3.2).

dk(i) = 1
m

m∑
s=1

d̂k(Xi,s, X0,s)
maxnj=1 d̂k(Xj,s, X0,s)

(3.2)

The quality of the i-th upscaling is calculated by taking the mean of the distances d̂k
between all data sets s = 1..m used for comparison (e.g. rainfed yield of maize is one
data set, available discharge of each cell is another one), normalized by the maximum
distance observed for each data set. This approach delivers values between 0 and 1, with
0 in the case of a perfect match between reference and upscaled data and 1 in the case of
the maximum observed deviations between data sets. The measures can be interpreted
as measures for the resolution of a data set, where values close to 0 indicate a resolution
similar to the original data set and values close to 1 indicate high losses in resolution.
For the calculation two distance measures d̂1 and d̂2 were applied:
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1. The euclidean distance d̂1 between two data sets Y and Z with l data points:

d̂1(Y, Z) = ‖Y − Z‖ =

√√√√ l∑
k=1

(yk − zk)2 (3.3)

This measures the similarity between original and upscaled data set: the more
information is conserved, the lower the final value will be.

2. The mutual information distance d2. For calculation of mutual information dis-
tances I have used the R package “bioDist”[Gentleman et al., 2005]. Mutual in-
formation m is a nonlinear measure for the mutual dependence of two variables Y
and Z (Equation 3.4).

m(Y, Z) =
∑
y∈Y

∑
z∈Z

p(y, z) log
(
p(y, z)
p(y)p(z)

)
(3.4)

p(y, z) is the joint probability density function of Y and Z, p(y) and p(z) are the
marginal probability density functions of Y and Z respectively. Mutual information
is a measure for the amount of information which is shared by both variables. So it
should be high if the upscaling conserves much information of the original dataset
and should be low otherwise. The mutual information distance d̂2 is calculated by
applying the transformation of equation 3.5 to the mutual information m, which
was proposed by Joe [1989].

d̂2(Y,Z) = 1−
√

1− exp(−2m(Y,Z)) (3.5)

Like d̂1, d̂2 is also measuring the similarity between original and upscaled data set.

description unit
cellular, crop-specific, annual water de-
mand required for optimal irrigation mm/year

cellular, annual amount of water available
for irrigation 106m3

cellular, crop-specific rainfed yields ton/ha

cellular, crop-specific yields under optimal
irrigation ton/ha

Table 3.1: List of cellular model inputs

Measures are applied separately on cellular model inputs, which are also involved in
the clustering procedure (Table 3.1), and a selection of default non-cellular and cellular
model outputs (Table 3.2, Table 3.3). Since the mutual information measure d2 does
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description unit
total costs of production 106US$
total production value (price·amount) 106US$
global area of all crops 106ha

gross global area of converted land 106ha

regional area of all crops 106ha

global area-weighted average of technical
change rates (dimensionless)

global supply-demand balances (dimensionless)
technical change rates in regions (dimensionless)

Table 3.2: List of non-cellular model outputs

description unit
cellular land use shares of single crops in
total area (dimensionless)

cellular land use shares of total cropland,
pasture and land available for cropland ex-
pansion

(dimensionless)

cellular cropland prices US$/ha
cellular producer rent including land rent 106US$

Table 3.3: List of cellular model outputs

require time series, it is only applied on input data sets and cellular output data sets,
whereas d1 is also applied on non-cellular data sets.
To test the significance of measured differences in quality between upscaling types the

Wilcoxon signed-rank test is used [Wilcoxon, 1945].

3.3 Results

3.3.1 Comparison of cluster methods and number of clusters

Applying the measures d1 and d2 and a Wilcoxon signed-rank test with H0 hypothesis
dataset1 ≥ dataset2 the clustering methods show for the model input data significantly
better results over the full tested range compared to the standard upscaling using static
grids (Figure 3.3, Table 3.4). Overall k-means shows the best results in the case of strong
upscaling for which it behaves significantly better than both hierarchical methods. In
the middle range k-means still delivers significantly better results compared to top-down
hierarchical clusters, but non-significant advantages compared to bottom-up clustering.
For light upscaling bottom-up clustering shows the best performance, which is signifi-
cantly better than top-down clustering in both quality measures and significantly better
than k-means clustering in d1 (Table 3.4). Top-down clustering behaves over the whole
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Figure 3.3: Upscaling quality measured with d1 (left) and d2 (right) on upscaled model
input data.

range slightly worse than bottom-up clustering, with significant differences for medium
and light upscaling and nearly identical results for strong upscaling.
Comparing the outputs of model runs with reference data and with upscaled data

the picture changes (Figure 3.4, Table 3.5). Still all three clustering methods perform
significantly better than upscaling using static grids over the whole range, but with
lower significance levels and smaller differences in quality measures. Whereas the quality
ratings of input data varied nearly over the whole range from 0 to 1, the ratings of output
data only range from 0.3 for d1 or 0.5 for d2 to 0.9. This reduced variance in quality
measures reflects an increased variance in rankings of the different upscaling experiments
across different output data sets. That means the distance rankings of different upscaling
methods and number of clusters depend more on the chosen set of output data, whereas
the rankings in input data primarily depend on the number of clusters and upscaling
method. Hence, some outputs might get better with k-means clustering, other outputs
with hierarchical clustering. It even happens that a less aggressive upscaling increases
the distance between the reference and the upscaled case.
Comparing the output results of the different clustering methods with input results one

finds, that k-means performs much worse in case of the outputs. On the input side there
is a significant quality increase especially for strong upscaling, when applying k-means
clustering compared to hierarchical clustering. Whereas d2 still reports significantly
better results for k-means at strong upscalings, this effect cannot be observed in outputs
for d1 anymore. In fact k-means shows in d1 for strong upscalings an even worse behavior
then static grids. Comparing the hierarchical clustering methods the results of the input
data persists also for the output case: Both methods produce similar results with slight,
but significant advantages for the bottom-up approach (significant for medium to low
upscaling levels, non-significant for strong upscaling).
Analyzing non-cellular and cellular outputs separately one finds, that in general results
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H0 full coarse medium fine

h ≥ s d1 0.000 *** 0.004 ** 0.001 *** 0.001 ***
d2 0.000 *** 0.004 ** 0.001 *** 0.001 ***

k ≥ s d1 0.000 *** 0.004 ** 0.001 *** 0.001 ***
d2 0.000 *** 0.004 ** 0.001 *** 0.001 ***

t ≥ s d1 0.000 *** 0.004 ** 0.001 *** 0.001 ***
d2 0.000 *** 0.004 ** 0.001 *** 0.001 ***

s ≥ h d1 1.000 1.000 1.000 1.000
d2 1.000 1.000 1.000 1.000

k ≥ h d1 0.112 0.004 ** 0.138 0.993
d2 0.044 * 0.004 ** 0.053 0.903

t ≥ h d1 0.999 0.945 1.000 1.000
d2 0.999 0.961 1.000 0.999

s ≥ k d1 1.000 1.000 1.000 1.000
d2 1.000 1.000 1.000 1.000

h ≥ k d1 0.897 1.000 0.884 0.010 **
d2 0.960 1.000 0.958 0.116

t ≥ k d1 0.993 1.000 0.993 0.539
d2 0.997 1.000 0.998 0.722

s ≥ t d1 1.000 1.000 1.000 1.000
d2 1.000 1.000 1.000 1.000

h ≥ t d1 0.001 *** 0.074 0.001 *** 0.001 ***
d2 0.002 ** 0.055 0.001 *** 0.002 **

k ≥ t d1 0.009 ** 0.004 ** 0.010 ** 0.500
d2 0.004 ** 0.004 ** 0.003 ** 0.312

Table 3.4: Input data quality comparison: p-values and related significance levels of a
Wilcoxon signed-rank test applied to the d1 and d2 results of upscaled model
inputs (* p≥95%, ** p≥99%, *** p≥99.9% | h: hierarchical bottom-up, t:
hierarchical top-down, k: k-means, s: static grid | full: full range (14-3772
cells), coarse: strong upscaling (14-346 cells), medium: medium upscaling
(54-1167 cells), fine: light upscaling (346-3772 cells))
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Figure 3.4: Upscaling quality measured with d1 (left) and d2 (right) on model outputs
derived with upscaled model inputs.
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Figure 3.5: Comparison of upscaled results using quality measure d1 for non-cellular
model outputs (left) and cellular model outputs (right).
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H0 full coarse medium fine

h ≥ s d1 0.000 *** 0.008 ** 0.002 ** 0.001 ***
d2 0.000 *** 0.012 * 0.003 ** 0.001 ***

k ≥ s d1 0.003 ** 0.039 * 0.002 ** 0.014 *
d2 0.000 *** 0.004 ** 0.001 *** 0.001 ***

t ≥ s d1 0.000 *** 0.039 * 0.024 * 0.003 **
d2 0.000 *** 0.020 * 0.002 ** 0.001 ***

s ≥ h d1 1.000 0.996 0.999 1.000
d2 1.000 0.992 0.998 1.000

k ≥ h d1 0.998 0.680 0.884 1.000
d2 0.920 0.008 ** 0.688 0.997

t ≥ h d1 1.000 0.926 0.997 1.000
d2 0.998 0.680 0.993 1.000

s ≥ k d1 0.997 0.973 0.999 0.990
d2 1.000 1.000 1.000 1.000

h ≥ k d1 0.002 ** 0.371 0.138 0.001 ***
d2 0.087 0.996 0.348 0.005 **

t ≥ k d1 0.274 0.629 0.990 0.188
d2 0.500 1.000 0.968 0.116

s ≥ t d1 1.000 0.973 0.981 0.998
d2 1.000 0.988 0.999 1.000

h ≥ t d1 0.001 *** 0.098 0.005 ** 0.001 ***
d2 0.003 ** 0.371 0.010 ** 0.001 ***

k ≥ t d1 0.741 0.422 0.014 * 0.839
d2 0.518 0.004 ** 0.042 * 0.903

Table 3.5: Output data quality comparison: p-values and related significance levels of
a Wilcoxon signed-rank applied to the d1 and d2 results of model outputs
generated with upscaled inputs (* p≥95%, ** p≥99%, *** p≥99.9% | h: hier-
archical bottom-up, t: hierarchical top-down, k: k-means, s: static grid | full:
full range (14-3772 cells), coarse: strong upscaling (14-346 cells), medium:
medium upscaling (54-1167 cells), fine: light upscaling (346-3772 cells))
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H0 full coarse medium fine

h ≥ s non-cellular 0.001 ** 0.020 * 0.042 * 0.014 *
cellular 0.000 *** 0.039 * 0.002 ** 0.001 ***

k ≥ s non-cellular 0.627 0.098 0.138 0.968
cellular 0.000 *** 0.055 0.001 *** 0.001 ***

t ≥ s non-cellular 0.032 * 0.020 * 0.188 0.312
cellular 0.001 *** 0.191 0.007 ** 0.001 ***

s ≥ h non-cellular 0.999 0.988 0.968 0.990
cellular 1.000 0.973 0.999 1.000

k ≥ h non-cellular 0.995 0.809 0.784 1.000
cellular 0.994 0.371 0.812 1.000

t ≥ h non-cellular 0.985 0.809 0.968 0.993
cellular 1.000 0.992 1.000 1.000

s ≥ k non-cellular 0.391 0.926 0.884 0.042 *
cellular 1.000 0.961 1.000 1.000

h ≥ k non-cellular 0.005 ** 0.230 0.246 0.001 ***
cellular 0.007 ** 0.680 0.216 0.001 ***

t ≥ k non-cellular 0.122 0.629 0.920 0.042 *
cellular 0.627 0.945 0.997 0.312

s ≥ t non-cellular 0.972 0.988 0.839 0.722
cellular 0.999 0.844 0.995 1.000

h ≥ t non-cellular 0.017 * 0.230 0.042 * 0.010 **
cellular 0.000 *** 0.012 * 0.001 *** 0.001 ***

k ≥ t non-cellular 0.888 0.422 0.097 0.968
cellular 0.391 0.074 0.005 ** 0.722

Table 3.6: Comparison between cellular and non-cellular outputs: p-values and related
significance levels of a Wilcoxon signed-rank applied to the d1 results of cel-
lular and non-cellular model outputs (* p≥95%, ** p≥99%, *** p≥99.9% |
h: hierarchical bottom-up, t: hierarchical top-down, k: k-means, s: static
grid | full: full range (14-3772 cells), coarse: strong upscaling (14-346 cells),
medium: medium upscaling (54-1167 cells), fine: light upscaling (346-3772
cells))
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for non-cellular data are much fuzzier than for cellular ones (Figure 3.5, Table 3.6). For
hierarchical clustering methods both outputs still show significant quality improvements
compared to static grids. However, for k-means the results only remain significant for
cellular data. For non-cellular data static grids deliver even better results than k-means
in the case of light upscaling.

3.3.2 Choice of data sets involved in clustering

input output
d1 d2 d1 d2

h400 h1438 h400 h1438 h400 h1438 h400 h1438
all data 1 1 1 1 1 2 1 2

input best 3 3 3 3 35 33 5 4
worst 35 14 5 5 5 8 3 3

output best 4 4 4 4 6 1 2 1
worst 2 2 2 2 9 24 4 5

Table 3.7: Ranks concerning input and output quality of selected upscalings using hier-
archical bottom-up clustering with 400 (h400) and 1438 (h1438) clusters and
varying numbers and types of data sets used for upscaling: “all data” = All
available data sets, “input/output best/worst”: A combination of those 10
data sets showing the best/worst performance in input/output quality mea-
sures, when only using that single data set for upscaling. The ranks are based
on an quality list containing the shown 5 combinations plus all 60 single data
set upscalings (Appendix - Table 1).

Table 3.7 shows the rank of five different data set combinations used for upscaling
concerning their input and output quality measures out of a list of 65 data set combi-
nations in total (the 5 shown upscalings + 60 single data set upscalings). This test was
performed in order to estimate the role of data set choice for upscaling.
Results show, that especially the number of data sets involved in the upscaling pro-

cedure matters. More data sets deliver better results in general. Hence, the “all data”
upscaling, which was also applied for the previous tests, delivers the best results in to-
tal. But also the tests using only the 10 most important data sets (best) and 10 least
important (worst) delivered in most cases better results than any other run using only
a single data set for upscaling.
Comparing the best and worst cases one finds, that in the case where not all data

sets are used, still the specific choice of data sets matters. Some data sets deliver better
patterns than others. But having a data set that delivers good quality results for the
upscaled input data does not necessarily mean the model outputs will also have a good
quality. In fact, I observed the exact opposite in the experiments: Using the “input
worst” data sets delivers better results in outputs than “input best”. Moreover, “output
worst” delivers better results in inputs than “output best”. This may just be a random
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effect, but it clearly shows that good quality results for inputs do not necessarily indicate
good quality results for outputs. Nevertheless, when I compare “input best/worst” with
results for inputs and “output best/worst” with results for outputs, the order is as
expected and the “best” upscalings deliver better results than the “worst” upscalings.

3.3.3 Spatial cluster distribution

To get an impression how these different upscaling methods partition the world spatially
I have plotted the clusters for the case of 43 clusters derived from the original data set
with grain size 0.5◦×0.5◦ under use of all previously defined input data sets (Figure 3.6,
3.7, 3.8 and 3.9). I have chosen 43 clusters as it is the highest number of clusters which
is still presentable graphically and has at the same time for MAgPIE a counterpart in
terms of static grid upscaling (in this case with grain size of 60.0◦ × 60.0◦).

60° x 60° static grid – 43 cluster

Figure 3.6: Map showing the 43 clusters used for a 60◦×60◦ static grid upscaling (Differ-
ent colors mean different cluster. 12 colors are used to distinguish between
the 43 cluster. Since clusters belong to exactly one world region and none of
the regions is containing more than 12 cluster, this distinction is unique.)

The map of clusters derived with the static grid upscaling methods shows clearly its
geometric origin (Figure 3.6). The borders between the 60◦ × 60◦ squares are easily to
detect. However, at many locations the geometric structure is disrupted by the country-
specific world region allocation of the 10 MAgPIE regions (compare Figure 2.2 and
Appendix Table 2). This effect is caused by the MAgPIE requirement that any cluster
has to belong exactly to one world region. Therefore the 60◦ × 60◦ squares are split
at region boundaries. Combined with the spatial structure of continents this leads to
significant differences in cluster sizes. Some clusters are huge (e.g. the green cluster in
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North America), other ones are tiny (e.g. the pink cluster in southern Latin America).

k-means clustering – 43 cluster

Figure 3.7: Map showing 43 clusters calculated with k-means clustering (Different colors
mean different cluster. 12 colors are used to distinguish between the 43
cluster. Any cluster belongs exactly to one world region. No region contains
more than 12 cluster.)

In contrast to static grid upscaling the clusters derived with the k-means method show
its strong dependence on spatial, biophysical conditions, which were used as input for the
clustering (Figure 3.7). Even though the location was not an explicit clustering criteria
most clusters form a big, connected cluster core with some smaller, spatially detached
parts. At many locations the clusters resemble well-known geographical structures such
as deserts (Australia, North Africa), but also the dependence of many biophysical char-
acteristics on the latitude becomes visible (longish clusters parallel to the equator such
as in Canada, Russia or North Africa). Clusters are distributed relative homogeneously
over the whole world.
As observed for k-means clustering also hierarchical bottom-up clustering resembles

many geographical structures (Figure 3.8). Some clusters are nearly identical to the
k-means results (especially for Australia and Europe), other ones differ significantly
(Russia). In contrast to k-means the clusters are distributed less homogeneously over
the world. Some regions, such as Pacific Asia, are clustered in more detail, other ones,
such as Former Soviet Union, are represented with less cluster.
The map derived with top-down hierarchical clustering (Figure 3.9) shows many analo-

gies to the result derived with bottom-up hierarchical clustering. Many structures are
nearly identical, such as the huge cluster in Russia and Canada or the cluster cover-
ing Brazil. In most cases the boundaries between clusters are only slightly shifted. A
systematic difference in both cluster maps is not visible.
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hierarchical bottom-up clustering – 43 cluster

Figure 3.8: Map showing 43 clusters calculated with hierarchical bottom-up clustering
(Different colors mean different cluster. 12 colors are used to distinguish
between the 43 cluster. Any cluster belongs exactly to one world region. No
region contains more than 12 cluster.)

hierarchical top-down clustering – 43 cluster

Figure 3.9: Map showing 43 clusters calculated with hierarchical top-down clustering
(Different colors mean different cluster. 12 colors are used to distinguish
between the 43 cluster. Any cluster belongs exactly to one world region. No
region contains more than 12 cluster.)
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3.4 Discussion

Agricultural land-use models combine processes across different scales. While some eco-
nomic processes, like commodity trade, occur at the global scale, ecological parameters
and farming decisions come into play at regional to local scales. Linking these scales is
in land-use modeling as well as in many other research areas one of the important issues
that have to be faced [Wessman, 1992, Cash and Moser, 2000, Harvey, 2000]. Upscal-
ing through clustering is one option to improve these linkages and to enhance model
precision.
The results show that all presented clustering methods deliver at least equal but

mostly better results compared to standard upscaling based on static grids. Whereas
the application of clustering methods compared to static grid upscaling is superior in
all situations, the explicit choice of the clustering method is a matter of application and
number of clusters. My investigations show that for comparing original and upscaled
data sets directly two cases can be distinguished. Working with a few clusters (less
than 500 clusters in the case of 2.0◦ grain size), k-means clustering delivers the lowest
information losses and highest resolution conservation due to upscaling. Moving up to
a higher number of clusters, hierarchical bottom-up clustering with maximal linkage
becomes the best choice. Hierarchical top-down behaves over the whole range slightly
worse than hierarchical bottom-up. This is in contradiction to my initial hypothesis
that top-down clustering is the best choice for a few clusters whereas bottom-up works
better for many clusters. It seems, that the advantage of top-down clustering not to
have a significant lock-in effect for a few clusters is just dominated by other effects.
Since the maximum linkage method only determines that the two cells with the highest
distance within a cluster have to be separated in an iteration step, but does not make any
decisions on the mapping of the remaining cells, there are several possible representations
of maximum-linkage top-down clustering possible. So, the bad performance of top-down
clustering may just be an effect of the chosen algorithm and not of the method itself.
That hierarchical top-down clustering can be the best choice in some cases was shown
by Steinbach et al. [2000] performing document clustering with a mixture of hierarchical
top-down and k-means algorithm (“bisecting k-means”).
Comparing outputs from model runs with original data and runs with upscaled data,

the ranking between different clustering methods changes. The advantages of k-means
clustering for a few cells compared to hierarchical bottom-up are not visible anymore
and hierarchical bottom-up clustering shows now best results over the whole range. A
possible explanation for this behavior is that k-means clustering is based on euclidean dis-
tances, whereas both hierarchical clustering methods use a maximum linkage approach
which is a representation of the infinity norm. This leads to significant differences in the
handling of outliers. In the case of the infinity norm outliers are preferably used as single
clusters since only the maximum distance between two clusters is counted and not the
sum of all connections between them. In the case of an euclidean distance outliers will
be embedded much more often in an existing cluster since it not only accounts for the
maximum distance but also for all distances between cells of both clusters. Looking at
the upscaled data itself it is preferable to use a well-balanced distance measure, such as
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the euclidean distance, since it accounts for any distance of any cell. Looking specifically
at outputs of optimization models, extreme values as supplied by outliers are relevant
for the optimization result. Hence, in order to rebuild the result produced with the ref-
erence data itself it is preferable to describe outliers as single clusters. This will reduce
the loss of information which is most relevant for the modeling output. Consequently,
the maximal linkage method is the best choice for preserving information most relevant
for the optimization. Anyhow, when working with real data especially the correctness
of outliers is often extremely arguable. From that point of view k-means clustering
is reducing the similarity between outputs of reference data and upscaled data, but is
probably reducing the biases caused by flawed outliers. Hence, the choice of clustering
method is also a question of reliability of input data.
The role of outliers can also explain the fact that results for k-means are even worse for

non-cellular outputs than for cellular outputs. Whereas in the case of cellular outputs
still each single cell plays an important role for the total result, non-cellular outputs can
be much more dominated by outlier-induced effects. But also for all other clustering
methods results for non-cellular data are less significant than for cellular ones. This
is also due to the fact that for non-cellular data errors from upscaling more frequently
cancel each other out. This could explain the high randomness in the quality of results
and also why even the reduction of clusters can improve results.
The comparison of different combinations of data sets to determine the clustering

patterns shows that it is always a good choice to use any data set for clustering that
also should be upscaled. A good selection of data sets can also deliver good clustering
results, but cannot compete with results of an upscaling with all available data sets.
Hence, for the clustering procedure the best choice is to use the full range of data sets
that are going to be upscaled.
The comparison of cluster maps brings out the differences between the used methods

graphically. The disadvantages of static grid aggregation become clearly visible: Geo-
graphical characteristics are not taken into account and region or continent borders lead
to unwanted differences in cluster sizes. However, the latter effect is especially occurring
for huge grain sizes and decreases with decreasing grain size. In contrast to static grid
upscaling all clustering methods show clear responses to the spatially explicit, biophys-
ical conditions. Several geographical structures can be found in a similar way in all
cluster maps. While both hierarchical methods deliver nearly identical results, there is
a significant difference between k-means and hierarchical clustering: Whereas k-means
delivers a relatively homogeneous, spatial distribution of cluster, hierarchical clustering
shows strong differences in cluster sizes. This is most obvious for Former Soviet Union,
which is represented with only one cluster in both hierarchical maps, whereas k-means
is using several clusters for it. This behavior has primarily two reasons: First, the maxi-
mum linkage method which was applied for hierarchical clustering favors the creating of
very small cluster, while the k-means procedure minimizing the within-sum of squares
leads to more homogeneously distributed cluster. Second, the number of clusters per
region was predefined for k-means clustering (as the missing hierarchy does not allow
for a reasonable adaption method). At the same time it was chosen dynamical for the
hierarchical methods based on its hierarchy. Though, k-means was forced to use more
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clusters for Former Soviet Union, while hierarchical clustering could shift these clusters
to other regions.

3.5 Conclusion
In land use modeling, the combination of high-resolution data with high-complexity
models remains a challenge. One approach to deal with it is clustering. My tests
show that especially hierarchical bottom-up clustering leads to a significant reduction of
information loss due to upscaling. Other clustering methods (e.g. hierarchical top-down
or k-means clustering) also increase the quality of upscaled data, but to a lesser extend.
When using clustering in land use models, one also has to deal with the problem of

interpolation. Before the actual clustering procedure it is important to determine the
components of input data that are relevant for the cluster structure. One has to find
interpolation rules for all other data sets of the model, since they cannot be assumed to
be homogeneous within a cluster, if they were not part of the clustering.
Clustering alone does not solve the scale problem in land use models, but it allows -

independent of the particular choice of a clustering method - to increase model accuracy
and to reduce information losses within the upscaling process. Compared to spatial
upscaling with static grids, clustering showed in my analysis always superior results and
thus is the better choice for upscaling.
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4 Measuring agricultural land-use intensity

Abstract

1 Human activities such as research & development, infrastructure or manage-
ment, are of major importance for agricultural productivity. Its amplitude can be
captured with the concept of agricultural land-use intensity. I show, that agricul-
tural land-use intensity can be seen as the human-induced amplification of yields.
Furthermore, I present a measure, called the τ -factor, which is a complementary
approach to current measures for agricultural land-use intensity. Whenever these
current methods fail, the τ -factor becomes an alternative. The τ -factor is the ratio
between actual yield and a yield under well defined management and technology
conditions. By taking this ratio, the physical component, which is equal for both
terms, is removed. This allows to analyze which regions have strongly amplified
their physical yield levels and which have not. As an example I use this measure in
combination with yields deduced from a global vegetation model for a global study
of agricultural land-use intensities of the year 1995. Outputs are average land-use
intensities in different world regions as well as land-use intensities for specific crops.
The analysis shows that parts of North America, Russia and especially Africa had
low agricultural land-use intensities, which implies good long-term potentials for
further yield increases, whereas the Eastern US and Western Europe had already
high agricultural land-use intensities in 1995.

4.1 Introduction
Together with expansion of the land area under agricultural production, agricultural
land-use intensification is the major driver to satisfy future demand for agricultural
products. Because land expansion is limited, intensification will become even more
important in the future [Ewert et al., 2005]. To assess the long-term potential of further
yield growth and to be able to make projections about future land-use developments it is
essential to know current levels of agricultural land-use intensity. The ability to satisfy
future demands and to prevent food crises but also the future development of food prices
all depend on the potential for further land-use intensification.
Literature provides two different concepts for analyzing agricultural potentials: yield

gap analysis and analysis of land-use intensities. Yield gap analysis is based on the
concept that growth in agricultural production, like economic growth in general, can be
attributed to two sources. First, it can be driven by growth in inputs (like labor, land or
capital) and second, by gains in productivity or technological change respectively [Romer,

1This chapter is based on Dietrich et al. [2011c]
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concept description
yield a measure of the output per unit area
human activity any kind of human interaction influencing

yields (e.g. management or R&D)
physical environment natural circumstances under which production

takes place (soil, climate, terrain)
agricultural land-use intensity α degree of yield amplification caused by human

activities
τ -factor measure proportional to agricultural land-use

intensity
agricultural long-term potential potential for yield increases over the next

decades based on current agricultural land-use
intensities

Table 4.1: Concepts and terms used in this chapter

1990, Fulginiti et al., 2004]. It is assumed that each location on earth has an upper yield
bound, called either “potential yield” [van Ittersum and Rabbinge, 1997] or “technology
frontier” [Nishimizu and Page, 1982], which is set by present physical conditions and
available technologies. Observed or actual yields may be lower than the potential yield
due to the ineffective application of inputs and available technologies. Regions with
strong discrepancies between actual and potential yield have a strong potential for further
yield increases, whereas regions at the technology frontier are not able to increase their
yields any further [Färe et al., 1994, Coelli and Rao, 2005, Neumann et al., 2010]. This
approach can be seen as a short-term analysis of agricultural potentials, since it focuses
on agricultural inputs and management, which can be changed and optimized within
years, but excludes changes due to Research & Development (R&D), which typically
have a time lag of around 10-30 years [Alston et al., 1998b, Alston, 2000]. For measuring
distances of firms to the frontier, Shephard [1970] introduced the method of distance
functions. Besides the economic performance, several studies include environmental
indicators in this analysis [Färe et al., 1996, Reinhard et al., 1999, Munksgaard et al.,
2007, Bellenger and Herlihy, 2009].
In contrast, the concept of agricultural land-use intensity does not measure the dis-

tance to a technology frontier or potential yield. Instead it is a productivity measure
which is only taking the human-induced productivity into account, which - in contrast to
yield gap analysis - also includes technological change as a source of growth. Although,
both measures are calculated in some cases quite similar, their meaning is usually sig-
nificantly different, as shown by the following thought experiment: Having a field with
an actual yield equal to the potential yield the yield gap would be zero. Assuming now,
that some technological progress takes place which is shifting the potential yield, but
which is not adopted by the farmer (e.g. because the farmer does not get any informa-
tion about the new technology) this would mean, that the yield gap increases. At the
same time the land-use intensity remains constant, since the farmer did not improve his
current management strategies but also did not downgrade it. So, in terms of yield gap
one would observe a change for the worse, whereas the land use intensity measure would
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report no changes at all. The yield gap measures the distance to the currently best,
whereas the land-use intensity is measuring the absolute, human-induced productivity.
This makes land-use intensity the more adequate tool for assessing long-term poten-
tials and developments in agriculture (time horizons of several decades). Because of its
broader spectrum of included activities it is also more appropriate as a surrogate for the
general state of agricultural development. In a similar manner it is used in other fields
as for instance in ecology, where several studies show a correlation between agricultural
land-use intensities and decreases in species diversity [Oehl et al., 2003, Zechmeister and
Moser, 2001].
The concept of land-use intensity is less clearly defined than that of yield gap analysis.

In the literature one can find several measures for land-use intensity, but only a few are
provided with an explicit definition of the underlying concept [Shriar, 2000]. I only
found explicit definitions for the term “land-use intensification”, but no one for “land-
use intensity”. Brookfield [1993] describes intensification as ’in relation to constant land,
the substitution of labor, capital or technology for land, in any combination, so as to
obtain higher long-term production from the same area’. Kates et al. [1993] and Netting
[1993] use the formulation that intensification is ’a process of increasing the utilization
or productivity of land currently under production, and it contrasts with expansion,
that is, the extension of land under cultivation’. Shriar [2000] uses the formulation that
’agricultural intensification is a process of raising land productivity over time through
increases in inputs of one form or another on a per unit area basis’.
Land-use intensity is measured either in an output-oriented or input-oriented way us-

ing inputs as surrogates for increases in productivity [Lambin et al., 2000]. When the
focus is on output, intensity can be measured in production units (calories, tons, mone-
tary value,...) per area per time unit [Turner and Doolittle, 1978]. In an input-oriented
approach the amount of inputs is measured and weighted with their assumed increase in
production [Shriar, 2000, Turner and Doolittle, 1978] or single input characteristics are
used as a surrogate, for instance cultivation frequency [Boserup, 2005].
Measuring intensity using output should be the most appropriate way but it suffers

several disadvantages: depending on the region under investigation and the intended
resolution and accuracy, yield data may be unavailable, whereas data on applied inputs
may exist. Comparing different crops concerning their land-use intensity is problematic
because of differing yield levels, which also depend on the chosen production unit. Hence,
one needs a common denominator to be able to compare land-use intensities of different
crops against each other [Kates et al., 1993]. Using inputs as surrogates for land-use
intensity has in some cases the advantage of better data availability, which can also make
it the only option [Shriar, 2000]. However, this approach requires detailed assumptions
about the kind of inputs and their contribution to total output. One also needs to know
exactly which inputs are relevant and have to be taken into account.
Comparing all these definitions and measures one can find general agreement in two

areas: (1) intensification means increases in productivity and (2) intensification can be
achieved by a broad spectrum of options which are all induced by humans. Changes
in productivity due to environmental reasons are excluded. Based on this consensus I
present a slightly different definition of intensification: agricultural land-use intensifica-
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tion is the increase of land productivity due to human activities. And in line with this
definition agricultural land-use intensity is defined as the degree of yield amplification
caused by human activities. These definitions are quite similar to former ones but high-
light that any kind of human interaction with agriculture that affects productivity also
affects land-use intensity whereas no kind of environmental interaction has any influence
on it.

In order to assess the long-term potential for further yield growth one needs to know
current agricultural land-use intensities. In a region with high agricultural land-use
intensity many known options to increase yields are already being applied. This does not
inhibit further intensification, but raises the marginal effort that is required for further
enhancements [Jones, 2009]. In other words, a high agricultural land-use intensity means
higher marginal costs for further yield increases, which makes investments in this region
less attractive.

To capture agricultural land-use intensities I present a mathematical description based
on the formal definition. Based on this description I derive another measure, the “τ -
factor”, which is easier to calculate than the land-use intensity itself but differs only in
a scalar value. It is the ratio between an actual yield and a yield that would be achieved
under a constant land-use intensity. It is defined in a general way but for the calculation
it is necessary to have data on actual yields and yields under a known land-use intensity.
That data can either be derived by models or statistical analysis. For the exemplary
application of the methodology I used yield data simulated by a global vegetation-crop
model, the “Lund-Potsdam-Jena dynamic global vegetation model with managed Land”
(LPJmL) [Bondeau et al., 2007].

Compared to other surrogate measures for land-use intensity, which are typically
input-oriented, such as the mentioned cultivation frequency [Boserup, 2005] or other
input oriented approaches [Shriar, 2000, Turner and Doolittle, 1978], the τ -factor ex-
ploits the contrary, output-oriented approach. Its complementarity makes it a beneficial
alternative whenever current methods for estimation of land-use intensity fail. For in-
stance this is the case, if output data has a better availability than data on inputs, if
the exact contribution of inputs to agricultural productivity is unclear, or if the set of
inputs relevant for agricultural productivity cannot be fully recovered. Performing a
global analysis, all these three mentioned conditions are part of the general issue, which
makes the τ -factor the preferable choice for this task.

This chapter is structured as follows: Section 4.2.1 describes the basic methodology,
section 4.2.2 explains the utilization of modeled crop yields in computing τ and section
4.2.3 deals with the spatial aggregation of the τ -factor. These parts are followed by
a presentation of results of a global analysis (Section 4.3) and a discussion of results
and methodological aspects (Section 4.4). The chapter concludes (Section 4.5) with a
recapitulation of the approach and its applicability in future studies.
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4.2 Methods

4.2.1 Theoretical framework - agricultural land-use intensity and τ -factor

Crop yields are useful parameters in assessing agricultural land-use intensity. The yield
of a region itself already provides a rough estimate of it. However, this measure is
still distorted because of its dependence on the physical environment. Hence, a high
yield could either indicate a high agricultural land-use intensity or favorable physical
conditions.

Y (c, j) = α(c, j)︸ ︷︷ ︸
land-use intensity

· Y0(c, j)︸ ︷︷ ︸
base yield

(4.1)

Applying the concept of partial factor productivity [Nin et al., 2003], a yield Y (c, j)
(of crop c at place j) can be described as the product of two factors: a base yield
Y0(c, j) and an amplification factor α(c, j) (Equation 4.1). The base yield depends only
on the physical environment and is free of any human influences except sowing and
harvesting, which are essential cropping activities. In contrast, the amplification factor
α is independent of the physical environment and represents only the amplification of
yields due to human activities. Thus α is the agricultural land-use intensity.
The base yield Y0 is a highly theoretical construct. Typically there is no clear border

between the physical environment and human activity. Hence, it is problematic to
calculate the base yield Y0 itself. As a workaround I use a reference yield Yref which has
only to fulfill the requirement that its agricultural land-use intensity αref is constant for
all crops and at any place. Dividing the actual yield Yact by this reference yield Yref
(Equation 4.2) results in the τ -factor. It is independent of the physical environment, since
Y0 remains the same for both yields. Furthermore, it is proportional to the agricultural
land-use intensity αact but easier to calculate since the only requirement for Yref is an
equal agricultural land-use intensity at any place and for any crop. Yref can be modeled
much more straightforward compared to Y0 which has the much stronger requirement
of total absence of agricultural land-use intensification. The τ -factor is not the land-use
intensity itself but can be used as a surrogate, as it is only a scaled version of it. The
scaling only becomes important when comparing differently calculated τ -factors with
each other.

τ(c, j) = Yact(c, j)
Yref (c, j) = αact(c, j) · Y0(c, j)

αref · Y0(c, j) = αact(c, j)
αref

(4.2)

In general the actual yield can be measured directly, whereas the reference yield Yref
has to be deduced theoretically. The τ -factor has a close relationship to the yield def-
inition. It displays the same responsiveness to changes in management, technological
progress and other human activities as crop yields: a general yield growth driven by
intensification results in the same growth of yields and τ assuming that physical condi-
tions have not changed. A τ -factor in one region A that is twice as high as a τ -factor
in another region B can be interpreted in the following way: if both regions have the
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same physical conditions region A will have twice the yield of region B due to a higher
agricultural land-use intensity. If, on the contrary, physical conditions in region A are
half as good as in region B, yields in region A would equal yields in region B if τA is twice
as high as τB. Thus, the τ -factor not only ranks regions, but also delivers quantitative
information about yield differences between regions due to differences in human activity
(agricultural land-use intensity).

4.2.2 Calculating the τ -factor

Before calculating τ it is important to know how this factor works. Roughly speaking,
the factor compares a yield simulated by a model that captures some, but not all aspects
of agriculture, with observations. The τ -factor measures exactly the fraction that is not
part of the model. This approach has the advantage that one does not need to know what
human activities are contributing to agricultural land-use intensification. Therefore, the
approach can also capture impacts of activities that are not yet known to be relevant
for agriculture. On the other hand, it has the disadvantage that anything else that is
not part of the model is captured as well. Hence, one needs a model which is accurate
in simulating those parts which are to be excluded from the measurement - in this case
the physical environment. This is done best by a vegetation model without explicit
implementation of agricultural management (or at least with the option to switch off
management).
Another problem of this analysis is the consistency of yield data. Actual yield data

is available at national [FAOSTAT, 2009] or even sub-national level [Monfreda et al.,
2008] and reference yield data has to be deduced theoretically, e.g. by means of crop
models. However, especially global models typically suffer from systematic errors and
biases caused by the high complexity of the underlying problem. To reduce the error
caused by these biases in τ , consistency between actual and reference yields plays a major
role. Therefore, the simulation of reference yields and the model-based downscaling of
FAOSTAT data as actual yields is done with the same model. By doing so, impacts of
model biases on τ do not vanish but are reduced, since they appear in the same way in
numerator and denominator.
In this dissertation I use the “Lund-Potsdam-Jena dynamic global vegetation model

with managed Land” (LPJmL) which simulates these yields at sub-country level (0.5◦×
0.5◦ grain size) (Chapter 2.4). The used LPJmL version provided yields for 11 crop-
types2. This model choice, its special characteristics and the corresponding results should
only be seen as an exemplary application of the presented method. The quality of the
results significantly depends on the quality and specialization of the model. Furthermore,
the concrete procedure to calculate reference yields and to downscale actual yields also
strongly depends on the chosen model.
LPJmL represents the human impact on agriculture via the maximum Leaf Area In-

dex (LAImax), an index that depicts the ratio of leaf surface to covered land surface
and affects the overall productivity of the plant via the fraction of absorbed photosyn-

2wheat, rice, maize, millet, pulses, sugar beet, cassava, sunflower, soybean, groundnut and rapeseed
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thetically active radiation (fpar), the scaling factor from leaf-level photosynthesis to field
scale (alphaa, representing the homogeneity of a field), as well as the harvest index (HI),
assuming that intensive systems grow high yielding varieties and extensive systems grow
more robust but lower-yielding varieties [Gosme et al., 2010]. All three factors are di-
rectly linked: highly developed systems are parameterized with a high LAImax value,
high alphaa, and high HI [Fader et al., 2010]. The value of LAImax varies in integer steps
from 1 to 7 which is in agreement with the observed range of values. A high agricultural
land-use intensity is connected to a high LAImax which in turn produces high yields.
Setting LAImax fixed to the same value globally leads to simulated yields that represent
homogeneous agricultural land-use intensities.
For downscaling of actual yields to sub-country level all 7 LAImax steps were simulated

and compared with observed data from FAOSTAT [FAOSTAT, 2009]. For each crop in
each country that LAImax-value was chosen which best reproduced observed national
yield. This heterogeneous country- and crop-specific LAImax map was then used in
LPJmL for calculating actual yields Yact at sub-country level. Important in this context
is that these 7 steps cover a huge range of yields and therefore allow one to reproduce
any yield that is more or less realistic. So the actual yields primarily have to be seen
as a model-assisted downscaling of FAO data and only to a lesser extent as a modeling
result. The reproduction of observed yields via the model also increases the consistency
of the input data, as reference yield and actual yield are thus directly comparable.
Before simulating the reference yields Yref one has to decide what the reference land-

use intensity αref should look like. Methodologically, this choice does not affect the
results, and hence one could just take in the example one of the seven runs with fixed
LAImax. However, to reduce the impact of model-based errors on the result and to
increase the signal-to-noise ratio of the simulated data, I decided to take the mean of all
seven LAImax simulations as the reference yield. Hence the reference land-use intensity
αref is equal to the mean of all seven agricultural land-use intensities (Equation 4.3).

αref = αLAImax=1 + αLAImax=2 + ...+ αLAImax=6 + αLAImax=7
7 (4.3)

4.2.3 Aggregating the τ -factor

Based on the yield data one is able to calculate τ for each grid cell. However, in several
cases it is more useful to have one mean value for a whole region instead of one value
per cell. This would, for example, have the advantage of a better signal-to-noise ratio
because cell-specific errors are reduced. In addition, this aggregation may be necessary
for specific research questions, e.g. when investigating relationships between investments
in Research & Development and the τ -factor (Chapter 5): to reduce the influence of
spillovers, τ -values have to be aggregated to a level higher than the average spillover
range.
Starting with equation 4.2 the aggregated τ -factor can be written as the ratio of
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aggregated actual yield Yact and aggregated reference yield Yref (Equation 4.4).

τ(c, i) = Yact(c, j)
Yref (c, j)

=

∑
j∈i

τ(c,j)︷ ︸︸ ︷
Yact(c, j)
Yref (c, j) ·

Xref (c,j)︷ ︸︸ ︷
Yref (c, j) ·A(c, j)∑

j∈i
Yref (c, j) ·A(c, j)︸ ︷︷ ︸

Xref (c,j)

(4.4)

After expanding the crop-area-weighted yield aggregation (with crop area A(c, j)) and
some transformations one gets an equation for a weighted τ -factor aggregation (Equation
4.5) with weight Xref .

τ(c, i) =

∑
j∈i

τ(c, j) ·Xref (c, j)∑
j∈i

Xref (c, j) (4.5)

The weight Xref is a product of crop area A(c, j) and reference yield Yref (c, j) (Equa-
tion 4.6). It can be interpreted as total production under reference conditions.

Xref (c, j) = Yref (c, j) ·A(c, j) (4.6)

4.3 Results

4.3.1 τ -factor estimation

As an example for the general τ -factor estimation procedure I have plotted the global
distributions of reference yield and actual yield for maize (Figure 4.1 and 4.2) and the
resulting τ -factor distribution (Figure 4.3).
The reference yields (Figure 4.1) show a relatively homogeneous picture with maize

yields mostly between 0 and 300 gC/m2 (C = Carbon). Highest values can be found in
parts of south and central Asia (Afghanistan, Kasachstan, Turkmenistan, Usbekistan)
in the Nil river basin in Egypt, southern parts of Brazil, Chile, in parts of Australia and
at the U.S. west coast. Low values can be found especially at high latitudes in Canada
and Russia, but of course also in dry regions such as parts of Africa.
Looking at the actual yields for maize one finds a significantly higher variance in

yields (Figure 4.2). Yields range from 0 to 550 gC/m2. In some cases quite good yield
potentials are used to receive high yield levels, as for example at the U.S. west coast,
Chile or in the Nil river basin in Egypt. In other cases these potentials are not exploited,
such as in South Brazil and Afghanistan. It is also interesting to note that some regions
are using only average reference yields to receive quite high actual yields, such as parts
of North America, Spain or Iran (last one is using lower reference yields compared to
its direct neighbor Afghanistan to receive higher actual yields). Whereas for reference
yields country-specific differences did not exist, they become apparent for actual yields
(compare for instance Iran with Afghanistan, or Argentina with Brazil).
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Figure 4.1: Global reference yield distribution for maize in 1995
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Figure 4.2: Global actual yield distribution for maize in 1995
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Figure 4.3: Global τ -factor distribution for maize in 1995

Taking the ratio between actual and reference yields one gets the τ -factor distribution
(Figure 4.3). The trends already discussed for the comparison between reference and
actual yields become now directly visible. For instance, the good performance of Iran
and the bad performance of Afghanistan is easily to detect as well as the bad performance
of Brazil and quite good performances of Argentina, Chile, Peru. As I have chosen an
average yield level as reference yield the values vary between 0 and 2. As the actual
yields are calibrated based on FAO country-data the borders between countries become
now also prominently visible in the data. Furthermore, the variance within countries is
reduced compared to the variance in yields within a country (good to see for instance
for the U.S.). Most countries show quite homogeneous τ -values, often combined with
some outliers. Outliers typically occur for cells with quite low yield levels, since small
errors can have there a huge influence on the general result. Overall one gets a quite
clear picture of countries with high and countries with low land-use intensities.

4.3.2 crop-unspecific τ -factor

To get a crop-unspecific, general τ -factor for each location one has to aggregate the
values for the different crop-types. Figure 4.4 shows this procedure for North America
(NAM) and the 11 crop-types supplied by the used LPJmL version. As one can see crop-
specific τ -values within a country are relatively homogeneous, caused by the country-
based calibration of actual yields. Inhomogeneities within countries are primarily caused
by two factors: First, outliers due to low yield levels in reference and actual yields, so
that small simulation errors have a huge impact on the results. Second, general broader
scale variations, which are caused by slightly different responses of the yield levels to the
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Figure 4.4: crop-specific τ -factors for North America (NAM) in 1995 and their aggregate.
The corresponding crop-types are: (a) wheat, (b) rice, (c) maize, (d) millet,
(e) pulses, (f) sugar beet, (g) cassava, (h) sunflower, (i) soybean, (j) ground-
nut, (k) rapeseed. The aggregated τ -factor, which is derived by calculating
the mean over all crop-types for each cell, is marked as (all).

LPJmL management factors. However, the overall results are primarily influenced by the
country-specific calibration to FAO yield levels. Aggregating these crop-specific values to
the general τ -factor one gets a picture with higher variance within a country. In this case,
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the variance is caused by the crop-specific differences in τ -factors in combination with
the underlying land-use patterns describing the spatial crop distributions. Therefore,
this combination of different crop-specific τ -factors, which were calibrated with country-
specific data and the cellular land-use patterns allow to make statements concerning
sub-national land-use intensity patterns. However, its resolution and accuracy is quite
limited. In the presented example of North America the combination of different crop-
specific τ -factors to a general τ -factor uncovers an East-West-divide with high land-use
intensities in Eastern U.S. and lower intensities in Western U.S.. Furthermore, the
combination of crop-specific τ -factors leads to smoother transitions between countries
compared to intensities of single crops. For instance, differences in intensities between
Mexico and the U.S. are quite obvious for wheat, rice, maize and millet. However, the
transition for the generalized land-use intensity is relatively smooth at the border of both
countries. Same holds true for the border between the U.S. and Canada. Whether this
behavior has a content-related reason or if the higher aggregation level is just averaging
errors in the calibration process out, is still unclear.

4.3.3 further results

crop types tece maize trce rice oilcrops
AFR 0.61 0.55 0.60 0.77 0.58
CPA 0.51 0.73 0.51 1.23 0.73
EUR 1.01 1.45 1.22 1.64 1.08
FSU 0.60 0.67 0.56 1.16 0.81
LAM 0.76 0.76 0.67 1.06 1.00
MEA 0.53 1.11 0.65 1.54 1.01
NAM 0.53 1.64 0.59 1.46 1.03
PAO 0.64 0.67 1.06 1.70 0.67
PAS 0.76 0.85 0.75 1.13 0.82
SAS 0.49 0.63 0.58 1.18 0.66

Table 4.2: Crop-specific τ -factors in world regions (1995)

I have calculated τ -factors for 10 world regions3 (see Table 2 in Appendix for country-
to-region mapping) and five different commodity types (temperate cereals (tece), maize,
tropical cereals (trce), rice and oil crops) for 1995 (Table 4.2). EUR has the highest
τ -factors for oil crops, temperate and tropical cereals, NAM shows the highest maize
τ -factor and PAO the highest τ -factor for rice. AFR has the lowest τ -factors for maize,
rice and oil crops and CPA for temperate cereals and tropical cereals. Some regions have
only slight variations in their τ -factors over all crops, e.g. AFR (constantly low) or EUR

3AFR = Sub-Sahara Africa, CPA = Centrally Planned Asia (incl. China), EUR = Europe (incl.
Turkey), FSU = Former Soviet Union, LAM = Latin America, MEA = Middle East and North
Africa, NAM = North America, PAO = Pacific OECD (Australia, Japan and New Zealand), PAS =
Pacific Asia, SAS = South Asia (incl. India)
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(constantly high), whereas other regions show strong variations between crops, as e.g.
PAO or MEA.
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Figure 4.5: τ -factors in 1995 world regions & global (GLO)

Figure 4.5 shows the aggregated τ -factors over all crops for all regions and at global
level in 1995 (crop area weighted mean using observed cropland shares reported by Port-
mann et al. [2010] & Fader et al. [2010]). The range is between 0.56 and 1.12. Comparing
e.g. Sub-Saharan Africa (AFR) and Europe (EUR), the same physical conditions lead
to a 98% higher yield in Europe compared to Sub-Saharan Africa due to its higher agri-
cultural land-use intensity. Besides AFR which displays constantly low levels over all
crops and EUR with constantly high levels, the general ranking shows a broad spectrum
of regions close to the global mean of 0.78. Especially SAS, MEA and LAM are within
a range from 0.75 to 0.77.
Figure 4.6 shows the global distribution of the mean τ -factors in 1995. Similar to the

crop-specific τ -factors, one can observe regions with homogeneous spatial distribution
of τ as well as regions with strong heterogeneity. For instance, the Republic of Ireland,
France, Germany, Finland and Romania show relatively homogeneous values at a high
level and Madagascar and Angola homogeneous values at a low level, whereas the US,
England and South Africa seem to be more heterogeneous in their τ -factors. One finds
high values in the Eastern US and Central Europe, medium values in Latin America and
Asia and low values in Central Africa and Eastern Europe / Russia.
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4.4 Discussion

Methodological, the τ -factor is an extension to currently available measures for land-
use intensity, with some advantages but also disadvantages in a direct comparison. Its
most important difference is, that the τ -factor measures land-use intensity in an output-
oriented manner, whereas currently applied methods typically use an input-oriented
approach. Recent methods are the best choice, if detailed data on inputs exists and the
relevant inputs and their impact on the total production is well known. If this is not
the case, the τ -factor might be the better choice. However, to compute the τ -factor it
is necessary to have detailed data on achieved yields as well as data about the relevant
environmental factors. The different approaches also cause differences in the kind of
result that is derived: Input-oriented measures for land-use intensity deliver, besides a
general estimate of the total land-use intensity, also information about the relevance of
certain inputs and the land-use intensity can be broken down to these inputs. However,
the estimates of total land-use intensity are not complete, since they only take the defined
inputs into account. The τ -factor delivers an estimate of the total land-use intensity
which cannot be broken down. Though, the measure is complete in a sense that all
impacts on agricultural intensity are taking into account, because of its output-related
nature.
The quality of the calculated τ -factors strongly depends on the quality of the used

models or statistical approaches to estimate reference yields. While this approach does
not require detailed knowledge about the underlying human interactions it requires de-
tailed knowledge on the environmental interactions. Having better data and knowledge
on the environmental side, the τ -factor becomes the best choice; having a better base
on the human side, input-based measures perform better.
Concerning the interpretation of the global analysis, it is important to realize that low

agricultural land-use intensities do not directly imply strong yield increases in the future.
There are many other factors that have to be taken into account when predicting future
yield growth. For instance, Africa shows low land-use intensities, but weak institutions
and political conditions in many African countries are elements that could inhibit its
potential. Another factor is production costs which may increase disproportionately with
yield. In this case it becomes uneconomical to produce at a higher land-use intensity.
Typical examples for this behavior are sparsely populated regions with high wage levels,
as for instance the Western US or Canada, where labor becomes a more limiting and
more cost-determining factor than land [Runge et al., 2003, Federico, 2005].
Since this study is the first one assessing land-use intensities on a global level, it

was problematic to find comparable studies. However, what I have found, is in a good
agreement to this study: Compared to a global yield-gap analysis by Neumann et al.
[2010] most regions show similar behavior in land-use intensities and efficiencies for
maize. Exceptions are China and Brazil, for which efficiency levels are slightly higher
compared to land-use intensity levels and Eastern Europe and Mexico, which are slightly
less efficient than the land-use intensity suggests. Taking into account that yield-gap and
land-use intensity are measuring slightly different things, this result is quite exciting: It
shows, that in most regions technological development and management efficiency seem
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to evolve identical. However, the exceptions show also that this does not have to be the
case. A possible explanation for the differences is that Eastern Europe and Mexico have
strong neighbors with Western Europe and USA, which China and Brazil do not have.
So the yield gaps for Eastern Europe and Mexico are relatively high, because their direct
neighbors show significantly better performances. On the other hand China and Brazil
perform quite well in comparison to their direct neighbors, but are on an average level
in a global comparison.
Comparing the presented results with FAO/OECD yield growth projections [OECD-

FAO, 2009, Bruinsma, 2003] the general results are coherent: regions with high agricul-
tural land-use intensities, for instance EUR or NAM, have low yield growth projections,
whereas AFR has low land-use intensities and high yield growth projections. However,
there are more differences between projections and intensities. For instance, FAO yield
growth projections for SAS are significantly higher than for CPA, whereas land-use inten-
sities, derived in this study, are slightly higher in SAS. This strengthens the perception
that neither efficiencies derived with yield-gap analysis nor land-use intensities can be
used in isolation to make yield growth predictions. There are several other aspects like
demand and political conditions that influence yield growth. However, land-use inten-
sities are still useful to obtain a coarse ranking concerning future yield growth. The
τ -factor approach shows that Canada and the US still have significant long-term poten-
tial for cost-efficient yield increases whereas e.g. Western Europe is already at a high
level of exploitation. Overall the highest long-term potentials for yield increases can be
found in Africa, parts of North America and Eastern Europe / Russia. However, parts
of Asia and Latin America (especially Brazil) also show a good base for further yield
improvements.

4.5 Conclusion
The future development of agriculture is closely connected to current agricultural land-
use intensities. For this study I have developed a output-based land-use intensity mea-
sure. One application for which this measure fits quite well is a global land-use intensity
analysis. The analysis shows that Europe, North America and parts of Asia exhibit high
agricultural land-use intensities whereas Africa and countries belonging to the Former
Soviet Union display significantly lower land-use intensities. Concerning further yield
increases one observes that the Western US, Canada and nearly the whole continent
of Africa show high long-term growth potentials, whereas the Eastern US and Western
Europe are already on a high level.
The τ -factor is a good alternative, whenever other methods fail, because of its com-

plementary nature. Its replacement of the need for detailed socio-economic data by a
requirement for data on the natural system makes it favorable for global studies. Fur-
thermore, it is a useful measure for implementation of technological change and related
R&D investments in land-use models as presented in the following chapter (Chapter 5).
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5 Technological change in a global land-use
model

Abstract

1 Technological change in agriculture plays a decisive role for meeting future de-
mands for agricultural goods. Especially in the longer run, i.e. several decades,
technological change will be one of the major determinants of agricultural produc-
tion. However, up to now, most agricultural sector models and models on land
use change have used technological change as an exogenous input due to various
information and data deficiencies. This chapter provides a first attempt towards an
endogenous implementation based on the τ -factor. Empirical data on investments
in technological change as well as production costs are correlated with the τ -factor.
The estimated yield elasticity with respect to research investments in the presented
approach is 0.27 and production costs per area increase linearly with an increasing
yield level. Having implemented this approach in the global land-use model MAg-
PIE allows to make projections about yield growth rates in the future. Highest
future yield increases are obtained for Sub-Saharan Africa, the Middle East, South
and Pacific Asia. A validation with FAO data for the period 1960-2005 shows that
the model behavior is in line with recent observations.

5.1 Introduction

More than 200 years ago Thomas Malthus published his rather pessimistic population
essay, in which he was stating that population growth would be restricted by a low
growth rate of food production [Malthus, 1998]. Now the world is inhabited by almost
seven billion people, which marks an increase by about 600% since Malthus’ times. One
of the main shortcomings of his essay was the underestimation of technological change
(TC - as defined in Table 5.1) in agriculture [Trewavas, 2002].
However, during Malthus’ times technological change was negligible and higher food

production was almost exclusively due to an increase in production factors [Federico,
2005]. Important innovations in agriculture from the 19th century onwards changed
this pathway [Runge et al., 2003]. Since then land-saving technological change has
been the main driver for growth in agricultural output [Wik et al., 2008, van Meijl and
van Tongeren, 1999, Rosenzweig et al., 1988]. Figure 5.1 shows the strong correlation
between agricultural output and population during the last 200 years. Agricultural

1This chapter is based on Dietrich et al. [2011b], which I have written in close collaboration with
Christoph Schmitz, who has contributed to the same degree to the paper as I did.
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concept description
agricultural land-use inten-
sity

degree of yield amplification caused by human
activities

τ -factor measure proportional to agricultural land-use
intensity

technological change (TC) more efficient usage of the input factors land,
labor or capital [Romer, 1990]

TC investments composite of annual investments in R&D and
infrastructure (e.g. transport and telecommu-
nication) [US$/year]

investment-yield ratio (IY ra-
tio)

TC investments required per human-induced
unit yield growth and area [US$/ha]

Table 5.1: Concepts and terms used in this chapter

output has increased considerably, paving the way for strong population growth. Most
of such increases in agricultural output have been the result of technological change
induced by investments in Research & Development (R&D). One example is the so
called “Green Revolution” in Asia and Latin America, initiated by two international
agricultural research institutes [Evenson and Gollin, 2003]2.
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Figure 5.1: Historic development of agricultural production and population [own illus-
tration based on Federico [2005] and United Nations [2005]]

2During the 1960s and 70s the International Maize and Wheat Improvement Center (CIMMYT) and
the International Rice Research Institute (IRRI) developed high-yielding wheat and rice seeds.
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5.1 Introduction

While the importance of TC in agriculture is widely acknowledged in the recent lit-
erature [Alston et al., 2009, Huffman and Evenson, 2006, Alene and Coulibaly, 2009,
Thirtle et al., 2003], in most agricultural sector models and models of land-use change,
TC is still implemented as an exogenous driver [Schneider and Schwab, 2005, Heister-
mann et al., 2006, Verburg et al., 2009]. In these models, projections primarily depend
on a fixed technology path rather than on internal model dynamics. This may lead to
serious biases in model results due to an underestimation of the adaptability in the agri-
cultural sector, especially in the longer run. In this chapter I present a first attempt of
implementing endogenous technological change in a land-use model, which means that
the model can freely decide about the amount of technological change in the future.
The main reason for using an exogenous TC path in most models is that although

the relationship between R&D investments in agriculture and technological change is
well documented [Alston et al., 2009, Huffman and Evenson, 2006, Alene and Coulibaly,
2009, Thirtle et al., 2003, Federico, 2005, Pardey and Craig, 1989, Alston, 2000], the
exact influence of R&D on technological change is still unknown. Several reasons exist
for this knowledge gap. First, available time series of R&D investments are still relatively
short (less than 30 years) and often incomplete [Pardey and Beintema, 2001]. Second,
spillover effects hamper the correct assignment of R&D investments to their impact.
Third, success in R&D is hard to predict. High investment may fade away without
producing any output, whereas in other instances low investment may create marvelous
results. Finally no clear boundary exists between R&D investments in different sectors.
In many cases inventions in one sector are based on inventions in other sectors. In a
sector analysis of a specific R&D sector, e.g. agricultural R&D, these cross-connections
cannot be considered.
In order to deal with these information deficiencies, I have developed a new approach

which relates investments in technological change and corresponding yield growth to
the τ -factor (Chapter 4). The use of cross-sectional country data in combination with
the τ -factor allows to take the land-use intensity of countries as a surrogate for missing
time series data. The problems of high uncertainty and unpredictable rates of return
associated with investments and the problem of spillovers are partially compensated by
using a high aggregation level of only ten world regions3.
In addition, one can also empirically show that the level of agricultural production

costs per area evolves with the τ -factor. Implementing both aspects in a land-use model
allows for computing an endogenous pathway of technological change, specifying re-
quired TC investments and changes in production costs. The presented experiments
in this chapter are performed with the land-use model MAgPIE, which is used for the
implementation and validation of the presented method. Future agricultural technology
pathways calculated with this approach can be used in other land-use change projections
that require external assumptions on technological change.

3AFR = Sub-Sahara Africa, CPA = Centrally Planned Asia (incl. China), EUR = Europe (incl.
Turkey), FSU = Former Soviet Union, LAM = Latin America, MEA = Middle East and North
Africa, NAM = North America, PAO = Pacific OECD (Australia, Japan and New Zealand), PAS =
Pacific Asia, SAS = South Asia (incl. India)
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5 Technological change in a global land-use model

5.2 Methodological framework

The internal computation of agricultural technological change is based on the produc-
tion costs and the effectiveness of R&D investments on yields (investment-yield ratio,
IY). The IY ratio evolves with the agricultural land-use intensity, describing the TC in-
vestments required per unit of yield growth and area. Accordingly, the production costs
are based on the agricultural land-use intensity. For the proposed approach a measure
of agricultural land-use intensity is required. For this purpose the τ -factor, which is
described in chapter 4, is used. Since the measure is output-related, it captures the full
spectrum of yield increasing technology and management options.

5.2.1 Investment-Yield ratio

Based on the τ -factor, it is possible to relate costs to technological change. For this
purpose two types of costs have been identified which mainly influence the rate of tech-
nological change: first, public and private investments in agricultural R&D, and second,
investments in infrastructure (e.g. transport and telecommunication). Data for public
and private R&D investments are taken from IFPRI for the year 1981 [Pardey et al.,
2006]. Data for infrastructure investments are based on infrastructure costs from the
GTAP database, version 7 for the year 2004 [Narayanan andWalmsley, 2008] (discounted
from 2004 to 1995)4. Unfortunately, the GTAP database does not distinguish between
investments in infrastructure and maintenance costs. To get an estimate for annual
investments in infrastructure the total GTAP infrastructure costs are corrected with a
factor of 0.65 which is the average fraction of investment costs on total infrastructure
costs based on OECD [2010]. The remaining 35% of the total infrarstructure costs (the
maintenance costs) are treated as additional production costs.
Both investment costs (R&D investments and infrastructure investments) are divided

by the average yield growth rate observed in the years 1990-1999 taken from FAO [FAO-
STAT, 2009]. The reason for taking the R&D investment data of the year 1981 is the
typical time lag between investment in R&D and its impact. The literature offers quite
a wide range of various delays and lag-structures proposed for agriculture, ranging from
a few years to several decades [Pardey and Craig, 1989, Alston et al., 1998a, Fan et al.,
2002, Cox et al., 1997]. I chose a delay of 15 years, which is approximately the average
of the delays used in the literature and, according to Alston et al. [1998b] and Alston
[2000], the time which is needed to reach the maximum value of gross annual benefits.
As a result, one gets for each region the relationship between investments in agricul-

tural research and the associated yield growth 15 years later. However, the absolute size
of investments still depends on the size of a region: the bigger the region, the higher the
variation in physical conditions. As a consequence, more research is needed to produce
the same average growth rate compared to a smaller region with less variation in physical

4Infrastructure investments are composed of investments in transport, water and energy distribution,
telecommunication and financial services, all related specifically to the agricultural sector according
to GTAP 7 (corresponding GTAP categories names: ‘ely’, ‘gdt’, ‘wtr’, ‘cns’, ‘cmn’, ‘ofi’, ‘isr’, ‘obs’,
‘ros’, and ‘osg’).
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5.2 Methodological framework

crop conditions. Consequently, I normalized investments relative to the agricultural area
of a region. Specific R&D investments per unit of yield growth are computed as the ratio
of R&D expenditures per area and the yield growth 15 years later. The same concept
is applied for infrastructure investments, except that no time delay is assumed. Both
components add up to the investment-yield ratio IY describing the TC investments per
area required per human-induced unit yield growth.
To relate this IY ratio to the τ -factor I have calculated the elasticity εIYτ , i.e. the

proportional relationship between an increase in the τ -factor and an increase in the IY
ratio.

dIY (τ)
IY (τ) = εIYτ ·

dτ

τ
(5.1)

The elasticity εIYτ is estimated via a regression analysis. Since agricultural R&D data
are generally aggregated over all agricultural sectors and spillovers are expected, an
aggregated version of the τ -factor covering all crops is used for the regression.

5.2.2 Correlation with production costs

As mentioned above, changes in yield levels are also related to changes in production
costs, i.e. costs of all input factors used to produce one unit of output. The initial hy-
pothesis is that production costs per area have a functional relationship with yield level
and agricultural land-use intensity. However, since the residuals in the corresponding
data are not normally distributed, one cannot use a linear regression analysis to verify
the assumption. Instead, I have applied a correlation analysis between (a) yield and costs
per area and (b) yield and costs per ton using the Pearson correlation coefficient [Rodgers
and Nicewander, 1988] as well as the Kendall rank correlation coefficient [Kendall, 1938].
Two different correlation coefficients are used, to uncover potential, measure-related, bi-
ases in the analysis. Whereas the Pearson correlation coefficient measures the magnitude
of the linear dependence between two variables, the Kendall rank correlation coefficient
measures just any correlation based on a rank test [Kendall and Gibbons, 1990]. Since
residuals in the used data set are non-normally distributed, the significance of the Pear-
son test may be biased, if samples sizes are too small [Kowalski, 1972].
Data for production costs are taken from the GTAP data base, version 7 [Narayanan

and Walmsley, 2008], yield data are taken from FAOSTAT [2009]. The data for small
producing countries are less accurate and bring much noise into the analysis [Horridge
and Laborde, 2008]. Therefore, only the top producing countries for each crop are taken
into account so that at least 90% of total crop production is included in the analysis.
Another constraint was that at least 1/3 of all available countries (31 countries) are
included (an exception is oil palm, which is only produced in 20 countries worldwide).

5.2.3 Model implementation

For the implementation the MAgPIE model is used (Chapter 2.3). Information on model
structure, model features and a mathematical description can be found in chapter 2.3.
Figure 5.2 shows a schematic overview of the endogenous implementation of technological
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5 Technological change in a global land-use model

change in MAgPIE. Investments in TC lead to a yield increase, which causes the τ -factor
to rise. This implies an increase in production costs per area as well as a rise in the
IY ratio. Hence, in order to achieve one unit of yield increase in a certain time step, a
higher amount of TC investments has to be mobilized than in the previous period.

Figure 5.2: Implementation of technological change in MAgPIE (schematic)

In addition, one has to consider some characteristics of the model and the agricultural
sector. Typically, for endogenous technology implementations in economic models an
intertemporal optimization approach is used due to the need of some kind of planning
foresight [Ma and Nakamori, 2009]. In contrast, MAgPIE is a recursive dynamic opti-
mization model which solves each time step separately. To be able to reproduce planning
foresight in MAgPIE the annuity approach is used (Section 5.2.4).
Another issue is the implementation of 15 years lag between R&D investment and

yield impact. The model decides, based on the expectations 15 years later, how much
should be invested. However, since there is no other cross-connection between these time
steps, it is possible to shift the investments to the time step when its impact takes place.
This means: if the model needs yield growth in the year 2025 due to higher demand
expectations, these 2025 model investments must have been made in 2010. However,
the costs for R&D in 2010 in the model will be compounded and paid in 2025. This
implementation allows for endogenizing technological change in a land-use model without
using intertemporal optimization.

5.2.4 Annuity approach

Investments in TC have the characteristic, that they require a high one-time investment,
but deliver revenues in more than one successive timestep. For a recursive model, which is
accounting for each single timestep on its own, this raises the problem, that the high one-
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5.2 Methodological framework

time investments are out of all proportion to its revenues within a single timestep. This
problem can be bypassed by the annuity approach. The annuity approach transfers the
lump-sum investments to periodic payments including interest [Kellison, 1991]. Instead
of paying the whole investment off in one timestep, the payback is equally split into T
payments over the timesteps t = 1, 2, ..., T .
The ratio between annual payment C and total investment I0 is called annuity a

(Equation 5.2).

C = aI0 (5.2)

For the calculation of annual payments the relation between an investment in timestep
t0 and its value in timestep t1 becomes important. The value X at timestep t1 is
calculated as the product of the value X at timestep t0 multiplied with compounding
factor (1 + i)t1−t0 with interest rate i and number of intermediate compounding periods
t1 − t0 (Equation 5.3).

Xt1 = Xt0(1 + i)t1−t0 (5.3)

For t1 > t0 this is the classical compound interest calculation, which is used for
example to estimate the future value of a bank account. However, the equation can be
used in the same way for calculations backwards in time with (t1 < t0).
Having an investment I0 split in T periodic payments C1, C2, ..., CT combined with

equation 5.3 one gets equation 5.4.

I0 = C1(1 + i)−1 + C2(1 + i)−2 + ...+ CT (1 + i)−T (5.4)

Assuming equally partitioned periodic payments C1 = C2 = ... = CT = C one gets a
geometric progression, which leads to equation 5.5.

I0 = C(1 + i)−1 1− (1 + i)−T

1− (1 + i)−1 = C
1− (1 + i)−T

i
(5.5)

Combining equation 5.5 with equation 5.2 delivers a term describing the annuity
(Equation 5.6).

a = i

1− (1 + i)−T (5.6)

In MAgPIE this annuity (Equation 5.6) is multiplied with TC investments (merged
to ptcc in Chapter 2.3). Since yield increases gained due to investments in TC typically
last forever T → ∞ would deliver a proper accounting for the value of TC. However,
to rebuild the observed phenomena of limited foresight and related underinvestment in
agricultural TC [Ruttan, 1980, Roseboom, 2002], one can decrease T . For the presented
results MAgPIE was running with a limited foresight of T = 20 years.
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5 Technological change in a global land-use model

5.2.5 Scenarios

In order to validate the implementation I have compared long-term trends of simulated
τ -factor development from 1995 to 2060 with observed data from 1960 to 2005, with
a special focus on the overlap in 1995-2005. For the validation historical data from
FAO on yield growth is used, which were neither part of the model parametrization nor
calibration. Based on this data the changes in τ -factor are calculated backwards starting
from 2005.
For the simulation I have applied two scenarios. One scenario which is assuming

full protection of intact and frontier forests (IFF) and another scenario without any
IFF protection5. I used both scenarios because it is hard to judge which scenario is
in MAgPIE more close to a “business as usual” case. On one hand the protection of
IFF is a manifested objective of many organizations and governments so that investment
decisions in R&D more likely be made under the assumption of forest protection. On the
other hand deforestation of IFF is happening all over the world and efficient protection
mechanism are still lacking. IFF protection is modeled in MAgPIE by excluding the IFF
areas from the available land area.
Besides the differences in handling of IFFs both scenarios are based on the same

conditions. MAgPIE is driven by external data for population [Center for International
Earth Science Information Network (CIESIN) et al., 2000] and gross domestic product
(GDP) [World Bank, 2001] (see appendix 2). The food energy demand for the year 1995
is taken from FAOSTAT [2008]. The share of traded goods is kept constant over time
and is based on self sufficiency ratios for the year 1995 [FAOSTAT, 2008]. The demand
for bioenergy is set in both scenarios to 0.

5.3 Results

5.3.1 Regression and Correlation

The regression result between IY ratio and the τ -factor is the relationship of equation
5.7. Figure 5.3 shows the relationship in a graph for the 10 world regions of MAgPIE.

IY (τi) = (3.0± 0.5) · 103 · τ2.7±0.9
i (5.7)

P-values of the t-tests for prefactor a and exponent/elasticity ε are pa = 0.0005 (***)
and pε = 0.02 (*). The elasticity between IY ratio and the τ -factor εIYτ has the value of
2.7 with a standard error of 0.9. As previously explained, changes in τ are proportional to
changes in yield, and therefore one can transform this elasticity into an elasticity of yield
with respect to accumulated TC investments (I), which is a more common representation

5Intact and frontier forests are forests that are mostly undisturbed such as the amazonian rainforest.
IFF play an important role in climate change research and ecology because they typically store a
huge amount of carbon and contain much biodiversity.
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Figure 5.3: investment-yield ratio in relation to τ -factor

(equation 5.8).
εyldI = 1

εIYτ + 1 = 0.27± 0.07 (5.8)

The result is close to the value of εyldI = 0.296, as reported in an expert assessment by
Nelson et al. [2009].
With regard to the relationship between production costs and yield level, Table 5.2

shows the Pearson correlation coefficients and the Kendall rank correlation coefficients.
All correlations are positive and in most cases at least significant at the 95% level. In

the Kendall rank correlation test all crops except tropical cereals, oil palm and sugar
cane show significant correlations at the 99.9% significance level. In the pearson corre-
lation tests the results are less significant, but still 10 out of 16 crops show significant
correlations at the 95% level. Table 5.3 shows the same information for the relationship
between yields and production costs per ton. However, almost none of the tested crop
types shows a significant correlation. Comparing the results in both tables suggests the
existence of a positive correlation between yields and area-related production costs, but
no correlation between yields and output-related production costs. Based on this result
production costs per ton have been implemented as a constant input for the model,
which leads to a linear increase of production costs per area with yield.
Table 5.4 shows the calculated costs per ton together with the number of countries

included in this calculation and the share of total production covered by these countries.
These costs per ton are used in MAgPIE for the calculation of production costs (see
Chapter 2.3).
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5 Technological change in a global land-use model

crop types Pearson Kendall
correlation p-value correlation p-value

cereals temperate 0.81 *** 0.000 0.63 *** 0.000
tropical 0.49 * 0.019 0.23 0.140
maize 0.70 *** 0.000 0.61 *** 0.000
rice 0.42 * 0.019 0.57 *** 0.000

oilcrops groundnut 0.17 0.410 0.47 *** 0.001
oil palm 0.07 0.803 0.23 0.228
rapeseed 0.56 ** 0.002 0.55 *** 0.000
soybean 0.08 0.689 0.47 *** 0.000
sunflower 0.68 *** 0.000 0.45 *** 0.000

sugar beet 0.65 ** 0.002 0.53 *** 0.001
cane 0.37 0.107 0.14 0.422

others cassava 0.35 0.084 0.47 *** 0.001
potato 0.37 * 0.046 0.58 *** 0.000
pulses 0.75 *** 0.000 0.52 *** 0.000
cotton 0.26 0.171 0.49 *** 0.000
others 0.62 *** 0.000 0.43 *** 0.001

Table 5.2: Correlation between yield and production costs per area
(* p≥95%, ** p≥99%, *** p≥99.9%)

crop types Pearson Kendall
correlation p-value correlation p-value

cereals temperate -0.06 0.771 0.15 0.250
tropical 0.02 0.941 -0.07 0.676
maize 0.27 0.151 0.25 0.058
rice 0.28 0.126 0.29 * 0.022

oilcrops groundnut -0.10 0.628 0.23 0.118
oil palm -0.03 0.912 0.15 0.450
rapeseed 0.29 0.136 0.26 0.055
soybean -0.06 0.753 0.25 0.066
sunflower 0.12 0.531 0.22 0.103

sugar beet 0.42 0.068 0.30 0.074
cane -0.22 0.352 -0.13 0.461

others cassava 0.32 0.118 0.25 0.088
potato 0.22 0.246 0.33 ** 0.010
pulses 0.43 * 0.040 0.38 ** 0.010
cotton 0.00 1.000 0.28 * 0.029
others 0.42 * 0.025 0.24 0.072

Table 5.3: Correlation between yield and production costs per ton
(* p≥95%, ** p≥99%, *** p≥99.9%)
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5.3 Results

crop types costs [US$/t] countries prod. share
cereals temperate 130 31 0.95

tropical 70 31 0.97
maize 90 31 0.96
rice 110 31 0.99

oilcrops groundnut 180 31 1.00
oil palm 30 20 1.00
rapeseed 210 31 0.99
soybean 150 31 1.00
sunflower 130 31 0.99

sugar beet 220 31 0.98
cane 50 31 0.99

others cassava 350 31 0.99
potato 1230 31 0.91
pulses 160 31 0.94
cotton 620 31 0.99
others 1130 31 0.92

Table 5.4: Crop-specific, average costs per ton, number of countries used for averaging
and the total share of production covered by these countries

5.3.2 Simulation Results
Figure 5.4 shows the development of the τ -factor (2005-2060) compared to past obser-
vations of the FAO (1960-2005) in the forest protection scenario. As an example the
development path for maize is shown since this is one of the most important crops and
is grown in all parts of the world. It is taken as example since all other crop-types in
the analysis show similar behavior. Regions like Sub-Saharan Africa (AFR) and North
America (NAM) show very strong increases in τ . However, the strongest increase is pro-
jected for the Middle East and North Africa region (MEA). This enormous increase is in
line with FAO data for this region for the period since the 1980s. Overall three groups
can be distinguished: Regions with increasing growth rates (MEA, AFR), constant rates
(NAM, LAM, SAS and PAS) and decreasing rates (CPA, EUR, FSU). In this context
PAO is a special case with small growth rates in the past but no growth rates in the
projections at all.
Figure 5.5 shows the model results of both scenarios compared with FAO observations

for the aggregate of all crops. It is important to note that the FAO data used for valida-
tion were not used as model input, neither as direct source, nor for calibration purposes.
For a direct comparison between observations and model results one can focus on the
overlap in 1995-2005. Moreover, the model results can be validated against the general
trend in the observed data. For some regions the scenario projections deliver quite simi-
lar or even identical results while the projections for other countries strongly depend on
the chosen scenario. Especially, the three regions with huge rainforests LAM, AFR, and
PAS show high differences in projections. Looking at these three regions also the agree-
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5 Technological change in a global land-use model

ment between observation and validation are quite diverse: In AFR historic growth rates
are significantly lower than both projections into the future. However looking at the 10
year overlap the difference is not so big anymore. Whereas the forest protection scenario
still projects higher growth rates than observed the scenario without forest protection
is quite close to the observations. In contrast, LAM shows the exact opposite behavior.
Here the scenario without forest protection significantly underestimates growth rates,
while the forest protection scenario reproduces historic trends quite well, but still seems
to underestimate the observed growth rates in the overlap. In PAS historic trends fit
quite well to the forest protection projection, however in the overlap one can observe
some stagnation in the observational data. Surprisingly, the projection without forest
protection is showing the same effect, even though more extreme (20 years stagnation
instead of only 5 years). This leads to the situation that observed growth rates in PAS
lie exactly in the middle of both projections. Looking at the remaining regions the dif-
ferences between both scenarios are more or less negligible. For EUR, MEA and NAM
the general trend as well as the overlap show a good agreement between observation and
simulation. In CPA the trend fits well, but in the observed data starting from 1995 one
observes a stagnation (similar to the situation in PAS) which is not reproduced by the
simulations. The results for FSU is hard to judge because the historic data is strongly
affected by fluctuations most likely due to the political transformation after 1990. PAO
shows some weak growth in the historic trend but none in the simulation and none in
the observed data between 1995-2005. For SAS it seems that both projections slightly
overestimate the real trend, even though the difference is only marginal, especially for
the case without forest protection. Overall one can say that none of the regions shows
dramatic discrepancies between observation and simulation, but for some regions the
forest protection scenario shows a better agreement (LAM, PAS) while other regions
agree more with the no forest protection scenario (AFR, SAS).
Differences in growth rates between scenarios also directly affect land use patterns.

Figure 5.6 and 5.7 show the share of total cropland on total area in 2065 for the forest
protection scenario (Figure 5.6) and no forest protection scenario (Figure 5.7). Most
differences can be found in the regions LAM, AFR and PAS which were also most
sensitive regions in the τ -factor comparison. In these three regions one can see clearly
how the rainforests in Brazil, the Democratic Republic of the Congo and Indonesia are
cut down. Furthermore, one can find some smaller changes in Canada, Mexico and some
shifts in Australia. Due to the absence of relevant IFFs in the rest of the world no other
significant changes are taking place.
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global  crop land shares under forest conservation (2065)
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Figure 5.6: Global total cropland shares in a intact and frontier forest protection scenario
in 2065

global  crop land shares without forest conservation (2065)
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Figure 5.7: Global total cropland shares in absence of any intact and frontier forest
protection in 2065
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5.4 Discussion

Technological change is a crucial driver for increasing agricultural yields. The pre-
sented approach estimates the level and evolution of the investment-yield ratio relative
to agricultural land-use intensity. The regression analysis confirms that a higher state of
agricultural land-use intensity coincides with a higher IY ratio. Furthermore, the yield
elasticity with respect to accumulated TC investments εyldI = 0.27 is in line with Nelson
et al. [2009]. Evenson [1989] showed that R&D spillovers are of major importance in
agricultural research if the regions are small. However, increasing the region size, as
in the presented implementation, reduces the role of spillover effects significantly. This
means that the shown approximation is only valid at coarse scales and becomes invalid
applied to finer scales.
Results confirm that yields correlate with production costs per area. Since marginal

production costs are constant, every additional production unit costs the same additional
amount of money. Consequently, farmers will adopt the new technology since they expect
higher yields at constant costs per ton.
The τ projections for maize provide rich insights with regard to future yield trends.

The strong increase in Africa indicates what kind of yield growth rates will be required
to meet a soaring demand under a forest protection scenario. North America, as the
leading region for maize production, continues with high yield growth rates, but could
be overtaken by the Middle East and North Africa region (MEA) in terms of growth
rates. This region faces unfavorable cropping conditions and at the same time a higher
demand increase and a strong political will to reduce food imports. If these conditions
prevail in the future, huge investments in technological change would be required. In
contrast, Europe continues along its trend over the past two decades when maize yields
have not improved much. The Asian regions, starting from a lower yield level and facing
a higher demand pressure in the future, have higher growth rates compared to Europe.
Lastly, Latin America follows its strong yield growth path since the early 1990s, with
high investments in the agricultural sector.
The validation of simulated output with observed data supports the presented model

implementation. Especially the long-term trend is reproduced well for most regions,
while the observed data in the 1995-2005 overlap often shows some surprising changes in
dynamics such as stagnation. A hint for an interpretation of this changes in dynamics can
be found in the simulation results of the no forest protection scenario. The projections for
LAM as well as for PAS show also a temporary stagnation in growth rates similar to the
observed stagnations in CPA and PAS. In the model in this cases additional production
is achieved exclusively by land expansion into IFF. However, in both regions the model
switches again to yield increases due to technological change. A similar situation could
have happened in PAS, which would explain the 5 year stagnation followed up by a
continuation in yield growth.
Another interesting aspect is, that AFR is represented best by the scenario without

forest protection, LAM by the forest protection scenario and PAS by a mixture of both.
This agrees with the political situation in these regions. While LAM is able to trigger
investments in R&D on a level which is sufficient to remove the land expansion pressure
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based on agricultural demands (there are still other reasons for deforestation), AFR
completely fails to do so. PAS seems to have a mixed situation with partial success. The
results show that especially in AFR R&D investments have to be increased drastically
to achieve food security without cutting down the rainforest in the Congo Basin.
A reason for relatively weak validation results in some regions is that demand and trade

are rather inflexible in the current version of MAgPIE and in some cases, like LAM or
CPA, this might have strong impacts on future productivity levels. Notwithstanding,
the overall validation results indicate the robustness of the approach, since the observed
data are not considered as inputs for the analysis and are independent of the model
results.
The presented implementation of technological change can be used either in an in-

tertemporal or a recursive dynamic optimization approach. In my case, the latter option
is favorable, as it reproduces the observed effect of continuous underinvestment in agri-
cultural R&D [Ruttan, 1980, Roseboom, 2002]. This market failure is caused by the
limited foresight of decision makers concerning investments in R&D [Slaughter, 1996].
An intertemporal optimization model, however, would anticipate all the future benefits
of R&D investments, which would lead to an optimal R&D investment path in R&D
and an overestimation of yield increases, compared with observed trends.

5.5 Conclusion
During the lifetime of Thomas Malthus and before, growth in agricultural output was
almost exclusively a result of growth in the use of input factors. This changed by the
end of the 19th century and since then agricultural output has been mainly driven by
increases in productivity. However, most agricultural sector and land-use models do not
cover technological change as an endogenous driver. In order to fill this gap, I have
presented a model approach for an endogenous implementation of technological change.
An assumption of the shown implementation, based on numerous studies, is that in-

vestments in technological change induce increases in land productivity. The statistical
analysis shows that the investment-yield ratio increases in a disproportionate way to the
τ -factor and that production costs are linear correlated with the yield level. The results
from the model MAgPIE indicate that regions with high demand projections, like Sub-
Saharan Africa, or with low potentials for land expansion, like Middle East and South
Asia, have to make huge investments in future technological change. While the Middle
East region and South Asia show this trend already in observed data, AFR shows this
trend only since 1995. Hence, to meet its projected challenges in economic development
and meet its growing agricultural demand, it seems indispensable for AFR to increase
investments in R&D and infrastructure in order to achieve food security. The endoge-
nous implementation of technological change for reaching food security improves the
projection quality of global agricultural models and is a further step towards producing
more realistic future scenarios for agriculture.
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6.1 A brief review
Cross-scale interactions are an important issue in land-use modeling as well as in many
other research fields [Wessman, 1992, Cash and Moser, 2000, Harvey, 2000]. Ignoring
cross-scale interactions can lead to serious model biases and misleading model dynamics,
whereas the inclusion of more detail will strongly affect the computability of a model.
Therefore, it is important to find efficient implementations of the relevant cross-scale
interactions. Starting with an existing model, as I did, this can be done in two ways:
First, improvements of already implemented cross-scale interrelations in terms of accu-
racy but also computability. Second, inclusion of missing cross-scale dynamics. From
this viewpoint I analyzed the agricultural land-use model MAgPIE [Lotze-Campen et al.,
2008, 2010, Popp et al., 2010] looking for cross-scale interactions, requiring or allowing
improvements most. I found two major starting points, which I have discussed in this
thesis: Upscaling of cellular explicit data, so that it becomes utilizable in a global mod-
eling context and technological change as a bidirectional cross-scale interaction between
regional and local scale.
In chapter 3 the upscaling issue is addressed and clustering algorithms are proposed

as an improvement compared to upscaling using a static grid. The comparison of results
produced with a static grid, k-means clustering, hierarchical bottom-up maximal-linkage
clustering and a self-developed hierarchical top-down maximal-linkage clustering showed,
that clustering is in any case the better choice. Because clustering algorithms are sensi-
tive to the data, that should be upscaled, the same number of final clusters leads to a
higher degree of information conservation compared to static grid upscaling. Whereas
this general superiority of clustering algorithm was highly significant, the explicit choice
of a clustering algorithm was less clear.
Comparing the upscaled data with the original data set k-means showed the best

results followed by hierarchical bottom-up clustering. However, for model applications
similarity of model outputs produced with upscaled input data to model outputs pro-
duced with original data is the relevant factor. The corresponding comparison of model
outputs showed that clustering algorithms cannot be ranked easily based on these results
and that differences between all upscaling methods diminish compared to the results of
the input data comparison. Based on outputs hierarchical bottom-up clustering deliv-
ered in most cases the best results. The overall result of this chapter is, that clustering
is always a good alternative to static grid upscaling. However, as in many other cluster
applications, the explicit choice of a cluster algorithm strongly depends on the explicit
problem.
Chapter 4 deals with the topic of agricultural land-use intensity, which is a measure for
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the amount of human induced yield increases. The presented development and applica-
tion of a new measure for agricultural land-use intensity was preparatory work required
for the technological change implementation in the following chapter. However, the mea-
sure is also quite useful in various contexts different to that. One distinctive feature of
the presented approach is, that the measure partly uses model data for calculations.
The basic concept is to compare yields, as they are currently observed, with yields, as
they would be observed under certain conditions (in the presented case constant agri-
cultural land-use intensities). The hypothetical yields (“reference yields“) are estimated
by a model (in the presented case LPJmL), whereas the actual yields primarily base on
observations.
The presented τ -factor is complementary to most other measures for agricultural land-

use intensity. Typically, land-use intensity is measured in an input-based approach,
meaning that based on differences in inputs used for agricultural production the agricul-
tural land-use intensity is measured. For instance the concept of cultivation frequencies
[Boserup, 2005], which is estimating the land-use intensity based on the use of the in-
put factor land, is following this approach. In contrast, the τ -factor is output-based,
meaning that the agricultural outputs (yields) are used for calculations instead of the
inputs. Both concepts have advantages and disadvantages. In some cases input data
has a better accessibility, in other cases data on outputs is more accessible. Running
an input-based approach can deliver useful insights concerning the driver of agricultural
land-use intensity: Running an input-based study based on several input factors such
as cultivation frequencies or fertilizer use, it is possible to partition the total land-use
intensity into parts caused by each of these input factors. On the downside, input-based
approaches require detailed knowledge about the relationship of agricultural inputs and
outputs. Agricultural land-use intensification is defined as an increase in productivity,
therefore a change in inputs is only causing a change in land-use intensity, if also the
agricultural output is affected. Though, inaccurate assumptions about input-output re-
lations can lead to serious biases in results. Furthermore input-based approaches are
never complete in terms of total agricultural land-use intensity. Only the influence of
inputs, that are explicitly taken into account, is measured. In contrast, the τ -factor as
an output-based approach does not deliver any information about the different sources of
agricultural land-use intensity. The big advantage of the τ -factor is, that it is complete
in terms of drivers of agricultural land-use intensity. Any influence on the agricultural
land-use intensity is captured, whether caused by a known mechanism or not. Though,
output-based measures are not systematically biased towards an underestimation of agri-
cultural land-use intensity. In the calculations a detailed knowledge about input-output
relations is substituted by knowledge about the bio-physical processes in agriculture.
These characteristics make the τ -factor not in all cases the better choice, but in some.
In particular this is the case for an implementation of technological change in a global,
agricultural land-use model. For this purpose it is mandatory to have a measure for
agricultural land-use intensity, which takes all driving technologies and management
improvements into account.
Based on these findings of chapter 4, chapter 5 addressed the bidirectional implemen-

tation of technological change (TC) in MAgPIE. Although the implementation is shown
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explicitly for the MAgPIE model, the empirical work and its implementation is meant
as a general suggestion for agricultural land-use models. The used implementation bases
on the idea, that investments decisions for Research & Development (R&D) are taken
under consideration of future demand projections. This assumption leads to the situ-
ation, that increasing demands can trigger investments in R&D. An important factor
for the investment decisions is the investment-yield ratio, which describes the average
investment required for a certain yield increase. This ratio is not constant, instead it
depends on the yield increase already achieved in the past. To capture the aggregate
of past yield increases the τ -factor (Chapter 4) is perfectly equipped. The regression of
observed investment-yield ratios with regional τ -factors showed, that increases in agri-
cultural land-use intensity worsen the investment-yield ratio: Higher investments are
required to get the same amount of yield increase. Based on this empirically found
relationship the TC interaction becomes bidirectional: An investment in R&D leads to
yield increases. Concurrently, the agricultural land-use intensity is also increased with
the same growth rate, which leads to the feedback of an increasing investment-yield ra-
tio. So, the positive effect of yield increase is accompanied by the negative feedback of
increasing investment requirements for further yield increases.
Overall my findings unterpin that apart from detailedness especially the used im-

plementation is of major importance: High-resolution input data is not very useful if
most information is lost due to a unfavorable upscaling process. High detailed process
implementations do not increase the general model quality if their complexity forces sim-
plifications in other parts of the model such as a reduction in total number of clusters. In
the same manner a more detailed reproduction of the technological change implementa-
tion on national scale would not deliver better results as it would neglect spillover effects
relevant on this scale. Therefore, a good balance between accuracy and abstraction is
the most important factor in modelling.

6.2 Future research

6.2.1 Upscaling algorithms

As I showed in chapter 3 clustering algorithms are an improvement compared to upscaling
using a static grid. To keep the study concise and to focus on the general implementation
issues such as interpolation and choice of data sets for inclusion in the clustering process, I
limited myself to the most popular and basic clustering methods k-means and hierarchical
clustering. However, the number of available clustering methods is literarily endless and
their suitability often strongly depends on the given task [Hartigan, 1985, Jain and
Dubes, 1988, pg. 142]. Therefore, it might be interesting to repeat my experiments with
an expanded portfolio of clustering techniques.
A candidate with potential for further simulation improvements is bisecting k-means,

which is a mixture of the presented methods k-means and hierarchical top-down clus-
tering [Steinbach et al., 2000]. The hierarchical tree is derived by splitting each cluster
in two sub-clusters using the k-means algorithm. This combination of both approaches,
which are quite distinct, already showed in the study of Steinbach et al. [2000] good re-
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sults and might be a superior alternative to the proposed top-down clustering approach.
Besides classical clustering techniques it could be also interesting to investigate the per-
formance of algorithms, which are only partly associated with clustering problems, such
as self-organizing maps (SOMs) [Kohonen, 1982, 2002]. SOM is a concept for an artificial
neural network, which is trained under the use of unsupervised learning. Structural the
approach has many similarities to k-means clustering. Both approaches are typically
initialized randomly and adapt iteratively the related data. Whereas the basic k-means
approach is incorporating in each iteration the full data set, SOMs are only considering
one element at once. As SOMs emerged in several studies to be an powerful approach,
there might be good chances, that also the presented upscaling problem would benefit
of it.
Both candidates are only examples drawn from an endless pool. So, this study could

be extended in many directions, which will likely be awarded in many cases with further
performance increases.

6.2.2 Uncertainties and Errors

Another aspect related to cross-scale interactions, which was not investigated in my
thesis, is the introduction and propagation of errors and uncertainties in a model. The
propagation of errors and uncertainties introduced at one scale to another scale is of
major relevance for the significance of the various model outputs. Agricultural land-
use model inputs are often equipped with some indicators for accuracy, whereas this is
typically missing for model outputs. For instance the comparison of different data sets
describing the same input parameter can be used as a hint for its accuracy. Another
example is the upscaling process explained in chapter 3, for which it is easy to calculate
the standard deviation between an element of the original data set and the cluster, which
is used as its representation.
As this information is currently not further processed it is hard to judge the robustness

of model findings and to distinguish between significant and non-significant outputs. My
aim for future research is to tackle this issue. Currently I have two possible approaches
in mind: The first solution is to perform a sensitivity analysis of the model, the second
one is to estimate output uncertainties based on the propagation of uncertainty concept.
The first solution is to run a sensitivity analysis taking into account the estimated

uncertainties of the input parameters. A common approach for a sensitivity analysis is
the application of Monte Carlo methods [Kroese et al., 2011]. The idea is to estimate
the sensitivity of the model outputs by performing several runs with input parameters,
that are randomly altered. In contrast to a systematic alteration of inputs this has
the advantage of a reduced amount of required runs and a faster convergence towards
the sensitivities of the output variables. However, the required number of runs is still
too high to perform a sensitivity analysis over all input parameters for each run of a
high-complexity model such as MAgPIE.
Further reduction of sensitivity runs can be achieved by the application of Gaussian

quadratures [Stoer and Bulirsch, 2002, pg. 171]. Gaussian quadratures are very effec-
tive numerical integration rules. Their special characteristic is the minimal demand of
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integration points, which is achieved by the application of orthogonal polynomials. It
can drastically reduce the required computation time. In the one-dimensional case n
integration points suffice to integrate a polynomial of the order 2n− 1 exactly.
A sensitivity analysis, as well as the Monte Carlo approach, can also be interpreted

as an integration over the input parameter space. Whereas the Monte Carlo method
is approximating the integrand by calculating the function values at randomly chosen
points, the Gaussian quadrature approach is only requiring the function values at cer-
tain, well-defined points (the roots of the used, orthogonal polynomials). This leads to
a further, significant performance increase compared to other sensitivity analysis ap-
proaches. Nevertheless, the amount of required runs is still to high for an application
with each simulation run. Possible solutions for this issue are either a step-wise esti-
mation of uncertainties, with each model run, or a combination of Monte Carlo and
Gaussian quadrature concepts. In the first case the idea is to perform with each model
run only a few realizations (less than required for an accurate sensitivity analysis). The
uncertainties of the model outputs could then be estimated by taking not only the results
of the current model run into account, but also of previous model runs. This should lead
to results, which are accurate in most cases, at minimal computational costs. However,
this approach can deliver misleading results after a model modification. The second ap-
proach is currently only an thought, which is not very far developed. One characteristic
of a spatial explicit model, as for instance MAgPIE, is, that the model contains several
input parameters with similar properties and only differing spatial locations. Under
the assumption, that variations in these parameters always deliver similar variations in
output parameters a solution would be to aggregate the sensitivity analysis for these
elements under use of a Monte Carlo analysis. This would result in a condensed input
parameter set, which could then be computed with Gaussian quadratures.
Apart of the sensitivity approach the concept of propagation of uncertainties could

also give estimates for the uncertainties of output parameters [Bureau International des
Poids et Mesures (BIPM), 1995]. In contrast to the sensitivity analysis no additional
model runs would be necessary. Instead uncertainties would be calculated based on a
Taylor expansion, which would deliver a simplified version of the used model. For this
first or second order approximation of the model dynamics the uncertainties could then
be calculated analytically. A problem of this concept is, that it would require a lot of
additional calculations the modelers have to perform manually and the results would be
more error-prone compared to a sensitivity analysis.
All approaches have in common, that they can only provide indicators for uncertain-

ties of the different outputs. This has several reasons: First, provided uncertainty values
of inputs are typically only an estimate. Second, not all uncertainties can be taken into
account. False model implementations or missing links are also an significant source for
model biases. Third, the proposed analysis methods are also only estimates. Neverthe-
less, having in mind, that the calculated values are just indicators for uncertainties and
biases, they can be quite useful and would be a significant advancement to the current
situation.
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Supplementary data - Clustering

1 Implementation hierarchical top-down clustering

" " "#### Implementation o f h i e r a r c h i c a l top−down c l u s t e r i n g
as used in MAgPIE" " "

v e r s i on = 3 .7

from numpy import array , copy , l e x s o r t , a r g s o r t
from cP i ck l e import dump
from s t r u c t import St ruct
from Pyc lus t e r import d i s tancematr ix
from i t e r t o o l s import i s l i c e , i f i l t e r
import heapq , os

c l a s s D i s tF i l e :
’ ’ ’ D i s tF i l e Class : Generates a Di s tanceF i l eObjec t conta in ing e lements
o f the s t r u c tu r e ( d i s tance , l e f t , r i g h t ) − Object can be c rea ted us ing
e i t h e r a d i s tancematr ix or a l i s t o f so r t ed d i s t anc e e lements ’ ’ ’

p = Struct ( ’ f i i ’ ) #" s t r u c t " ob j e c t conta in ing encoding ( f l o a t , int , i n t )
e l ems i z e = 12 #element s i z e in bytes
count = 0 #gene ra l ob j e c t counter
f i l ename = " d i s t f i l e%i . tmp" #f i l e name under which data i s s to r ed
#maximal number o f e lements so r t ed d i r e c t l y
#in the case o f f i l e s with more e lements s o r t i n g
#procedure i s s p l i t t e d in to par t s
maxsort length = 10∗∗6
d i s t s c a l e = 10∗∗11 #d i s t ance s c a l i n g f a c t o r

de f __init__( s e l f , input=None , o f f s e t =0):
D i s tF i l e . count += 1
s e l f . f i l ename = Di s tF i l e . f i l ename % Di s tF i l e . count
s e l f . l ength = 0
i f ( input !=None ) :

i f ( type ( input)==s t r ) :
s e l f . l o a d_ f i l e ( input )

e l s e :
t ry :

is_dmatrix = ( l en ( input [0])==0)
except :

is_dmatrix = False
i f is_dmatrix :

s e l f . dmatrix_write ( input , o f f s e t )
s e l f . s o r t ( )

e l s e :
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s e l f . d i s t_wr i t e ( input )

de f __del__( s e l f ) :
t ry :

os . remove ( s e l f . f i l ename )
except :

pass

de f __getitem__( s e l f , i ) :
i f i s i n s t a n c e ( i , s l i c e ) :

r e turn l i s t ( i s l i c e ( s e l f . read ( ) , i . s t a r t , i . stop , i . s t ep ) )
e l s e :

r e turn l i s t ( i s l i c e ( s e l f . read ( ) , i , i +1))

de f __iter__( s e l f ) :
r e turn s e l f . read ( )

de f __len__( s e l f ) :
r e turn s e l f . l ength

de f dmatrix_write ( s e l f , dmatrix , o f f s e t =0):
with open ( s e l f . f i l ename , ’wb ’ ) as d f i l e :

f o r i in range (0 , l en ( dmatrix )−1):
f o r j in range ( i +1, l en ( dmatrix ) ) :

d f i l e . wr i t e ( s e l f . p . pack(−dmatrix [ j ] [ i ]∗
Di s tF i l e . d i s t s c a l e , i+o f f s e t , j+o f f s e t ) )

s e l f . l ength = ( l en ( dmatrix )∗∗2 − l en ( dmatrix ) )/2

de f d i s t_wr i t e ( s e l f , d i s t ) :
s e l f . l ength = 0
with open ( s e l f . f i l ename , ’wb ’ ) as d f i l e :

f o r elem in d i s t :
d f i l e . wr i t e ( s e l f . p . pack ( elem [ 0 ] , elem [ 1 ] , elem [ 2 ] ) )
s e l f . l ength += 1

de f merge_write ( s e l f , ∗ d i s t f i l e l i s t ) :
s e l f . l ength = 0
with open ( s e l f . f i l ename , ’wb ’ ) as d f i l e :

f o r elem in heapq . merge (∗ d i s t f i l e l i s t ) :
d f i l e . wr i t e ( s e l f . p . pack ( elem [ 0 ] , elem [ 1 ] , elem [ 2 ] ) )
s e l f . l ength += 1

de f l o ad_ f i l e ( s e l f , f i l ename ) :
s e l f . f i l ename = f i l ename
s e l f . l ength = in t ( os . path . g e t s i z e ( s e l f . f i l ename ) )/ D i s tF i l e . e l ems i z e

de f append ( s e l f , elem ) :
with open ( s e l f . f i l ename , ’ ab ’ ) as d f i l e :

d f i l e . wr i t e ( s e l f . p . pack ( elem [ 0 ] , elem [ 1 ] , elem [ 2 ] ) )
s e l f . l ength += 1

de f extend ( s e l f , d i s t ) :
with open ( s e l f . f i l ename , ’ ab ’ ) as d f i l e :

f o r elem in d i s t :
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d f i l e . wr i t e ( s e l f . p . pack ( elem [ 0 ] , elem [ 1 ] , elem [ 2 ] ) )
s e l f . l ength += len ( d i s t )

de f read ( s e l f ) :
t ry :

with open ( s e l f . f i l ename , ’ rb ’ ) as d f i l e :
t ry :

whi l e True :
y i e l d s e l f . p . unpack ( d f i l e . read (12 ) )

except :
pass

except :
pass

de f f i l t e r_ r e a d ( s e l f , key ) :
f o r elem in i f i l t e r ( key , s e l f . read ( ) ) :

y i e l d elem

de f s o r t ( s e l f ) :
i f s e l f . l ength <= Di s tF i l e . maxsort length :

s e l f . d i s t_wr i t e ( so r t ed ( s e l f ) )
e l s e :

pos = 0
tmpdists = [ ]
whi l e True :

p r i n t " Create temporary d i s t f i l e f o r s o r t i n g ! "
tmpdists . append ( D i s tF i l e ( ) )
tmpdists [ −1 ] . d i s t_wr i t e ( so r t ed ( s e l f [ pos : pos +

D i s tF i l e . maxsort length ] ) )
pos += Di s tF i l e . maxsort length
i f pos >= s e l f . l ength :

break
s e l f . merge_write (∗ tmpdists )
f o r elem in tmpdists :

de l ( elem )

de f s p l i t c l u s t e r ( d i s t f i l e , c e l l s , counter =0):
’ ’ ’ f unc t i on used to s p l i t one c l u s t e r i n to two sub−c l u s t e r s
d i s t f i l e i s a D i s t anceF i l e conta in ing a l l d i s t an c e s between
c e l l s o f the c l u s t e r , c e l l s conta in s the c e l l s that are part
o f the c l u s t e r ’ ’ ’

l e n_c e l l s = l en ( c e l l s )

p r i n t " s t a r t s p l i t c l u s t e r with " , l en_ce l l s , " c e l l s "

#so r t array based on d i s t an c e s
i f l en ( d i s t f i l e ) == 0 : #s i n g l e c e l l −> no s p l i t t i n g

re turn [ counter , None ]
i f l en ( d i s t f i l e ) == 1 : #two c e l l s −> t r i v i a l case

re turn [ counter −1, l i s t ( d i s t f i l e [ 0 ] ) ]

#open two l i s t s t a r t i n g with f i r s t c e l l s o f darray ( l ong e s t d i s t anc e )
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#st ru c tu r e key : ( pa i r i ngb l o ck : l e f t / r i g h t ) ( l e f t / r i g h t = Fal se /True )
#each pa i r i ngb l o ck d e s c r i b e s which c e l l s w i l l d e f i n i t i v e l y be in
#d i f f e r e n t c l u s t e r s at the end only one pa i r i ngb l o ck w i l l remain ,
#conta in ing the c e l l s o f both c l u s t e r s
dd i c t = {}

pa i r ingcount = 0
recombinecount = 0
loopcounter = 0
las t_ddict_len = 0
c e l l s = s e t ( c e l l s )

f o r elem in d i s t f i l e :

i f ( elem [ 1 ] not in dd i c t ) and ( elem [ 2 ] not in dd i c t ) :
#c r ea t e new pa i r ing , because both e n t r i e s do not e x i s t so f a r
p r i n t " c r e a t e new pa i r " , pa i r ingcount
dd i c t [ elem [ 1 ] ] = [ pa i r ingcount , Fa l se ]
dd i c t [ elem [ 2 ] ] = [ pa i r ingcount , True ]
pa i r ingcount += 1

e l i f ( elem [ 1 ] in dd i c t ) and ( elem [ 2 ] not in dd i c t ) :
#F i r s t entry i s a l r eady in d i c t i onary , but second entry i s not
#−> combine based on f i r s t entry
dd i c t [ elem [ 2 ] ] = [ dd i c t [ elem [ 1 ] ] [ 0 ] , not dd i c t [ elem [ 1 ] ] [ 1 ] ]

e l i f ( elem [ 1 ] not in dd i c t ) and ( elem [ 2 ] in dd i c t ) :
#Second entry i s a l r eady in d i c t i onary , but f i r s t entry i s not
# −> combine based on second entry
dd i c t [ elem [ 1 ] ] = [ dd i c t [ elem [ 2 ] ] [ 0 ] , not dd i c t [ elem [ 2 ] ] [ 1 ] ]

#both e n t r i e s are a l r eady in the d i c t i onary ,
#but d i f f e r e n t pa i r i n gb l o ck s

#combine b locks
e l i f ( dd i c t [ elem [ 1 ] ] [ 0 ] != dd i c t [ elem [ 2 ] ] [ 0 ] ) :

#s i d e s o f one pa i r i n gb l o ck have to be switched i f both
#en t r i e s are on the same s i d e
sw i t ch s i d e = ( dd i c t [ elem [ 1 ] ] [ 1 ] == dd ic t [ elem [ 2 ] ] [ 1 ] )
remain ingblock = min ( dd i c t [ elem [ 1 ] ] [ 0 ] , dd i c t [ elem [ 2 ] ] [ 0 ] )
removingblock = max( dd i c t [ elem [ 1 ] ] [ 0 ] , dd i c t [ elem [ 2 ] ] [ 0 ] )
recombinecount += 1
f o r key , c e l l in dd i c t . i t e r i t em s ( ) :

i f c e l l [ 0 ] == removingblock :
dd i c t [ key ] [ 0 ] = remain ingblock
i f ( sw i t ch s i d e ) :

dd i c t [ key ] [ 1 ] = ( not dd i c t [ key ] [ 1 ] )

#ex i t i t e r a t i o n , when every c e l l i s mapped to one sub−c l u s t e r
i f ( l en ( dd i c t)==l e n_c e l l s ) and ( pa i r ingcount==recombinecount +1):

break

loopcounter += 1
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i f ( l en ( dd i c t )%100==0 and l en ( dd i c t ) > last_ddict_len ) :
la s t_ddict_len = len ( dd i c t )
p r i n t ( " Loop " , loopcounter , " l en ( dd i c t )=" , l en ( dd i c t ) ,

" l en ( c e l l s )=" , l e n_c e l l s )

p r i n t ( " a l l c e l l s mapped to a c l u s t e r " , l e n_ce l l s ,
" l en ( dd i c t )=" , l en ( dd i c t ) )

#save f i r s t element as topelem
topelem = d i s t f i l e . read ( ) . next ( )
p r i n t " got f i r s t element " , topelem

l e f t _ c e l l s = s e t ( f i l t e r ( lambda x : dd i c t [ x ] [1]== False , dd i c t . keys ( ) ) )
r i g h t_ c e l l s = s e t ( f i l t e r ( lambda x : dd i c t [ x ] [1]==True , dd i c t . keys ( ) ) )

p r i n t " c e l l s f i l t e r e d "

#l e f t branch
l e f t_d i s t = i f i l t e r ( lambda x : ( x [ 1 ] in l e f t _ c e l l s )

and (x [ 2 ] in l e f t _ c e l l s ) , d i s t f i l e )
p r i n t " l e f t f i l t e r ready "
d i s t f i l e _ l e f t = D i s tF i l e ( l e f t_d i s t )
p r i n t " d i s t f i l e l e f t ready "

[ counter , temp ] = s p l i t c l u s t e r ( d i s t f i l e _ l e f t , l e f t_ c e l l s , counter )
de l ( d i s t f i l e _ l e f t )
i f ( temp == None ) :

l e f t c l u s t e r = topelem [ 1 ]
t r e e a r r ay = l i s t ( )

e l s e :
l e f t c l u s t e r = counter
t r e e a r r ay = temp

#r i gh t branch
r i gh t_d i s t = i f i l t e r ( lambda x : ( x [ 1 ] in r i g h t_ c e l l s ) and

(x [ 2 ] in r i g h t_ c e l l s ) , d i s t f i l e )
p r i n t " r i g h t f i l t e r ready "
d i s t f i l e _ r i g h t = D i s tF i l e ( r i gh t_d i s t )
p r i n t " d i s t f i l e r i g h t ready "
[ counter , temp ] = s p l i t c l u s t e r ( d i s t f i l e_ r i g h t , r i g h t_c e l l s , counter )
de l ( d i s t f i l e _ r i g h t )
i f ( temp == None ) :

r i g h t c l u s t e r = topelem [ 2 ]
e l s e :

r i g h t c l u s t e r = counter
t r e e a r r ay . extend ( temp)

t r e e a r r ay . append ( ( topelem [ 0 ] , l e f t c l u s t e r , r i g h t c l u s t e r ) )

re turn [ counter −1, t r e e a r r ay ]

de f wr i te_tree ( tree_array , f i l ename ) :
f i l eHand l e = open ( f i l ename , "w" )
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dump( tree_array , f i l eHand l e )
f i l eHand l e . c l o s e ( )

de f h ierarchica l_topdown ( data , cpr=None , f i l ename=" c lu s t e r_c . t r e e " ) :
i f cpr == None :

cpr = [ data . shape [ 0 ] ]
c e l l s_used = 0
l i n e coun t = 0
t r e e a r r ay = l i s t ( )
s t a r t = 0
combinereg ions = False

f o r n c e l l s in cpr :
stop = s t a r t + n c e l l s
p r i n t " General D i s tF i l e f o r a r eg i on ! "
d i s t = D i s tF i l e ( d i s tancematr ix ( data [ s t a r t : stop ] ) , o f f s e t=ce l l s_used )
#s t a r t s p l i t c l u s t e r to get an unordered top−down t r e e
counter , t r e e a r r aypa r t = s p l i t c l u s t e r ( d i s t , range ( s ta r t , stop ) ,

counter=−l i n e coun t )
s t a r t = stop
t r e e a r r ay . extend ( t r e e a r r aypa r t )

f = open ( " t r e e a r r ay%i . dat "%l inecount , "w" )
dump( t reea r ray , f )
f . c l o s e ( )
p r i n t t r e e a r r ay

prev_l inecount = l i n e coun t
l i n e coun t += nc e l l s −1
i f combinereg ions :

#add connector s between reg ions , s e t d i s t anc e to −999
t r e e a r r ay . append ( array ( [ 9 99 , −prev_linecount , −l i n e coun t ] ) )
l i n e coun t += 1

ce l l s_used += n c e l l s
combinereg ions = True

t r e e a r r ay = array ( t r e e a r r ay )
t r e e a r r ay [ : , 0 ] = −t r e e a r r ay [ : , 0 ]
#s e t d i s t an c e s between r eg i on s h igher than d i s t an c e s with in r e g i on s
maxdist = max( t r e e a r r ay [ : , 0 ] )
t r e e a r r ay [ t r e e a r r ay [ : , 0 ] == −999, 0 ] = maxdist + 100
#ca l c u l a t e s o r t o rd e r based on d i s t an c e s
order = l e x s o r t ((− t r e e a r r ay [ : , 2 ] , − t r e e a r r ay [ : , 1 ] , t r e e a r r ay [ : , 0 ] ) )
t r e e a r r ay = t r e e a r r ay [ order , : ] #so r t array
#remove fake d i s t an c e s
t r e e a r r ay [ t r e e a r r ay [ : , 0 ] > maxdist , 0 ] = None
treear ray_old = copy ( t r e e a r r ay ) #c r ea t e a copy
#r e l a b e l c l u s t e r s based on new order ( c l u s t e r s are named based on
#the i t e r a t i o n they are c rea ted
f o r i in range (−1 , −( t r e e a r r ay . shape [ 0 ]+1) , −1):

t r e e a r r ay [ t reear ray_old [ : , 1 ] == i , 1 ] = −( a r g s o r t ( order )[− i −1]+1)
t r e e a r r ay [ t reear ray_old [ : , 2 ] == i , 2 ] = −( a r g s o r t ( order )[− i −1]+1)

wr i te_tree ( t r eea r ray , f i l ename )
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2 Quality results for component runs

Table 1: Quality of input and output data of selected upscalings using hierarchical
bottom-up clustering with 400 (h400) and 1438 (h1438) cells and varying num-
bers and types of data sets used for upscaling: “all data” = All available data
sets, “input/output best/worst”: A combination of that 10 data sets showing
the best/worst performance in input/output quality measures, when only us-
ing that single data set for upscaling. “yield_rf”: rainfed yields. “yield_ir”:
irrigated yields. “airrig”: annual water demand for irrigation.

input output
d1 d2 d1 d2

h400 h1438 h400 h1438 h400 h1438 h400 h1438

all data 0.24 0.11 0.24 0.16 0.70 0.63 0.79 0.76

input best 0.38 0.28 0.32 0.23 0.80 0.73 0.84 0.81
worst 0.63 0.53 0.43 0.33 0.74 0.69 0.81 0.79

output best 0.49 0.33 0.40 0.29 0.74 0.59 0.81 0.75
worst 0.31 0.19 0.28 0.21 0.77 0.71 0.83 0.81

yield_rf wheat 0.69 0.64 0.74 0.78 0.81 0.72 0.90 0.87
maize 0.86 0.85 0.67 0.69 0.78 0.70 0.88 0.84
millet 0.66 0.68 0.65 0.62 0.79 0.68 0.90 0.84
rice 0.70 0.62 0.70 0.65 0.79 0.67 0.88 0.85
soybean 0.75 0.71 0.63 0.66 0.77 0.71 0.90 0.87
rapeseed 0.70 0.66 0.76 0.72 0.81 0.73 0.91 0.90
groundnut 0.71 0.64 0.73 0.66 0.79 0.71 0.86 0.86
sunflower 0.81 0.68 0.65 0.62 0.80 0.71 0.90 0.88
oil palm 0.70 0.64 0.72 0.67 0.78 0.68 0.86 0.84
pulses 0.75 0.60 0.68 0.63 0.79 0.71 0.90 0.87
potato 0.63 0.53 0.60 0.62 0.76 0.69 0.90 0.88
cassava 0.73 0.66 0.75 0.69 0.78 0.70 0.87 0.86
sugar cane 0.71 0.65 0.73 0.67 0.77 0.72 0.85 0.85
sugar beet 0.63 0.54 0.61 0.62 0.75 0.71 0.89 0.89
others 0.86 0.77 0.90 0.73 0.71 0.71 0.87 0.92
cotton 0.75 0.62 0.67 0.67 0.79 0.70 0.89 0.87

89



Supplementary data - Clustering

Table 1: (continued) Quality of input and output data of selected upscalings using hierar-
chical bottom-up clustering with 400 (h400) and 1438 (h1438) cells and varying
numbers and types of data sets used for upscaling: “all data” = All available
data sets, “input/output best/worst”: A combination of that 10 data sets show-
ing the best/worst performance in input/output quality measures, when only
using that single data set for upscaling. “yield_rf”: rainfed yields. “yield_ir”:
irrigated yields. “airrig”: annual water demand for irrigation.

input output
d1 d2 d1 d2

h400 h1438 h400 h1438 h400 h1438 h400 h1438

fodder 0.81 0.75 0.76 0.82 0.86 0.79 0.94 0.90
pasture 0.81 0.75 0.76 0.82 0.86 0.79 0.94 0.90
bioen. grasses 0.61 0.55 0.65 0.69 0.78 0.75 0.89 0.88
bioen. trees 0.75 0.73 0.73 0.73 0.83 0.82 0.91 0.92

yield_ir wheat 0.64 0.59 0.62 0.65 0.79 0.69 0.89 0.86
maize 0.60 0.56 0.59 0.62 0.82 0.76 0.90 0.89
millet 0.63 0.54 0.59 0.55 0.79 0.68 0.90 0.84
rice 0.68 0.64 0.70 0.66 0.79 0.74 0.90 0.89
soybean 0.61 0.56 0.59 0.58 0.81 0.71 0.90 0.86
rapeseed 0.64 0.61 0.63 0.62 0.77 0.71 0.89 0.88
groundnut 0.69 0.63 0.70 0.63 0.80 0.70 0.90 0.87
sunflower 0.62 0.58 0.59 0.59 0.80 0.76 0.91 0.89
oil palm 0.68 0.61 0.70 0.60 0.79 0.71 0.90 0.87
pulses 0.60 0.55 0.56 0.57 0.80 0.72 0.89 0.89
potato 0.59 0.53 0.54 0.57 0.80 0.80 0.89 0.91
cassava 0.73 0.64 0.76 0.63 0.78 0.72 0.88 0.87
sugar cane 0.69 0.62 0.71 0.63 0.80 0.73 0.92 0.88
sugar beet 0.58 0.53 0.53 0.58 0.81 0.79 0.89 0.89
others 0.86 0.77 0.90 0.73 0.71 0.71 0.87 0.92
cotton 0.60 0.54 0.56 0.57 0.79 0.72 0.90 0.89
fodder 0.66 0.57 0.56 0.57 0.82 0.79 0.90 0.90
pasture 0.66 0.57 0.56 0.57 0.82 0.79 0.90 0.90
bioen. grasses 0.59 0.57 0.61 0.72 0.80 0.78 0.91 0.91
bioen. trees 0.64 0.62 0.64 0.69 0.79 0.78 0.89 0.90

airrig wheat 0.59 0.56 0.56 0.61 0.79 0.80 0.91 0.92
maize 0.55 0.52 0.49 0.53 0.83 0.82 0.90 0.92
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Table 1: (continued) Quality of input and output data of selected upscalings using hierar-
chical bottom-up clustering with 400 (h400) and 1438 (h1438) cells and varying
numbers and types of data sets used for upscaling: “all data” = All available
data sets, “input/output best/worst”: A combination of that 10 data sets show-
ing the best/worst performance in input/output quality measures, when only
using that single data set for upscaling. “yield_rf”: rainfed yields. “yield_ir”:
irrigated yields. “airrig”: annual water demand for irrigation.

input output
d1 d2 d1 d2

h400 h1438 h400 h1438 h400 h1438 h400 h1438

millet 0.55 0.51 0.48 0.52 0.81 0.83 0.90 0.92
rice 0.55 0.51 0.48 0.52 0.80 0.80 0.91 0.91
soybean 0.55 0.54 0.50 0.56 0.80 0.79 0.90 0.89
rapeseed 0.59 0.57 0.57 0.64 0.83 0.79 0.91 0.92
groundnut 0.55 0.50 0.48 0.52 0.80 0.81 0.90 0.92
sunflower 0.56 0.53 0.52 0.55 0.81 0.80 0.90 0.90
oil palm 0.55 0.50 0.48 0.52 0.80 0.81 0.90 0.92
pulses 0.59 0.56 0.56 0.62 0.82 0.81 0.91 0.92
potato 0.59 0.55 0.52 0.58 0.82 0.82 0.91 0.92
cassava 0.56 0.51 0.49 0.52 0.82 0.79 0.91 0.91
sugar cane 0.55 0.50 0.48 0.52 0.80 0.81 0.90 0.92
sugar beet 0.59 0.55 0.52 0.58 0.82 0.82 0.91 0.92
others 0.86 0.77 0.90 0.73 0.71 0.71 0.87 0.92
cotton 0.59 0.56 0.56 0.62 0.82 0.81 0.91 0.92
fodder 0.58 0.54 0.52 0.57 0.80 0.81 0.90 0.91
pasture 0.58 0.54 0.52 0.57 0.80 0.81 0.90 0.91
bioen. grasses 0.60 0.58 0.58 0.64 0.80 0.76 0.89 0.88
bioen. trees 0.61 0.59 0.62 0.75 0.78 0.76 0.89 0.90
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Country-to-region mapping

AFR CPA EUR FSU LAM
Sub-Saharan-Africa Centr. Planned Asia Europe Former Soviet Union Latin America
Angola Cambodia Albania Azerbaijan, Republic of Argentina
Benin China Austria Belarus Belize
Botswana Laos Belgium-Luxembourg Georgia Bolivia
Burkina Faso Mongolia Bosnia and Herzegovina Kazakhstan Brazil
Burundi Viet Nam Bulgaria Kyrgyzstan Chile
Cameroon Croatia Moldova, Republic of Colombia
Central African Republic Czech Republic Russian Federation Costa Rica
Chad Denmark Tajikistan Cuba
Congo, Dem Republic of Estonia Turkmenistan Dominican Rep.
Congo, Republic of Finland Ukraine Ecuador
Cote d’Ivoire France Uzbekistan El Salvador
Djibouti Germany French Guiana
Equatorial Guinea Greece Guatemala
Eritrea Hungary Guyana
Ethiopia Iceland Haiti
Gabon Ireland Honduras
Ghana Italy Mexico
Guinea Latvia Nicaragua
Guinea-Bissau Lithuania Panama
Kenya Macedonia Paraguay
Lesotho Netherlands Peru
Liberia Norway Suriname
Madagascar Poland Uruguay
Malawi Portugal Venezuela
Mali Romania
Mauritania Slovakia
Mozambique Slovenia
Namibia Spain
Niger Sweden
Nigeria Switzerland
Rwanda Turkey
Senegal United Kingdom
Sierra Leone Yugoslavia, Fed Rep of
Somalia
South Africa
Sudan
Swaziland
Tanzania, United Rep. of
Togo
Uganda
Western Sahara
Zambia
Zimbabwe

MEA NAM PAO PAS SAS
Middle East/North Afr. North America Pacific OECD Pacific Asia South Asia
Algeria Canada Australia Indonesia Afghanistan
Egypt USA Japan Korea, Dem People’s Rep Bangladesh
Iran, Islamic Rep of New Zealand Korea, Rep of Bhutan
Iraq Malaysia India
Israel Papua New Guinea Myanmar
Jordan Philippines Nepal
Kuwait Solomon Islands Pakistan
Libyan Arab Jamahiriya Thailand Sri Lanka
Morocco
Oman
Saudi Arabia
Syrian Arab Rep
Tunisia
United Arab Emirates
Yemen

Table 2: Country-to-region mapping

93





Population and GDP assumptions

year AFR CPA EUR FSU LAM MEA NAM PAO PAS SAS
1995 553 1281 554 276 452 278 292 134 383 1270
2005 743 1480 589 293 550 357 332 146 462 1572
2015 926 1582 586 295 623 423 355 148 517 1797
2025 1125 1651 575 295 687 486 375 147 565 1998
2035 1313 1673 559 285 739 541 391 146 614 2149
2045 1481 1677 532 275 780 590 400 144 652 2265
2055 1629 1659 505 262 810 633 404 140 674 2347
2065 1753 1632 480 246 830 671 403 132 684 2398
2075 1845 1610 458 232 844 701 402 122 690 2423
2085 1914 1599 449 224 855 728 401 112 685 2440
2095 1953 1590 440 216 861 752 400 100 676 2452

Table 3: Population in million people from 1995 to 2095 aggregated to ten world regions
[Center for International Earth Science Information Network (CIESIN) et al.,
2000]

year AFR CPA EUR FSU LAM MEA NAM PAO PAS SAS
1995 1513 3299 16128 3521 6527 4940 26765 21469 3649 1461
2005 1627 5855 20124 4081 7840 5855 33920 24240 4614 2139
2015 1826 8907 25189 6094 9769 7352 39349 28672 6692 3180
2025 2080 12311 30654 8496 11853 9215 44489 34841 9324 4406
2035 2447 16270 36115 11143 14131 11408 49842 41224 12371 5805
2045 3221 20512 41080 15264 17144 14142 55597 45297 16211 7769
2055 4242 24720 45851 20235 20808 17346 61383 49037 20322 9827
2065 5430 28579 50672 25698 24989 21002 67106 52935 24569 11923
2075 6823 32461 55419 31465 29688 25101 72804 56813 29050 14083
2085 8425 36296 60119 37247 35057 29530 78330 60693 33879 16244
2095 10299 40273 65026 42963 41189 34405 84071 64730 39281 18557

Table 4: GDP per capita (US$ per number of people in purchasing power parities (PPP))
[World Bank, 2001]
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