
 
 

 

Originally published as:  

 
Dietrich, J. P., Schmitz, C., Müller, C., Fader, M., Lotze-Campen, H., Popp, A. 

(2012): Measuring agricultural land-use intensity - A global analysis using a model-

assisted approach. - Ecological Modelling, 232, 109-118  

 

DOI: 10.1016/j.ecolmodel.2012.03.002 

http://dx.doi.org/10.1016/j.ecolmodel.2012.03.002


Measuring agricultural land-use intensity - A global

analysis using a model-assisted approach

Jan Philipp Dietricha,b, Christoph Schmitza,c, Christoph Müllera, Marianela
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Abstract

Human activities such as research & development, infrastructure or management
are of major importance for agricultural productivity. These activities can be
summarized as agricultural land-use intensity. We present a measure, called
the τ -factor, which is an alternative to current measures for agricultural land-
use intensity. The τ -factor is the ratio between actual yield and a reference
yield under well defined management and technology conditions. By taking this
ratio, the physical component (soils, climate), which is equal in both terms,
is removed. We analyze global patterns of agricultural land-use intensity for
10 world regions and 12 crops, employing reference yields as computed with a
global crop growth model for the year 2000. We show that parts of Russia,
Asia and especially Africa had low agricultural land-use intensities, whereas the
Eastern US, Western Europe and parts of China had high agricultural land-
use intensities in 2000. Our presented measure of land use intensity is a useful
alternative to existing measures, since it is independent of socio-economic data
and allows for quantitative analysis.

Keywords: agriculture, land-use intensity, land-use, agricultural productivity,
yield growth

1. Introduction

Future demand for agricultural products will increase over the coming decades,
driven by population growth and changing dietary habits (Pingali, 2007; von
Braun, 2007), which means that agricultural production will have to increase.
The two basic options for this are expansion of the land area under agricultural
production, and agricultural land-use intensification (for definitions see Table
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concept description

yield a measure of the output per unit area

human activity any kind of human interaction influencing
yields (e.g. management or R&D)

physical environment natural circumstances under which produc-
tion takes place (soil, climate, terrain)

agricultural land-use intensity α degree of yield amplification caused by hu-
man activities

τ -factor measure proportional to agricultural land-
use intensity

Table 1: Concepts and terms used in this paper

1). Because land expansion is limited (Lambin and Meyfroidt, 2011), intensi-
fication has been and will increasingly become more important in the future
(Ewert et al., 2005). To assess further long-term yield growth and for projec-
tions of future land-use developments it is essential to quantify current levels
of agricultural land-use intensity, assuming that further improvements are more
difficult to achieve in systems operating at the forefront of intensity levels than
for systems at lower intensity levels (e.g. spillover).

Literature provides two different concepts for analyzing agricultural per-
formance: yield gap analysis and analysis of land-use intensities1. Yield gap
analyses assume that each location has an upper yield boundary, called ei-
ther “potential yield” (Ittersum and Rabbinge, 1997) or “technology frontier”
(Nishimizu and Page, 1982), which is determined by present physical conditions
and available technologies. Observed or actual yields may be lower than the
potential yield due to the ineffective application of inputs and available tech-
nologies. Regions with strong discrepancies between actual and potential yield
have strong potentials for further yield increases, whereas regions at the technol-
ogy frontier are not able to increase their yields any further (Färe et al., 1994;
Coelli and Rao, 2005; Neumann et al., 2010). This approach can be seen as
a short-term analysis of agricultural potentials, since it focuses on agricultural
inputs and management, which can be changed and optimized within years.
However, it excludes productivity changes induced by Research & Development
(R&D) (Licker et al., 2010; Johnston et al., 2011), which typically have a time
lag of around 10-30 years (Alston et al., 1995, 2000).

The concept of agricultural land-use intensity as followed in this paper does
not measure the distance to a technology frontier or potential yield. Instead,
it is a productivity measure which takes only the human-induced productivity
into account (Brookfield, 1993; Kates et al., 1993; Netting, 1993), explicitly in-
cluding those that affect the technology frontier like the development of new
varieties as during the so-called green revolution (Evenson and Gollin, 2003).

1In this paper we use the term land use intensity analysis contrasting to yield gap anal-
ysis rather than a generic term for agricultural potential analysis as it is sometimes used in
literature. For further explanations for this choice check Appendix D
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Although, both measures can be calculated in similar ways, their meaning is dif-
ferent: Yield gap measures the distance to the currently best practice, typically
excluding possible changes in best practices, whereas land-use intensity mea-
sures all those parts of agricultural productivity, which cannot be explained by
the physical environment (soils, climate). This difference becomes eminent when
comparing values at different time steps. A farm not adopting any technological
progress will show an increasing yield gap, but constant land-use intensity. This
is, because the technology frontier moves in this case, but not the productivity
level (see Appendix D for more details on this example and more explanations
about the crucial differences between yield gap and land use intensity). As
the position of the technology frontier cannot be assumed to be constant over
decades, measures of land-use intensity are more adequate tools for assessing
long-term developments in agriculture (time horizons of several decades). Due
to its more comprehensive definition with respect to yield increasing activities,
land-use intensity is also more appropriate as a surrogate for the general state
of agricultural development.

The concept ”land-use intensity” is less clearly defined than that of yield gap
analysis. Sometimes the term is used in the sense of an overarching definition,
including yield gap analysis as some part of it, in other cases it is used more
narrowly as in our definition. We only found explicit definitions for the term
”land-use intensification”, but none for ”land-use intensity”. Brookfield (1993)
describes intensification as ’in relation to constant land, the substitution of
labor, capital or technology for land, in any combination, so as to obtain higher
long-term production from the same area’. Kates et al. (1993) and Netting
(1993) use the formulation that intensification is ’a process of increasing the
utilization or productivity of land currently under production, and it contrasts
with expansion, that is, the extension of land under cultivation’. Shriar (2000)
uses the formulation that ’agricultural intensification is a process of raising land
productivity over time through increases in inputs of one form or another on a
per unit area basis’.

Land-use intensity can be measured either in an output-oriented or input-
oriented way using inputs as surrogates for increases in productivity (Lambin
et al., 2000). When the focus is on output, intensity can be measured in produc-
tion units (calories, tons, monetary value,...) per area per time unit (Turner and
Doolittle, 1978). In an input-oriented approach the amount of inputs is mea-
sured and weighted with their assumed increase in production (Shriar, 2000;
Turner and Doolittle, 1978) or single input characteristics are used as a sur-
rogate for land-use intensity, for instance, cultivation frequency (Boserup and
Kaldor, 1977).

Comparing all these definitions and measures we find general agreement in
two respects: (1) intensification means increases in productivity and (2) inten-
sification can be achieved by a broad spectrum of options which are all induced
by humans. Changes in productivity due to environmental reasons, such as cli-
mate change, are generally excluded. Based on this consensus we here define
intensification and intensity as:

3



1. agricultural land-use intensification is the increase of land productivity
due to human activities

2. agricultural land-use intensity is the degree of yield amplification caused
by human activities.

These definitions are quite similar to former ones but highlight that any kind
of human interaction with agriculture that affects productivity also affects land-
use intensity whereas no kind of environmental interaction has any influence on
it.

To capture agricultural land-use intensities as defined in this paper we in-
troduce a new measure τ . It is the ratio between an actual yield (observed
yields) and a reference yield (a yield that would be achieved under spatial and
temporal constant land-use intensity). Actual yields can be directly observed,
whereas reference yields can either be derived by models or statistical analysis,
for which a global crop-growth model, the “Lund-Potsdam-Jena dynamic global
vegetation model with managed Land” (LPJmL) (Bondeau et al., 2007).

2. Methods

2.1. Agricultural land-use intensity and τ -factor

Crop yields are useful parameters in assessing agricultural land-use intensity.
The yield of a region itself already provides a rough estimate of it. However, this
measure is still distorted because of its dependence on the physical environment.
Hence, a high yield could either indicate high agricultural land-use intensity or
favorable physical conditions. Applying the concept of partial factor produc-
tivity (Nin et al., 2003), a yield Y (c, j) (of crop c at place j) can be described
as the product of two factors: a base yield Y0(c, j) and an amplification factor
α(c, j) (Equation 1).

Y (c, j) = α(c, j)
︸ ︷︷ ︸

land-use intensity

· Y0(c, j)
︸ ︷︷ ︸

base yield

(1)

The base yield depends only on the physical environment and is free of any
human influences except sowing and harvesting, which are essential cropping
activities. The amplification factor α is independent of the physical environment
and represents only the amplification of yields due to human activities. Thus,
α is the agricultural land-use intensity as followed in this paper.

Since a base yield in agriculture without any management is a rather theo-
retical entity, we here use a reference yield Yref , which represents yields under
clearly defined management settings. Consequently, it is a combination of phys-
ical environment and human activity. The physical environment component,
however, is eliminated by dividing the actual yield Yact by this reference yield
Yref (Equation 2). The ratio τ of the actual yield Yact and the reference yield
Yref is therefore our measure for land-use intensity.
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τ(c, j) =
Yact(c, j)

Yref (c, j)
=

αact(c, j) · Y0(c, j)

αref · Y0(c, j)
=

αact(c, j)

αref

(2)

τ is independent of the physical environment, since Y0 is equal in both the
reference and the actual yields. It is proportional to the agricultural land-use
intensity αact but easier to calculate since it does not require a full separation
of physical environment and human activities. While actual yields can be mea-
sured directly, reference yields Yref need to be deduced. We therefore employ the
crop growth model LPJmL (Bondeau et al., 2007) to compute spatial patterns
of crop yields under static assumptions on management. Static assumptions on
management in the simulations of the reference yield ensure that τ is propor-
tional to the land-use intensity α, as reference yields are thus comparable over
both time and space, as needed (Equation 2).

τ is not a direct measure of land-use intensity but can be used as a surrogate,
representing land-use intensity, scaled with 1/αref , which is a constant. Relative
changes in τ are directly proportional to relative changes in αact. Accordingly,
τ doubles if crop yield double owing to improved management, technological de-
velopment or any other human activity. If crop yields change owing to changing
environmental conditions (like climate change), τ and αact remain unaltered.
For analyzing land-use intensity patterns, we can use τ as it is. However, we
have to consider its scaling factor, when comparing different τ estimates with
each other. A τ -factor in one region A that is twice as high as the τ -factor
in another region B can be interpreted as such: if both regions have the same
physical conditions, region A will have twice the yield of region B due to a
higher agricultural land-use intensity. If, on the contrary, physical conditions
in region A are half as good as in region B, yields in region A and B would be
equal. Thus, the τ -factor not only ranks regions, but also delivers quantitative
information about yield differences between regions due to differences in human
activity (agricultural land-use intensity).

Accurate estimates of land-use intensity are dependent on the quality of
observations of actual yields. Actual yield data is available at national (FAO-
STAT, 2009) or even sub-national level (Monfreda et al., 2008) and are subject
to some uncertainty, while reference yield data have to be deduced theoretically,
e.g. by means of crop models. However, especially global models typically suffer
from systematic errors and biases caused by the high complexity of the modeled
system. To reduce the error caused by these biases in τ , consistency between
actual yield Yact and reference yield Yref is of eminent importance. Therefore,
we use the same model for both, simulating reference yields and model-based
downscaling of national FAOSTAT data as spatial patterns of actual yields. By
doing so impacts of model biases on τ do not vanish but are reduced, since they
are part of both the numerator Yact and denominator Yref .

2.2. The LPJmL model and simulations of yields

For calculations we use the “Lund-Potsdam-Jena dynamic global vegetation
model with managed Land” (LPJmL). LPJmL is a process-based ecosystem
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Figure 1: Conceptual diagram of the plant processes and pools in the LPJmL model

model which simulates the growth, production and phenology of 9 plant func-
tional types (representing natural vegetation at the level of biomes; Sitch et al.
(2003)) and of 12 crop functional types2 (CFTs) and managed grass (Bondeau
et al., 2007). Carbon fluxes (gross primary production, auto- and heterotrophic
respiration) and pools (in leaves, sapwood, heartwood, storage organs, roots,
litter and soil) as well as water fluxes (interception, evaporation, transpiration,
soil moisture, snow melt, runoff, discharge) are modeled accounting explicitly
for the dynamics of natural and agricultural vegetation. The photosynthetic
processes are modeled according to Farquhar et al. (1980) and Collatz et al.
(1992). The phenology and management dates (sowing and harvest) of the dif-
ferent crop types are simulated dynamically based on crop-specific parameters
and past climate experience, allowing for adaptation of varieties and growing
periods to climate change (Waha et al., 2012). All processes are modeled at
a daily resolution and on a global 0.5◦ × 0.5◦ grid. For agricultural crops, as-
similated biomass from photosynthesis is allocated at daily steps to four carbon
pools: leaves, roots, harvestable storage organs (e.g. grains for cereals), and
a pool representing stems and mobile reserves (see Figure 1). At harvest, the
biomass fraction of the storage organs represents the harvested yield. For more
details see Bondeau et al. (2007)

The suitability of the model (and its predecessor LPJ that did not include
cropland) for vegetation/crop and water studies has been demonstrated before
by validating simulated phenology and yields (Bondeau et al., 2007; Fader et al.,
2010), river discharge (Biemans et al., 2009; Gerten et al., 2004), soil moisture

2wheat, maize, rice, millet, sugar beet, cassava, sugar cane, rapeseed, groundnut, soybean,
field peas, sunflower
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(Wagner et al., 2003), evapotranspiration (Gerten et al., 2004; Sitch et al., 2003)
and irrigation water requirements (Rost et al., 2008).

Agricultural intensity is represented in LPJmL via three parameters: (1) the
maximum Leaf Area Index (LAImax), an index that depicts the ratio of leaf sur-
face to covered land surface at maximum green-leaf development and affects the
overall productivity of the plant via the fraction of absorbed photosynthetically
active radiation (fpar), (2) a scaling factor from simulated leaf-level photosyn-
thesis to field scale (alphaa, representing the homogeneity of a field), as well as
(3) the harvest index (HI), assuming that intensive systems grow high yielding
varieties and extensive systems grow more robust but lower-yielding varieties
(Gosme et al., 2009). All three factors are directly linked: highly developed
systems are parameterized with a high LAImax value, high alphaa, and high HI
(Fader et al., 2010). High agricultural land-use intensity is represented by high
LAImax, alphaa, and HI which leads to simulation of high yields.

The reference yield Yref in our study is computed by using static values for
LAImax, alphaa, and HI, representing static agricultural land-use intensities,
as needed for computing τ (see Equation 2). In order to reduce model-based
errors, we here do not use a single static assumption on agricultural land-use
intensity but the mean of seven different settings. Methodologically, this choice
does not affect the results as it is also possible to use only one single level of
agricultural intensity. However, using the mean of several settings increases the
signal-to-noise ratio of the simulated data and contributes to the robustness of
our τ estimates.

Actual yields could be taken directly from observations, such as the FAO
statistics. Here, we also use model-based representations of observed yields to
avoid model-based distortions of actual and reference yields. For downscaling
of actual yields to sub-national level, agricultural intensity of each crop in each
country was chosen in a way to best match observed national yield levels as
reported by FAOSTAT (2009). Grid cell level yields were aggregated to national
yields using a global land-use data set (Portmann et al., 2010) as modified by
Fader et al. (2010). For details of scaling to observed national yield levels see
Fader et al. (2010). The goodness-of-fit between simulated actual yields Yact and
FAOSTAT data is shown by the Willmott coefficient (Willmott, 1982), which
ranges between 0 (no relationship) and 1 (perfect agreement) (see Appendix
A). Results between 0.74 and 0.98 indicate good agreement. Since information
on the spatial distribution of multiple cropping systems is lacking and FAOstat
only delivers data on harvested yields we related all our calculations to area
harvested rather than physical area. This approach excludes multi-cropping as
an indicator for favorable physical conditions as well as a source of intensification
but marks the best alternative under absence of reliable spatial data on multiple
cropping systems.

2.3. Aggregating the τ -factor

For our analysis of agricultural land-use intensity, we analyse the spatial pat-
terns of agricultural land-use intensity as well as the rankings of world regions.
The aggregation of τ computed at grid cell level j to larger spatial units i is
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computed as the ratio of aggregated actual yield Yact and aggregated reference
yield Yref (Equation 3).

τ(c, i) =
Yact(c, i)

Yref (c, i)
=

∑

j∈i

τ(c,j)
︷ ︸︸ ︷

Yact(c, j)

Yref (c, j)
·

Xref (c,j)
︷ ︸︸ ︷

Yref (c, j) ·A(c, j)

∑

j∈i

Yref (c, j) ·A(c, j)
︸ ︷︷ ︸

Xref (c,j)

(3)

Since both aggregates of Yact and Yref need to be weighted by crop area
A(c, j) equation 3 can be simplified to a weighted mean of τ with weight Xref

(Equation 4).

τ(c, i) =

∑

j∈i

τ(c, j) ·Xref (c, j)

∑

j∈i

Xref (c, j)
(4)

The weightXref is a product of crop areaA(c, j) and reference yield Yref (c, j)
(Equation 5) and represents production under reference conditions.

Xref (c, j) = Yref (c, j) ·A(c, j) (5)

The aggregation of several crop-specific τ is complicated by the fact that
τ is a scaled representative of agricultural land-use intensity α (see above).
Because crop parameters used for the 12 crops studied here in the LPJmL model
also represent different crop varieties, reference yields of different crops are not
directly comparable to each other, as also the selection of crop varieties (and
their breeding) is an integral part of agricultural land-use intensity. In order to
make them comparable, we normalize crop-specific τ values so that the global
area-weighted mean of each crop-specific τ is equal to 1.0 before combining
crop-specific τ values to one overall τ . More information on the aggregation of
crop-specific τ values to a general τ factor and how this aggregation produces
information on the sub-national level is given in Appendix C.

3. Results

We have calculated τ -factors for 10 world regions3 (see Table B.5 for country-
to-region mapping) and 12 different commodity types for 2000 (Table 2 and Ta-
ble 3). All τ -factors are normed by the corresponding global mean value. If the
regional production of a crop was less than 0.1% of the global crop production
the τ -factor is not computed.

3AFR = Sub-Sahara Africa, CPA = Centrally Planned Asia (incl. China), EUR = Europe
(incl. Turkey), FSU = Former Soviet Union, LAM = Latin America, MEA = Middle East
and North Africa, NAM = North America, PAO = Pacific OECD (Australia, Japan and New
Zealand), PAS = Pacific Asia, SAS = South Asia (incl. India)
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total wheat rice maize millet field peas sugar beet

AFR 0.67 0.60 0.44 0.33 0.86 0.61 -
CPA 1.15 1.06 1.42 1.11 1.75 0.93 1.02
EUR 1.34 1.32 1.18 1.38 1.82 1.76 1.21
FSU 0.79 0.80 0.61 0.77 1.24 0.92 0.57
LAM 0.99 0.81 0.73 0.69 0.82 1.42 0.83
MEA 0.66 0.62 0.96 0.88 1.24 0.64 0.80
NAM 1.22 1.10 1.29 1.60 1.42 1.07 1.22
PAO 0.85 0.84 1.49 - 1.44 0.61 1.46
PAS 0.88 - 0.95 0.61 1.43 0.48 -
SAS 0.86 0.88 0.81 0.42 1.05 1.04 -
GLO 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Crop-specific τ -factors (dimensionless) in world regions for the year 2000 (AFR:
Sub-Sahara Africa, CPA: Centrally Planned Asia (incl. China), EUR: Europe (incl. Turkey),
FSU: Former Soviet Union, LAM: Latin America, MEA: Middle East and North Africa, NAM:
North America, PAO: Pacific OECD (Australia, Japan and New Zealand), PAS: Pacific Asia,
SAS: South Asia (incl. India), GLO: World) 1/2

cassava sunflower soybean groundnut rapeseed sugar cane

AFR 0.88 0.94 0.75 0.60 - 0.92
CPA 1.05 1.83 0.89 1.92 0.73 1.20
EUR - 1.20 1.15 - 1.62 -
FSU - 0.79 0.50 - 0.68 -
LAM 1.03 1.11 1.25 0.92 - 1.10
MEA - 0.83 - 1.42 - 1.41
NAM - 1.10 0.90 1.97 1.13 1.40
PAO - 1.50 0.97 - 0.82 1.33
PAS 1.30 - 0.77 1.12 - 0.82
SAS 1.78 0.69 1.21 0.80 0.72 0.86
GLO 1.00 1.00 1.00 1.00 1.00 1.00

Table 3: Crop-specific τ -factors (dimensionless) in world regions for the year 2000 (AFR:
Sub-Sahara Africa, CPA: Centrally Planned Asia (incl. China), EUR: Europe (incl. Turkey),
FSU: Former Soviet Union, LAM: Latin America, MEA: Middle East and North Africa, NAM:
North America, PAO: Pacific OECD (Australia, Japan and New Zealand), PAS: Pacific Asia,
SAS: South Asia (incl. India), GLO: World) 2/2
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Figure 2: τ -factors in world regions & global (GLO) for the year 2000

EUR has the highest total τ -factor as well as highest crop-specific τ -factors
for wheat, millet, field peas and rapeseed, NAM shows the highest maize and
groundnut τ -factors, CPA the highest value for sunflower, LAM the highest
value for soybean, SAS the highest value for cassava, PAO the highest τ -factors
for rice and sugar beet and MEA the highest value for sugar cane. AFR has the
lowest τ -factors for wheat, rice, maize, cassava and groundnut and shows only a
slightly higher total τ -factor than MEA which ranks lowest in our comparison.
FSU shows the lowest τ -factors for sugar beet, soybean and rapeseed, SAS the
lowest value for sunflower, LAM for millet and PAS for field peas and sugar
cane.

Some regions have only slight variations in their τ -factors over all crops, e.g.
AFR (constantly low) or EUR (constantly high), whereas other regions show
strong variations between crops, as e.g. PAO or MEA.

Figure 2 shows the aggregated, normed τ -factors over all crops for all regions
and at global level in 2000 aggregated using the aggregation weight described in
Section 2.3. The range is between 0.66 and 1.34. Comparing e.g. Sub-Saharan
Africa (AFR) and Europe (EUR), EUR would have 103% higher yields than
AFR if physical environmental conditions would be identical due to its higher
agricultural land-use intensity. Besides AFR which displays constantly low levels
over all crops and EUR with constantly high levels, our general ranking shows
a broad spectrum of regions a bit lower than the global mean of 1. Especially
PAO, SAS and PAS are within a range from 0.85 to 0.88.

Figure 3 shows the global distribution of the mean τ -factors in 2000. We
observe regions with homogeneous spatial distribution of τ as well as regions
with strong heterogeneity. For instance, the Republic of Ireland, United King-
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Figure 3: Global τ -factor distribution for the year 2000

dom, France, Germany and Sweden show relatively homogeneous values at a
high level and Madagascar and Mozambique homogeneous values at a low level,
whereas the US, Peru and South Africa seem to be more heterogeneous in their
τ -factors. We observe high values in the Eastern US, Central Europe and South
China, medium values in Latin America and Asia and low values in Central
Africa and Eastern Europe / Russia.

4. Discussion

In this paper we present the τ -factor, a methodological extension to cur-
rently available measures for land-use intensity. The most important difference
of our approach to other measures of land-use intensity is that τ determines
land-use intensity by eliminating the environmental component from observed
actual yields via a reference yield (see Equation 2). This procedure contrasts
with input-oriented approaches which determine land-use intensity by measur-
ing individual drivers of land-use intensity such as fertilizer use, labor use, ma-
chinery (Shriar, 2000; Turner and Doolittle, 1978; Boserup and Kaldor, 1977).
Consequently, τ is by definition a comprehensive measure of land-use intensity,
while input-oriented measures include only factors that have been quantified
explicitly. When socio-economic data is lacking, land-use intensity can still be
calculated using τ .

But τ -factor and input-oriented approaches do not only differ in terms of
data requirements. Input-oriented measures deliver information about the rel-
evance of certain inputs allowing for attributing fractions of overall land-use
intensity to these inputs. In contrast, τ delivers an estimate of total land-use
intensity which cannot be attributed to individual factors. However, sources
of agricultural intensification do not have to be known explicitly. τ consid-
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ers all determinants of agricultural intensity, except those which are explicitly
excluded.

τ is defined as a factor linearly amplifying the reference yield. This linearity
between τ and yield allows the direct translation of differences in τ values into
differences in yields. For instance, a duplication in τ means that under fixed
environmental conditions also the yield will double. On the other hand this
linearity in the used definition prohibits the mapping of a τ value to a specific
set of technologies. As the effectiveness of technologies typically depends on the
environmental conditions the same technology will lead to different τ values at
different locations.

The quality of the reference yields, which need to be derived theoretically, is
an important qualification of the τ measure of land-use intensity. Currently, we
use LPJmL to calculate reference yields (Bondeau et al., 2007), which leads to
several unwanted disturbances in outputs: LPJmL distincts between rainfed and
irrigation production and also uses a dynamic routine to set sowing dates (Waha
et al., 2012). As both processes are a part of the model and cannot be switched
off, intensification approaches based on irrigation and optimized sowing dates
are only partially accounted for in our approach. All possible model errors and
bugs also influence the calculated reference yields.

Besides the calculation of the reference yield also the availability of actual
yields is a problem: FAO (FAOSTAT, 2009), our source for actual yields, re-
ports only harvested yields, which means that multi-cropping does only lead
to higher harvested areas but not to higher harvested yields. Comparing har-
vested yields to calculate τ , as we did, means that multi-cropping is accounted
for as a natural process but not as a process for intensification. Especially, since
multi-cropping was the first indicator used for land-use intensity (Boserup and
Kaldor, 1977) the approach is unusual and not optimal. However, looking more
into detail, multi-cropping cannot be clearly addressed to either of both sides:
On the one hand, multi-cropping is, of course, an approach to intensify produc-
tion and comparing two farming systems under the same, good environmental
conditions the multi-cropping system will have the higher intensity. On the
other hand, multi-cropping can only be applied reasonably if the environmental
conditions are good enough. Therefore, it can also been seen as an indicator for
the environmental conditions at a specific location.

Another problem with the FAO data is its limited resolution. Data is only
available at a national level so that we are only able to calculate a single intensity
per crop and country. Combined with high-resolution land-use patterns we were
still able to calculate the general τ at a finer resolution, but this data is not
crop-specific and has to be interpreted with care. One solution might be to use
spatial-explicit data sets such as provided by Monfreda et al. (2008). However,
in this case one loses the consistency between actual yields and reference yields
which seemed to us more important than the use of a data set with a higher
disaggregation level.

Concerning the interpretation of our global analysis, it is important to re-
alize that low agricultural land-use intensities do not necessarily imply strong
yield increases in the future. Many other limiting factors have to be taken into
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account when projecting future yield growth. For instance, Africa shows gen-
erally low land-use intensities, but weak institutions and political conditions in
many African countries are elements that could inhibit exploiting its chances.
Another factor is production costs which may increase disproportionately with
yield. In this case it becomes irrelevant from an economic perspective to pro-
duce at a higher land-use intensity. Typical examples for this behavior are
sparsely populated regions with high wage levels, as for instance the Western
US or Canada, where labor becomes more limiting and more cost-determining
than land (Runge et al., 2003; Federico, 2005).

Compared to a global yield-gap analysis by Neumann et al. (2010) most re-
gions show a similar behavior in land-use intensities (τ) and efficiencies (yield
gap analysis) for maize (see appendix Appendix E for the τ -values of maize). Ex-
ceptions are Indonesia, China and Brazil, for which efficiency levels are slightly
higher compared to τ land-use intensity levels. Another study (Licker et al.,
2010) comes to higher values in Brazil, Indonesia and Thailand, whereas τ indi-
cates high levels in Peru and Bolivia. The remaining regions are quite similar,
ignoring the subnational heterogeneity. The general large agreement indicates,
that technological advances that cannot be captured by the yield gap analysis
typically occur in conjunction with advances in management practices.

In addition, our results are in good agreement with FAO/OECD yield growth
projections (OECD-FAO, 2009; Bruinsma, 2003): regions with high agricultural
land-use intensities, for instance EUR or NAM, have low FAO yield growth pro-
jections, whereas AFR has low land-use intensities and high FAO yield growth
projections. FAO yield growth projections for SAS are significantly higher than
for CPA, which is in good agreement to land-use intensities, derived in this
study. As mentioned before, low land-use intensities do not imply that future
development will be strong, yet it can be assumed that increases in land-use
intensity are technically easier to achieve if current levels are low.

Our approach shows that Southern Europe still has significant long-term
chances for yield increases whereas Western Europe is already at a high land-
use intensity. Overall the highest technical long-term chances for yield increases
can be found in Africa, South and Eastern Europe and Russia and also in parts
of South Asia and Latin America.

5. Conclusion

The future development of agriculture is closely connected to current agri-
cultural land-use intensities. We have proposed an output-based measure of
land-use intensity applicable for global analyses. Our analysis shows that Eu-
rope, North America and parts of Asia (China, Japan) exhibit high agricultural
land-use intensities whereas Africa and countries belonging to the Former Soviet
Union display significantly lower land-use intensities. Concerning further yield
increases we observe that parts of Asia and nearly the whole African continent
show high long-term growth chances, whereas the Eastern US, Western Europe
and China use their land already on intensive levels. However, whether these
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chances will be exploited in the future depends on various factors such as polit-
ical conditions and institutional structures which are beyond the scope of this
paper.

Our concept of the measure τ is an addition to currently used measures
for agricultural land-use intensity. Its data requirements make it a good alter-
native whenever biophysical data has a better availability than socio-economic
data. Furthermore, its close relationship to the yield definition allows not only
qualitative but also quantitative calculations as τ behaves under constant envi-
ronmental conditions like a yield.

It is a useful measure for the implementation of technological change and
related R&D investments in land-use models, because it allows for relating R&D
investments to overall aggregate land-use intensity (Dietrich, 2011). Changes in
land-use intensity are major determinants of future yield increases, which is one
of the most important factors for future developments in the agriculture sector
and scenarios of food security.
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crop willmott coefficent
cassava 0.94
field peas 0.98
groundnut 0.98
maize 0.88
millet 0.92
rapeseed 0.98
rice 0.97
soybean 0.96
sugarbeet 0.98
sugarcane 0.74
sunflower 0.97
wheat 0.99

Table A.4: Willmott coefficients of the ability of crop growth model LPJmL to reproduce
national yield levels of the 12 crops represented in LPJmL

Appendix A. Willmott coefficients of LPJmL crop calibration

Table A.4 shows the Willmott coefficients of a comparison between simulated
yields of the crop growth model LPJmL and reported FAO yields.

Appendix B. Country-to-region mapping

Table B.5 shows the mapping between world regions used in this paper and
countries.

Appendix C. Calculation of a general τ -factor

To get a crop-unspecific, general τ -factor for each location one has to ag-
gregate the values for the different crop-types. Figure C.4 shows this procedure
for North America (NAM) and the 12 crop-types supplied by the used LPJmL
version. As one can see crop-specific τ -values within a country are relatively
homogeneous, caused by the country-based calibration of actual yields. Inho-
mogeneities within countries are primarily caused by two factors: First, outliers
due to low yield levels in reference and actual yields, so that small simulation
errors have a huge impact on the results. Second, general broader scale varia-
tions, which are caused by slightly different responses of the yield levels to the
LPJmL management factors. However, the overall results are primarily influ-
enced by the country-specific calibration to FAO yield levels. Aggregating these
crop-specific values to the general τ -factor one gets a picture with higher vari-
ance within a country. In this case, the variance is caused by the crop-specific
differences in τ -factors in combination with the underlying land-use patterns
describing the spatial crop distributions. Therefore, this combination of differ-
ent crop-specific τ -factors, which were calibrated with country-specific data and
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AFR CPA EUR FSU LAM
Sub-Saharan-Africa Centr.-Planned Asia Europe Former Soviet Union Latin America

Angola Cambodia Albania Azerbaijan, Republic of Argentina

Benin China Austria Belarus Belize

Botswana Laos Belgium-Luxembourg Georgia Bolivia

Burkina Faso Mongolia Bosnia and Herzegovina Kazakhstan Brazil

Burundi Viet Nam Bulgaria Kyrgyzstan Chile

Cameroon Croatia Moldova, Republic of Colombia

Central African Republic Czech Republic Russian Federation Costa Rica

Chad Denmark Tajikistan Cuba

Congo, Dem Republic of Estonia Turkmenistan Dominican Rep.

Congo, Republic of Finland Ukraine Ecuador

Cote d’Ivoire France Uzbekistan El Salvador

Djibouti Germany French Guiana

Equatorial Guinea Greece Guatemala

Eritrea Hungary Guyana

Ethiopia Iceland Haiti

Gabon Ireland Honduras

Ghana Italy Mexico

Guinea Latvia Nicaragua

Guinea-Bissau Lithuania Panama

Kenya Macedonia Paraguay

Lesotho Netherlands Peru

Liberia Norway Suriname

Madagascar Poland Uruguay

Malawi Portugal Venezuela

Mali Romania

Mauritania Slovakia

Mozambique Slovenia

Namibia Spain

Niger Sweden

Nigeria Switzerland

Rwanda Turkey

Senegal United Kingdom

Sierra Leone Yugoslavia, Fed Rep of

Somalia

South Africa

Sudan

Swaziland

Tanzania, United Rep. of

Togo

Uganda

Western Sahara

Zambia

Zimbabwe

MEA NAM PAO PAS SAS
Middle East/North Afr. North America Pacific OECD Pacific Asia South Asia

Algeria Canada Australia Indonesia Afghanistan

Egypt USA Japan Korea, Dem People’s Rep Bangladesh

Iran, Islamic Rep of New Zealand Korea, Rep of Bhutan

Iraq Malaysia India

Israel Papua New Guinea Myanmar

Jordan Philippines Nepal

Kuwait Solomon Islands Pakistan

Libyan Arab Jamahiriya Thailand Sri Lanka

Morocco

Oman

Saudi Arabia

Syrian Arab Rep

Tunisia

United Arab Emirates

Yemen

Table B.5: Country-to-region mapping
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the cellular land-use patterns allow to make statements concerning sub-national
land-use intensity patterns. However, its resolution and accuracy is quite lim-
ited. In the presented example of North America the combination of different
crop-specific τ -factors to a general τ -factor uncovers an East-West-divide with
high land-use intensities in Eastern U.S. and lower intensities in Western U.S..
Furthermore, the combination of crop-specific τ -factors leads to smoother tran-
sitions between countries compared to intensities of single crops. For instance,
differences in intensities between Mexico and the U.S. are quite obvious for
wheat, rice, maize and millet. However, the transition for the generalized land-
use intensity is relatively smooth at the border of both countries. Same holds
true for the border between the U.S. and Canada.

Appendix D. A methodological comparison of land-use intensity τ

and yield gap

Analysis of land-use intensity using τ and yield gap analysis show method-
ologically some fundamental differences: While yield gap analysis is measuring
how much improvements are still possible compared to the potential yield, a
pre-defined upper bound, the τ factor is measuring how much improvements
were applied so far. If the total amount of possible improvements would be
time-independent and the same for any location, both measures would always
measure the same. However, this is typically not the case. The following exam-
ples show some situations in which the measures will give different results.

In the following it is assumed that the inverse of the yield gap should be used
as a surrogate for land-use intensity (low yield gap → high land use intensity,
high yield gap → low land use intensity). Furthermore, reference yields in the
given examples never exceed actual yields. This assumption is not relevant for
the outcome but simplifies the shown schematics.

Appendix D.1. Not adopted technological change (temporal behavior)

The first example illustrates differences in yield gap and land use intensity
measures, when technological change takes place over time (e.g. newly bred
varieties or improved production means) but is not beeing adopted (Figure D.5).
Assuming constant environmental conditions our measure for land use intensity
τ is unaffected: The actual yield (act) does not change as the production remains
unchanged as well as the environment remains stable. Accordingly, also the
reference yield (ref) does not change and τ reports constant land use intensity.

The yield gap analysis on the contrary shows an increasing yield gap, as the
potential yield increases but the actual yield remains unchanged. Interpreted
as land use intensity that would lead to the wrong conclusion that intensity
decreases, even though production and production methods remain unchanged.

The described behavior does not only exist in the temporal domain. The
following example shows a similar behavior occurring in the spatial domain.
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Figure C.4: crop-specific τ -factors for North America (NAM) in 2000 and their aggregate.
The corresponding crop-types are: (a) wheat, (b) rice, (c) maize, (d) millet, (e) pulses, (f)
sugar beet, (g) cassava, (h) sunflower, (i) soybean, (j) groundnut, (k) rapeseed, (l) sugar cane.
The aggregated τ -factor, which is derived by calculating the mean over all crop-types for each
cell, is marked as (all).
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Figure D.5: Schematic evolution of reference yield (ref), actual yield (act) and potential yield
(pot) over time when technological change occurs but is not adopted.
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Figure D.6: Schematic comparison of reference yield (ref), actual yield (act) and potential
yield (pot) on a wet and a dry location under the assumption that yields can only be increased
by irrigation technologies.

Appendix D.2. A world merely equipped with irrigation technologies (spatial be-
havior)

This example assumes a world with agricultural yields that can only be im-
proved by applying irrigation technologies. We compare a dry region (irrigation
technologies have a major impact) with a wet region (irrigation technologies
have a marginal impact) in this scenario (Figure D.6). On the wet location,
there is only a small difference between potential yield and actual yield as only
marginal improvements can be achieved with the available technologies, conse-
quently the yield gap is small. As possible improvements on the location are
low the difference between actual yield and reference yield is also quite low,
indicating low land use intensity measured with τ .

On the dry location it is the other way around. Strong improvements are
possible as irrigation technologies can significantly improve the yield: Assuming
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Figure E.7: Global τ -factor distribution for the year 2000 for maize

that irrigation technologies are only partially applied there is still a significant
yield gap (as there is still a lot to improve) and the τ factor is relatively high
(as a lot has already been done). Using the τ factor the wet location shows
lower land use intensities than the dry location as there is just no possibility to
intensify yields on the wet location much. At the same time yield gap analysis
would report the higher intensity for the wet location not reflecting that the
yields at the dry location are much stronger amplified due to intensification
than on the wet location.

Yield gap analysis is a very powerful tool when it comes to comparing the
current productivity levels to what is currently achievable and it is a good
counterpart to an analysis with τ or another intensity measure. However, when
it comes to the analysis of land use intensities in larger spatial or temporal
domains (where potential yields are bound to change and very heterogeneous
environmental conditions have to be considered), the yield gap analysis is less
suitable than τ .

Appendix E. Agricultural land-use intensity measured with τ for maize
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