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[1] Analyzing insurance-loss data we derive stochastic
storm-damage functions for residential buildings. On district
level we fit power-law relations between daily loss and
maximum wind speed, typically spanning more than 4 orders
of magnitude. The estimated exponents for 439 German
districts roughly range from 8 to 12. In addition, we find
correlations among the parameters and socio-demographic
data, which we employ in a simplified parametrization of the
damage function with just 3 independent parameters for each
district. A Monte Carlo method is used to generate loss
estimates and confidence bounds of daily and annual storm
damages in Germany. Our approach reproduces the annual
progression of winter storm losses and enables to estimate
daily losses over a wide range of magnitudes. Citation: Prahl,
B. F., D. Rybski, J. P. Kropp, O. Burghoff, and H. Held (2012),
Applying stochastic small-scale damage functions to German winter
storms, Geophys. Res. Lett., 39, L06806, doi:10.1029/
2012GL050961.

1. Introduction

[2] A storm-damage function describes losses as a function
of observable meteorological parameters, typically maximum
wind speed. For winter storms occurring in central Europe
several storm-damage functions for residential buildings are
described in literature. The reinsurance company Münchener
Rückversicherungs-Gesellschaft [1993, 2001] found a
power-law damage function of maximum wind speed with
varying exponents of roughly 3 as well as 4–5, depending on
the storm event and country being analyzed. Klawa and
Ulbrich [2003] proposed a power-law damage function with
exponent 3, refined by Donat et al. [2011], using excess wind
speed over threshold instead of absolute maximum wind
speed. Similarly, Heneka and Ruck [2008] used a power-law
damage-propagation function of excess wind speed with
exponent of either 2 or 3, assuming proportionality to the
force or the kinetic energy of the wind, respectively. Both
groups define threshold wind speed as the empirical 98 per-
centile of the wind distribution. For the Netherlands Dorland
et al. [1999] derived a damage function for residential prop-
erty that can be reformulated as a power law of maximum
wind speed with exponent 0.5. When comparing these stud-

ies with literature on hurricane losses in the United States (see
Watson and Johnson [2004] for an overview), one must be
aware of the many differences in building structure and the
nature of the hazard. However, following a similar approach
to this article Huang et al. [2001] describe an exponential
damage model for residential property in the Southeastern
United States based on 10min-averaged wind speed.
[3] Our work is based on daily insurance-loss data (years

1997–2007) with a regional resolution of administrative
districts. From theoretical considerations we propose a sto-
chastic power-law damage function depending on maximum
daily wind speed to describe empirical losses. We find
exponents typically ranging from 8 to 12. Statistical devia-
tions are modeled by a spatially correlated stochastic variable
drawn from a log-normal distribution. Correlations among
parameters and with socio-demographic data are exploited to
reduce the number of independent parameters to three per
district. The model quality is assessed by out-of-sample cal-
culations based on Monte Carlo simulations of losses in daily
and annual resolution. We demonstrate good agreement
between annual model results and empirical values, albeit
observing a small, potential underestimation of high losses.
For the majority of districts we find high correlations
between annual loss estimates and data. Absolute daily losses
in Germany for the three most severe storms show good
predictions of losses across 4 orders of magnitude.
[4] This article is structured as follows: After a brief dis-

cussion of data, we describe motivation and details of the
damage function in section 3. A simplified parametrization
of the damage function is demonstrated in section 4. Finally,
we present modeled loss estimates and close with the dis-
cussion of our results in sections 5 and 6, respectively.

2. Data

[5] Insurance-loss data from the years 1997 to 2007 were
provided by the German Insurance Association (Gesamtver-
band der Deutschen Versicherungswirtschaft e.V., GDV).
The data comprise daily losses due to wind and hail for
439 German administrative districts. To eliminate economic
influences such as growing market penetration and price
effects, loss data were divided by the total insured value of
each district to obtain a dimensionless loss ratio. Further
description of the loss data is given byDonat et al. [2011]. As
the empirical loss data does not differentiate between wind
and hail damages, we limit the scope of the analysis to winter
months from October through March, during which damages
are predominantly driven by high winds.
[6] Data of daily maximum wind speed (3s gust wind) are

publicly available andwere obtained from the GermanWeather
Service (Deutscher Wetterdienst, DWD) for 78 wind stations
across Germany (available online at http://www.dwd.de).
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Wind stations that were lacking more than 5n measurements
for a sampling period of n years were discarded. Typically,
measurements were taken at 10m height above ground.

3. Motivation of the Damage Function

[7] The aim of this section is to derive a stochastic small-
scale damage function that, for each district i and on a daily
basis, relates the loss ratio Di (recorded storm loss over
insured value) to the maximum wind speed vi. As all cal-
culations are performed on district level subscript i will be
omitted for simplicity.
[8] A damage function should naturally have a sigmoid

shape with steep initial increase and saturation at large wind
speeds. Such growth processes are often modeled by a
logistic function

dðxÞ ¼ dmax

1þ e�cx
; ð1Þ

where dmax is the asymptotic upper bound and the exponent
c determines the steepness of the function. We apply the
transformation x = ln(v/bv), with maximum daily wind speed
v scaled by local constant bv. Taking the logarithm reduces
broadness and skewness of the distribution of daily maxi-
mum wind speeds and ensures that limv→0d(v) = 0. Since
recorded data show that for Germany d � dmax, d(v) can be
approximated as

dðvÞ ¼ dmax

1þ v=bvð Þ�c ≈
v

b

� �c
; ð2Þ

where constants were combined to the new scaling param-
eter b ≈ bvdmax

�1/c.
[9] Figure 1a shows the empirical loss data for an arbi-

trarily chosen district. By inspection we see that the loga-
rithmically binned data reveals a strong increase for wind
speeds higher than approximately 13 ms�1 and an

approximately constant regime for lower wind speeds. To
capture this behavior an additional constant offset a is
introduced, giving

dðvÞ ≈ v

b

� �c
þ a: ð3Þ

Calculating the residuals �̂ between empirical data and d(v),
we find an approximately log-normal distribution of resi-
duals with nearly constant scale parameter s. For simplicity,
we utilize this finding for modeling statistical deviations �
and hence describe losses via a stochastic variable

D�ðvÞ � LN mðvÞ;s2
� �

; ð4Þ

where LN represents the log-normal distribution and m(v) =
ln d(v). m(v) and s are the mean and standard deviation,
respectively, of the variable’s natural logarithm.
[10] So far the analysis accounts for the loss intensity

given a loss event, leaving aside the probability of an
event. An empirical occurrence rate of loss events
(Figure 1b) was calculated from linearly binned binary data,
where a loss event was coded as ‘1’ and days without loss as
‘0’. While the empirical occurrence rate is approximately 1
at high v, it drops to a constant base rate for v → 0. Ideally,
the occurrence rate could be derived from D�(v) as the
probability of exceeding a certain loss threshold. We were
not able to identify such threshold via censored-regression
modeling and hence chose to fit the data with an empirical
occurrence-probability function

pðvÞ ¼ 1� a
1þ egðv�bÞ ; ð5Þ

with base probability (1 � a), shift b, and slope g. Multi-
plying D�(v) with a stochastic weight function w(v) based on
p(v), we obtain the complete stochastic damage function

D�;p vð Þ ¼ w vð ÞD� vð Þ

w vð Þ :¼
n 1; if P ≤ p vð Þ
0; if P > p vð Þ

P � U 0; 1ð Þ:

ð6Þ

Maximum-likelihood estimation was applied to calculate
the parameters of D�(v) in an iterative process, alternating
between computing parameters a, b, cwhile keeping the scale
parameter s constant and vice versa (see pseudo-likelihood
algorithm by Ruppert et al. [2003]). A least-squares approach
was used to fit the parameters of p(v).
[11] As some wind stations may not be representative for a

given district, the wind station featuring the highest predic-
tive power was chosen from a set of 5 wind stations closest
to the geographical center of the district. The coefficient of
determination for non-linear regression models, generalized
R2, was chosen as a measure of predictive power. For the
given shape of the damage curve d(v), R2 values related to
nearby wind stations indicate the level of variance inherent
to the specific combination of district loss and wind data.
Due to the high level of statistical deviation around d(v), low
R2 scores would be expected for any smooth damage curve.
In fact, all estimated R2 scores lie within the interval [0.2,
0.6], with an average of 0.42. High R2 is seen for north-
western coastal regions which often experience high winds.
Regions with an R2 score of 0.4 and below largely coincide
with German low mountain ranges (Mittelgebirge) and along
the southern alpine border. Best scores are hence generally

Figure 1. Example of damage function and occurrence
probability for an arbitrary district. (a) The damage function
d(v) is plotted against the maximum daily wind speed v.
Confidence bounds of �2s are shown by dashed lines. Grey
points represent daily loss data. (b) The fitted occurrence
probability p(v) is shown. Binned empirical data, shown as
circles, are given as reference only.
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obtained for regions with homogeneous elevation and high
frequency of strong winds.
[12] The spatial distribution of the exponent c estimated for

all German districts is shown in Figure 2. We find a slightly
right-skewed distribution with mean 9.8. 80% of values are
contained within the interval from 8.3 to 11.8. Values of 15
and beyond can be conceived as outliers, occurring in districts
where wind measurements insufficiently differentiate losses
even at high wind speeds. Geographically, values of c below
10 predominate in Western, Central, and Northern Germany,
while values above 10 are most often found across Southern
Germany and the southern districts of East Germany.
[13] Our analysis is based on the assumption that maxi-

mum wind speed is the dominating criterion for the occurrence
and severity of storm damages. It was not feasible to quantify
the effects from other potential factors (e.g., storm duration,
precipitation, or turbulent winds). However, the presence of
systematic large-scale deviations should be reflected in spatial
correlations of the statistical deviations �. In fact, calculations
of Spearman’s correlation coefficient from normalized resi-
duals lnð�̂Þ showed significant spatial rank correlations
between districts, ranging from �0.30 to 0.67. While insig-
nificant for the estimation of loss in single districts, these
correlations must be accounted for when spatially accumulat-
ing loss across Germany. In order to reproduce the spatial
correlations during the Monte Carlo calculations, the empiri-
cally estimated rank correlations were enforced on the random
deviations � ofD�. The algorithmwas implemented as follows:
[14] 1. Determine pairwise Spearman’s correlation coeffi-

cients ri, j of lnð�̂Þ between every possible combination of
districts and thus populate matrix M̂ ¼ ½ri;j�439�439.
[15] 2. Determine the nearest positive-definite correlation

matrix M using the algorithm derived by Higham [2002].
[16] 3. Use the iterative procedure by Iman and Conover

[1982] to create spatially correlated random deviations ln(�).
[17] We assume two main processes giving rise to the

statistical deviations being found in Figure 1a. Firstly, the

correlation between wind-speed measurements at separate
sites is known to decrease significantly with growing dis-
tance. To assess the significance of this effect on small
scales, we compared two closely situated wind stations
within the same district (Berlin Tempelhof and Berlin Tegel,
distance ≈ 11 km). From the empirical distribution we esti-
mate that 75% of statistical deviations lie within the interval
[�1.5 ms�1, 1.4 ms�1], while roughly 5% exceed
[�3 ms�1, 2.9 ms�1]. Hence, a significant part of the
observed deviations may be attributed to such source of
error. Secondly, insurance data may be subject to statistical
fluctuations caused by incorrect or delayed reporting of
losses. We however expect that for large losses the latter
errors are small and negligible.

4. Parametric Simplification

[18] In order to simplify the parametrization of the damage
model we identified global statistical relationships and
reduced the number of local fitting parameters. As additional
predictors we used the number of residential buildings per
district h, long-term damage rate d defined as the share of
days with recorded damages during the observation period,
and the wind speed n = ba1/c at the intersection of the con-
stant a and the power-law term in d(v). The raw data for the
439 districts and the corresponding least-square fits are
shown in Figures 3a–3c. Parameters a, a, and b could hence
be replaced with the fitted global relationships

a ¼ ð2:05� 0:58Þh�0:99�0:03 ð7aÞ

ð1� aÞ ¼ ð0:92� 0:01Þd1:47�0:02 ð7bÞ

b ¼ ð0:96� 0:01Þn þ ð0:58� 0:24Þms�1: ð7cÞ

Intuitively, the inverse proportionality between loss offset a
and number of buildings h (equation (7a)) follows from the

Figure 2. Spatial distribution of exponent c and DWD
wind stations. The color code indicates the local values of
c, summarized in the histogram inset. Markers indicate
DWD wind stations that were used for calculations or
excluded due to inhomogeneities or missing data.

Figure 3. Correlations among model parameters and exter-
nal factors. (a–c) Scatter plots show the correlations found
for model parameters a, a, and b, respectively. Dots repre-
sent individual districts and dashed lines indicate fitted
curves (cf. equations (7a)–(7c)). (d) shows the parameter b
versus the elevation (above MSL) of the used wind stations.
Circles denote binned data.
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definition of the loss ratio, defined as the absolute loss
divided by the insured value, since the insured value scales
linearly with the total number of houses. This suggests a
common minimum noise level for all districts. Furthermore,
the approximate direct proportionality between n and b in
equation (7c) hints at a common threshold that separates the
regime of noise at lower wind speeds from storm-driven
losses at high wind speeds. In line with this proposition, we
interpret (1 � a) as the probability of a random loss event in
the noisy regime of the curve. Accordingly, equation (7b)
shows that the regional differences of the long-term damage
rate d are dominated by random loss events. The remaining
third parameter of p(v), g, could furthermore be replaced by
its mean value over all districts, �g ¼ 0:46. As p(v) generally
increases rapidly from (1� a) to 1, results were insensitive to
the error induced by this replacement.
[19] In summary, the above global relationships can be

used to reduce the model parametrization to three local
parameters (exponent c, and scaling parameters b and s).
Additionally, we observe a weak dependence of scale
parameter b on the elevation of the respective wind stations
above mean sea level (Figure 3d). However, it is expected
that b comprises a multitude of scaling effects due to orog-
raphy or land use, and that hence the altitude dependence is
not sufficient for a robust approximation.
[20] In the following, all calculations are based on the full

parametric model unless we refer to the reduced model.

5. Modeling Results

[21] In order to assess the predictive power of the pro-
posed damage function, calculations of regional and country-
wide loss figures were compared to empirical values. Due
to the availability of only 11 years of spatially resolved loss
data, an out-of-sample-test algorithm was implemented as
follows:
[22] 1. Exclude year x from empirical loss data.
[23] 2. Train the storm damagemodel on the remaining data.
[24] 3. Predict country-wide daily and cumulated losses

for year x based on daily maximum wind speeds.

[25] 4. Vary x and repeat all calculations.
[26] In order to estimate the distribution of daily losses,

the Monte Carlo method was used and 500 realizations of
daily loss estimates were calculated.
[27] Figure 4 shows daily loss predictions in Germany for

the time periods around the three major storm events named
‘Lothar’ (24.-27.12.1999), ‘Jeanett’ (26.-29.10.2002), and
‘Kyrill’ (17.-19.1.2007). These storms are of particular
interest, as they caused the largest insurance losses during
the period under consideration. For most days empirical
values lie within the uncertainty bounds of the model esti-
mates. Peak empirical losses of storm events ‘Lothar’ and
‘Kyrill’ are contained within the 80% uncertainty bound,
while ‘Jeanett’ is found in the 95% interval. The results
demonstrate the model performance for predicting losses
over 4 orders of magnitude.
[28] Annual loss estimates during winter months are

shown in Figure 5a. Regarding absolute loss figures, we
estimate a very high Pearson correlation of 0.99 between the
model estimates (median) and the empirical values, which
indicates a good reproduction of the annual progression of
empirical storm-loss data. Annual losses are dominated by
the storm events, ‘Lothar’, ‘Jeanett’, and ‘Kyrill’, in the
years 1999, 2002, and 2007, respectively. Loss estimates for
these years hence reflect the peaks seen in Figure 4. Addi-
tionally, we observe a small positive bias for years with loss
ratio below 10�4, which may be due to ignoring correlations
in the estimation of p(v) (equation (5)). In total, we find
approximately 12% underestimation of absolute loss accu-
mulated over 11 years.
[29] Figure 5b summarizes the correlation per district

between the median of the annual loss estimates and the
empirical values. Approximately 1/3 of all districts show
high Pearson correlation coefficients above 0.9. The mean
correlation over all districts is 0.74. The correlations allow

Figure 4. Out-of-sample calculations for daily German
absolute losses during three severe winter storms (‘Lothar’,
‘Jeanett’, and ‘Kyrill’). Circles denote the median of the
damage distribution and diamonds empirical values. 50%,
80%, and 95% confidence bounds are shaded from dark to
light grey, respectively.

Figure 5. Out-of-sample calculations for the annually
accumulated loss ratio during winter months (Oct–Mar).
(a) Loss estimates for Germany. Circles denote the median
of the estimated damage distribution, while 50%, 80%, and
95% confidence bounds are shaded from dark to light grey,
respectively. Empirical values are represented by diamonds.
(b) A histogram of Pearson’s correlation coefficients between
annual loss estimates and empirical values for each district.
Correlations above 0.6 are statistically significant. The solid
and dashed lines relate to the fully parameterized and the
reduced model, respectively.
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for a comparison of the full model and the reduced model
with only three fit parameters per district. The histogram
shows an increase of correlations between 0.5 and 0.9, while
the number of correlations with values above 0.9 is slightly
decreased. Together with a slight increase of mean correla-
tion to 0.76 this demonstrates the sufficiency of the three
remaining fit parameters. Since both the original and the
reduced model produce nearly identical quantitative loss
estimates for Germany, we show results for the original
model only.

6. Discussion

[30] Empirical data of daily insurance losses across
German administrative districts show a strong increase of
losses with maximum daily wind speed. We find that these
losses are well described by power-law damage functions
with regionally varying exponents that typically range
between 8 and 12. For the out-of-sample calculations we
generated successive parameter fits based on varying time
slices of the available data. The estimated parameters were
insensitive to these variations, thus demonstrating model
robustness even under exclusion of the major loss events.
[31] While these results are in contrast to damage functions

published before, a direct comparison of the exponents may be
misleading. In fact, excess-over-threshold models, as applied
by Klawa and Ulbrich [2003] and Heneka and Ruck [2008],
imply a much steeper increase of loss in the threshold vicinity
than pure power-law models of absolute wind speed [e.g.,
Münchener Rückversicherungs-Gesellschaft, 1993, 2001].
The basic conjecture of our approach is a monotonous rela-
tionship between insured loss and maximum wind speed
applicable to both small and extreme storm loss, which enables
us to exploit information from a wide range of recorded losses.
Since we found a universal power-law increase of loss for all
districts we think that the use of damage functions with dif-
fering asymptotic shape may result in significant extrapolation
error.
[32] In Figure 4 we demonstrated in an out-of-sample test

that daily modeled losses across Germany closely match
empirical values ranging over four orders of magnitude.
Judging from the comparison of median loss estimates and
empirical data, peak losses may be slightly underestimated
while still being within the uncertainty bounds of the model.
Next to being a purely statistical effect (e.g., insufficient
length of time series), this may be due to other aspects such as
underdetermination of the model based on maximum wind
speed only. Where available, empirical data regarding such
aspects as the temporal wind profile, storm duration, or
gustiness may be used to improve loss estimation. Socio-
economic effects, such as demand surges [see, e.g., Olsen
and Porter, 2011], are expected to play a minor role.
[33] Inspired by other studies, the proposition of an

exponential damage function was tested, but rejected due to
strong overestimation of damages for large wind speeds.
Bearing in mind that the damage function was fitted on the
whole range of available loss data and thus not specifically
calibrated to extreme losses, we conclude that the model
results demonstrate good reproduction of both daily and
annual extremes.
[34] Strong country-wide correlations of model parameters

support the universal applicability of our damage function and
permit the separation of the damage curve into a

approximately constant noisy regime and a physical power-
law regime. Employing these correlations, the model
parametrization was successfully reduced to three indepen-
dent parameters determining the basic shape of the damage
curve. While the power-law exponent determines the curve’s
steepness, the scale parameter accounts for regional variation
between districts and wind stations (e.g., distance and orog-
raphy). The third parameter specifies the width of the log-
normal loss distribution around the central curve and thus
relates to the expected level of statistical deviations. In par-
ticular, the value of the exponent may be interpreted as an
indicator for regional vulnerability to extreme winds. Its
spatial distribution indicates reduced vulnerability within
Western and Northern Germany. As these regions, and
especially the coastal regions, are highly exposed to extreme
winds, the relatively low values of the exponent suggest a
greater level of adaptation to the current wind climate than for
Southern Germany.
[35] All model calculations were deliberately based on raw

measurements of maximum wind speed as provided by
DWD. While most wind stations are known to be subject to
inhomogeneities due to change in measurement apparatus,
location or surrounding surface roughness they may none-
theless possess predictive power for neighboring districts.
Due to the selection criterion of maximizing generalized R2,
wind stations with inhomogeneities causing significant
additional variance were excluded unlike for temperature or
pressure data, correction of inhomogeneities in maximum
wind speed data would require case-specific non-linear
transformations that are beyond the scope of this study.
[36] Additional insight, in particular regarding the signif-

icance for extreme loss modeling, could be gained from a
dedicated model intercomparison on the basis of common
meteorological and insurance-loss data. In further work we
moreover intend to apply our model to loss data for other
European countries and regions. A cross-national compari-
son of model parameters could enable the identification of
clusters of similar vulnerability and reveal regional adapta-
tion potential.
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